HOW 'WEAK' IS ELECTROWEAK ?

- PROBING STRONG EWSB AT THE LHC -

ROBERTO CONTINO

RC, C. Grojean, M. Moretti, F. Piccinini, R. Rattazzi JHEP 05(2010) 089

RC, D. Marzocca, D. Pappadopulo, R. Rattazzi, to appear

Motivation:

After a light scalar is discovered, how can we test the role it plays in the EWSB ?

EVIDENCE FOR A LIGHT HIGGS-LIKE SCALAR

$$\mathcal{L} = \begin{array}{c} \mathcal{L}_{kin} + \mathcal{L}_{mass} & \underset{U(1)_{em} \text{ invariant}}{\uparrow} \\ & & & & \\ & & &$$

 $SU(2)_L \times U(1)_Y$ invariant

$$\mathcal{L}_{mass} \to \mathcal{L}_{EWSB} = \frac{v^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) + a_T \frac{v^2}{8} \left[\operatorname{Tr} \left(\Sigma^{\dagger} D_{\mu} \Sigma \sigma^3 \right) \right]^2 \quad \longleftarrow O(\mathsf{p}^2)$$
$$+ a_S \operatorname{Tr} \left(W_{\mu\nu} \Sigma B^{\mu\nu} \Sigma^{\dagger} \right) + \dots \quad \longleftarrow O(\mathsf{p}^4)$$
$$- \frac{v}{\sqrt{2}} \sum_{i,j} \left(\overline{u_L^{(i)}}, \overline{d_L^{(i)}} \right) \Sigma \begin{pmatrix} \lambda_{ij}^u u_R^{(j)} \\ \lambda_{ij}^d d_R^{(j)} \end{pmatrix} + h.c.$$

$$\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{mass}$$

$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{1}{1 + a_T}$$

$$\mathcal{L}_{mass} \rightarrow \mathcal{L}_{EWSB} = \frac{\frac{v^2}{4} \operatorname{Tr} \left(D_\mu \Sigma^\dagger D^\mu \Sigma \right) + a_T \frac{v^2}{8} \left[\operatorname{Tr} \left(\Sigma^\dagger D_\mu \Sigma \sigma^3 \right) \right]^2}{+ a_S \operatorname{Tr} \left(W_{\mu\nu} \Sigma B^{\mu\nu} \Sigma^\dagger \right) + \dots}$$

$$- \frac{v}{\sqrt{2}} \sum_{i,j} \left(\overline{u_L^{(i)}}, \overline{d_L^{(i)}} \right) \Sigma \begin{pmatrix} \lambda_{ij}^u u_R^{(j)} \\ \lambda_{ij}^d d_R^{(j)} \end{pmatrix} + h.c.$$

Experimentally: $(\rho - 1) \lesssim 2 \times 10^{-3}$

 $a_T(m_Z)$ must be very small

$$\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{mass}$$

$$\mathcal{L}_{mass} \to \mathcal{L}_{EWSB} = \frac{v^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) + a_T \frac{v^2}{8} \left[\operatorname{Tr} \left(\Sigma^{\dagger} D_{\mu} \Sigma \sigma^3 \right) \right]^2 + a_S \operatorname{Tr} \left(W_{\mu\nu} \Sigma B^{\mu\nu} \Sigma^{\dagger} \right) + \dots - \frac{v}{\sqrt{2}} \sum_{i,j} \left(\overline{u_L^{(i)}}, \overline{d_L^{(i)}} \right) \Sigma \begin{pmatrix} \lambda_{ij}^u u_R^{(j)} \\ \lambda_{ij}^d d_R^{(j)} \end{pmatrix} + h.c.$$

For $a_T = 0$, in the limit $g_1 = 0$, $\lambda^u = \lambda^d$, there is a larger $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ global symmetry:

 $\Sigma \to U_L \Sigma U_R^{\dagger}$

The NG bosons χ^a transform as a triplet under the custodial SU(2)_V :

$$M_W = M_Z \qquad \text{for } g_1 = 0$$

$$\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{mass}$$

$$\mathcal{L}_{mass} \to \mathcal{L}_{EWSB} = \frac{v^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) + a_T \frac{v^2}{8} \left[\operatorname{Tr} \left(\Sigma^{\dagger} D_{\mu} \Sigma \sigma^3 \right) \right]^2 + a_S \operatorname{Tr} \left(W_{\mu\nu} \Sigma B^{\mu\nu} \Sigma^{\dagger} \right) + \dots - \frac{v}{\sqrt{2}} \sum_{i,j} \left(\overline{u_L^{(i)}}, \overline{d_L^{(i)}} \right) \Sigma \begin{pmatrix} \lambda_{ij}^u u_R^{(j)} \\ \lambda_{ij}^d d_R^{(j)} \end{pmatrix} + h.c.$$

For $a_T = 0$, in the limit $g_1 = 0$, $\lambda^u = \lambda^d$, there is a larger $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ global symmetry:

 $\Sigma \to U_L \Sigma U_R^{\dagger}$

Data suggest the global coset: $SU(2) \times SU(2) \rightarrow SU(2) \iff$

Adding an extra scalar, singlet of the custodial $SU(2)_V$

$$\mathcal{L} = \frac{v^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + \cdots \right) + V(h)$$

$$- \frac{v}{\sqrt{2}} \sum_{i,j} \left(u_L^{(i)} \ d_L^{(j)} \right) \Sigma \left(1 + c \frac{h}{v} + \cdots \right) \left(\lambda_{ij}^u \ u_R^{(j)} \right) + h.c.$$
a, b, c are free parameters

$$\begin{bmatrix} \text{ for a SM Higgs: } a=b=c=1 \end{bmatrix}$$

$$M^a \longrightarrow M_z$$

$$M_z$$

$$M_z$$

$$M_z$$

$$\Delta \epsilon_{1,3} = -c_{1,3} \ a^2 \log \frac{\Lambda^2}{m_h^2}$$

see: Barbieri et al. PRD 76 (2007) 115008

Adding an extra scalar, singlet of the custodial SU(2)_V

$$\mathcal{L} = \frac{v^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + \cdots \right) + V(h)$$
$$- \frac{v}{\sqrt{2}} \sum_{i,j} \left(u_L^{(i)} \ d_L^{(i)} \right) \Sigma \left(1 + c \frac{h}{v} + \cdots \right) \begin{pmatrix} \lambda_{ij}^u \ u_R^{(j)} \\ \lambda_{ij}^d \ d_R^{(j)} \end{pmatrix} + h.c.$$

 $---- \Lambda \sim 1 \,\mathrm{TeV}$

$$\Delta \epsilon_{1,3} = -c_{1,3} \ a^2 \ \log \frac{\Lambda^2}{m_h^2}$$

see: Barbieri et al. PRD 76 (2007) 115008

HOW `STANDARD` THE HIGGS MUST BE ?

Large deviations from a=1 still allowed for a light Higgs

Presently <u>no</u> constraint on b,c

THE HIGGS AS A COMPOSITE NAMBU-GOLDSTONE BOSON

THE HIGGS AS A COMPOSITE PSEUDO-NG BOSON [Georgi

[Georgi & Kaplan, `80]

Motivations:

• light Higgs naturally

Higgs = NG boson of $G \rightarrow G'$ at the scale f

At tree level: $m_h = 0$ $m_\rho \approx 4\pi f$

[Georgi & Kaplan, `80]

 m_W -

THE HIGGS AS A COMPOSITE PSEUDO-NG BOSON [Geo

[Georgi & Kaplan, `80]

Motivations:

• light Higgs naturally

Higgs = NG boson of $G \rightarrow G'$ at the scale f

$$\xi = \left(\frac{v}{f}\right)^2$$

new parameter compared to TC (fixed by dynamics)

$$\begin{aligned} \xi &\to 0 \\ \left[f \to \infty \right] \end{aligned}$$

decoupling limit

All ρ 's become heavy and one reobtains the SM

THE HIGGS AS A COMPOSITE PSEUDO-NG BOSON [Geo

Motivations:

• contribution to EWPO from heavier resonances parametrically suppressed

$$\Delta \epsilon_3 \equiv \hat{S} \sim \frac{m_W^2}{m_\rho^2} \sim \frac{g^2}{g_\rho^2} \times \frac{v^2}{f^2}$$

 $\operatorname{Dim}\left[\frac{SO(5)}{SO(4)}\right] = 4$

4 real Nambu-Goldstone bosons transforming as:

- a 4 of SO(4)

- a real (2,2) of $SU(2)_L \times SU(2)_R$
- a complex doublet of $SU(2)_L$

A MINIMAL COMPOSITE HIGGS MODEL:

$$\mathcal{L} = \frac{f^2}{2} (D_\mu \phi)^T (D^\mu \phi)$$

$$\phi^T \phi = 1$$

$$\phi = e^{i\pi^{\hat{a}}T^{\hat{a}}/f} \begin{pmatrix} 0\\ 0\\ 0\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} \sin(\pi/f) \times \begin{pmatrix} \hat{\pi}^{1}\\ \hat{\pi}^{2}\\ \hat{\pi}^{3}\\ \hat{\pi}^{4} \end{pmatrix} \end{pmatrix} \underbrace{\operatorname{vacuum}}_{\operatorname{cos}(\pi/f)} \begin{pmatrix} 0\\ 0\\ 0\\ 0\\ \sin(\langle \pi \rangle/f)\\ \cos(\langle \pi \rangle/f) \end{pmatrix} \operatorname{vacuum}_{\operatorname{cos}(\langle \pi \rangle/f)} (\operatorname{vacuum}) \begin{pmatrix} 0\\ 0\\ 0\\ 0\\ \sin(\langle \pi \rangle/f)\\ \cos(\langle \pi \rangle/f) \end{pmatrix}$$

 $\left| \left(\pi \hat{a} \right) 2 \right|$

 $T^{\hat{a}} \in \operatorname{Alg}\{SO(5)/SO(4)\}$ π $\hat{\pi}^{\hat{a}}$

$$\hat{\pi}^{\hat{a}} \equiv \pi^{\hat{a}} / \pi$$

The $SU(2)_L \times U(1)_Y$ gauging and the couplings to the elementary fermions break SO(5) <u>explicitly</u>:

A MINIMAL COMPOSITE HIGGS MODEL:

$$\mathcal{L} = \frac{f^2}{2} (D_\mu \phi)^T (D^\mu \phi)$$

$$\phi = e^{i\pi^{\hat{a}}T^{\hat{a}}/f} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \sin(\pi/f) \times \begin{pmatrix} \hat{\pi}^{1} \\ \hat{\pi}^{2} \\ \hat{\pi}^{3} \\ \hat{\pi}^{4} \end{pmatrix} \stackrel{\text{physical gauge}}{\longrightarrow} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \sin(\langle \pi \rangle + h(x))/f \end{pmatrix} \stackrel{\text{3 NG bosons eaten to form W and Z longitudinal form W$$

 $T^{\hat{a}} \in \operatorname{Alg}\{SO(5)/SO(4)\}$ $\pi \equiv \sqrt{(\pi^{\hat{a}})^2}$

 $\hat{\pi}^{\hat{a}} \equiv \pi^{\hat{a}}/\pi$

The $SU(2)_L \times U(1)_Y$ gauging and the couplings to the elementary fermions break SO(5) explicitly:

 $\phi^T \phi = 1$

A MINIMAL COMPOSITE HIGGS MODEL:

$$\mathcal{L} = \frac{f^2}{2} (D_\mu \phi)^T (D^\mu \phi) \qquad \qquad \phi^T \phi = 1$$

$$\phi = e^{i\pi^{\hat{a}}T^{\hat{a}}/f} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \sin(\pi/f) \times \begin{pmatrix} \hat{\pi}^{1} \\ \hat{\pi}^{2} \\ \hat{\pi}^{3} \\ \hat{\pi}^{4} \end{pmatrix} \begin{pmatrix} physical \\ gauge \\ \longrightarrow \\ \cos(\pi/f) \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ gauge \\ \longrightarrow \\ \cos(\langle \pi \rangle + h(x))/f \end{pmatrix} \qquad (radial' excitation h(x) \\ not eaten since SO(4) \\ invariant \end{pmatrix}$$

A TWO-STEP SYMMETRY BREAKING: $\begin{array}{ccc} f & v \\ \mathsf{SO}(5) \to \mathsf{SO}(4) \to \mathsf{SO}(3) \\ & & \\ & & \\ \mathsf{SU}(2)_{\mathsf{L}} & \mathsf{EWSB} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$

$$\frac{v}{f} = \sin\!\left(\frac{\langle \pi \rangle}{f}\right)$$

A SIMPLIFIED EXAMPLE: $SO(3) \rightarrow SO(2)$

2 real NG bosons transforming as a 2 of SO(2) and living on a 2-sphere

$$A_{1} = -i \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \quad A_{2} = -i \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \quad V = -i \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

1

 π

$$\phi = e^{i(\pi^{1}A_{1} + \pi^{2}A_{2})/f} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \sin(\theta + h/f) \times \begin{pmatrix} \sin\varphi \\ \cos\varphi \end{pmatrix} \\ \cos(\theta + h/f) \end{pmatrix} \xrightarrow{\text{vacuum}} \begin{pmatrix} 0 \\ \sin\theta \\ \cos\theta \end{pmatrix} \xrightarrow{\text{fully broken}}$$

turning on a vev for the NG vector:

$$\langle \pi \rangle = \theta \cdot f$$

$$\stackrel{(1)}{(x)}_{(x)} = (\theta f + h(x)) \begin{pmatrix} \sin \varphi(x) \\ \cos \varphi(x) \end{pmatrix}$$

The angle θ measures the degree of misalignment between the gauged SO(2) and the SO(2)' preserved in the true vacuum

A SIMPLIFIED EXAMPLE: $SO(3) \rightarrow SO(2)$

2 real NG bosons transforming as a 2 of SO(2) and living on a 2-sphere

$$A_{1} = -i \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \quad A_{2} = -i \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \quad V = -i \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\phi = e^{i(\pi^{1}A_{1} + \pi^{2}A_{2})/f} \begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} \sin(\theta + h/f) \times \begin{pmatrix} \sin\varphi\\\cos\varphi \end{pmatrix} \\ \cos(\theta + h/f) \end{pmatrix} \xrightarrow{\text{physical}} \begin{pmatrix} 0\\\sin(\theta + h(x)/f) \\ \cos(\theta + h(x)/f) \end{pmatrix}$$

eaten NG
boson 'radial' excitations = pNG Higgs

EW CHIRAL LAGRANGIAN FOR $SO(5) \rightarrow SO(4)$

$$\phi = \begin{pmatrix} \sin(\theta + h(x)/f) & e^{i\chi^{i}(x)A^{i}/v} \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \end{pmatrix} \qquad \qquad A^{i} \in \operatorname{Alg}\left\{\frac{SO(4)}{SO(3)}\right\} \\ \cos(\theta + h(x)/f) \qquad \qquad \Sigma = e^{i\sigma^{i}\chi^{i}(x)/v} \end{cases}$$

1)
$$m_W^2 = \frac{g^2 f^2}{4} \sin^2 \theta$$
 $\xi = \left(\frac{v}{f}\right)^2 = \sin^2 \theta$

1) $a_T(\Lambda)=0$ hence ho=1 up to 1-loop corrections

Expanding around the vacuum:

$$\xi = \left(\frac{v}{f}\right)^2 = \sin^2\theta$$

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} h\right)^{2} + \frac{v^{2}}{4} \operatorname{Tr}\left[\partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma\right] \left(1 + 2\sqrt{1 - \xi} \frac{h}{v} + (1 - 2\xi) \left(\frac{h}{v}\right)^{2} + \dots\right)$$

$$a = \sqrt{1 - \xi}, \qquad b = (1 - 2\xi)$$

 Higgs couplings to gauge bosons fixed by the coset, and predicted in terms of Ι parameter (ξ)

For a composite Higgs doublet the small ξ behavior is universal

[Giudice et al. JHEP 0706:045 (2007)]

$$\mathcal{L} = \frac{1}{2} (D_{\mu} H)^{\dagger} (D^{\mu} H) + c_{H} \xi \frac{1}{2v^{2}} \left[\partial_{\mu} (H^{\dagger} H) \right]^{2} + \cdots$$

$$a = \left(1 - \frac{c_H \xi}{2}\right) \qquad b = \left(1 - 2 c_H \xi\right)$$

HOW MUCH COMPOSITETHE pNG HIGGS CAN BE?

Ex: SO(5)
$$\rightarrow$$
 SO(4) $m_{\rho} = \frac{3}{8\pi} \frac{g_{\rho}v}{\sqrt{\epsilon}} \quad a = \sqrt{\xi}$

$$m_{\rho} = \frac{3}{8\pi} \frac{g_{\rho}v}{\sqrt{\xi}} \qquad a = \sqrt{\xi - 1} \qquad m_h = 120 \,\text{GeV}$$

[Agashe, RC, Pomarol, NPB 719 (2005) 165]

A LIGHT SCALAR FAKING THE HIGGS: THE DILATON

ψ

[Goldberger et al. PRL 100 (2008) 111802]

 $= \left\{ \chi^a, \phi, \ldots \right\}$

If the EWSB sector has a spontaneously broken scale invariance the corresponding NG boson (the dilaton) can be light :

Invariance under dilatations fixes the couplings of the dilaton:

 $x \to e^{-\lambda} x \qquad \phi(x) \to \phi(xe^{\lambda}) + \lambda f_D \qquad \chi^a(x) \to \chi^a(e^{\lambda} x) \qquad \psi(x) \to e^{3\lambda/2} \psi(e^{\lambda} x)$

EWSB

sector

$$\mathcal{L} = e^{2\phi/f_D} \left[\frac{1}{2} \left(\partial_\mu \phi \right)^2 + \frac{v^2}{4} \operatorname{Tr} \left(D_\mu \Sigma^\dagger D^\mu \Sigma \right) \right] - m_i \, \bar{\psi}_{Li} \Sigma \psi_{iR} \, e^{\phi/f_D} + h.c.$$

A LIGHT SCALAR FAKING THE HIGGS: THE DILATON

[Goldberger et al. PRL 100 (2008) 111802]

If the EWSB sector has a spontaneously broken scale invariance the corresponding NG boson (the dilaton) can be light :

By setting $e^{\phi/f_D} \equiv 1 + \frac{\chi}{f_D}$ one has:

$$\mathcal{L} = \left[\frac{1}{2} \left(\partial_{\mu}\phi\right)^{2} + \frac{v^{2}}{4} \operatorname{Tr}\left(D_{\mu}\Sigma^{\dagger}D^{\mu}\Sigma\right)\right] \left(1 + \frac{\chi}{f_{D}}\right)^{2} - m_{i}\,\bar{\psi}_{Li}\Sigma\psi_{iR}\left(1 + \frac{\chi}{f_{D}}\right) + h.c.$$

same as a light composite Higgs with:

$$a^2 = b = c^2 \qquad a = \frac{v}{f_D}$$

WW SCATTERING

By the Equivalence Theorem $\chi \chi \to \chi \chi$ equal to $W_L W_L \to W_L W_L$ at large energy Comparing with $A(W_T W_T o W_T W_T) = g^2$ g o (E/v)strong coupling at $(E/v) \sim 4\pi$

$$A(\chi^+\chi^- \to \chi^+\chi^-) = \frac{1}{v^2} \left(s+t\right)$$

The Higgs contributes to the scattering

unitarity for:
$$a=1$$

$$\mathcal{A}(\chi^+\chi^- \to \chi^+\chi^-) \simeq \frac{1}{v^2} \left[s - \frac{a^2 s^2}{s - m_h^2} + (s \leftrightarrow t) \right]$$

Strong regime delayed to

$$(E/v) \sim \frac{4\pi}{\sqrt{1-a^2}}$$

$$\mathcal{A}(\chi^+\chi^- \to hh) \simeq \frac{s}{v^2}(b-a^2)$$

unitarity for: $a^2=b$

$$\mathcal{A}(\chi^+\chi^- \to \psi\bar{\psi}) \simeq \frac{m_{\psi}\sqrt{s}}{v^2} (1-ac)$$

unitarity for: a=c=l

• No strong $W_L W_L \rightarrow hh$ for a dilaton (a²=b)

In general a,b,c control three different sectors of the theory

 $W_L W_L \rightarrow hh$ only way to extract b

Extracting a from WW→WW scattering

$$-s + 4M_W^2 < t < -M_W^2$$

$$\sigma_{TT} \sim \frac{g^4}{8\pi} \left(\frac{1}{t_{min}} \right) \qquad \sigma_{LL} \sim \frac{(1-1)^2}{8\pi} \left(\frac{1}{2\pi} \right)$$

vvvs.

when

$$\frac{\sigma_{LL}}{\sigma_{TT}} \sim (1 - a^2)^2 \, \frac{s \, t_{min}}{M_W^4} \times \frac{1}{512} \frac{1}{(s_W^4 + c_W^4)}$$

s

 v^4

TT scattering accidentally larger than NDA expectations: onset of strong scattering delayed

Extracting a from WW->WW scattering

Cutting on events with central final W's

$$t_{min} \sim s$$

$$\frac{d\sigma_{LL\to LL}/dt}{d\sigma_{TT\to TT}/dt}\Big|_{t\sim -s/2} \sim \frac{(1-a^2)^2}{2304} \frac{s^2}{M_W^4}$$

Still numerically larger than naive expectation

Large pollution from transverse modes in hard scattering

Extracting a from WW→WW scattering

Larger luminosity for longitudinal W's makes

same as in Weizsacker-Williams
photon spectrum

$$P_{T}(z) = \frac{g_{A}^{2} + g_{V}^{2}}{4\pi^{2}} \frac{1 + (1 - z)^{2}}{2z} \log \frac{(p_{Tj}^{max})^{2}}{(1 - z)M_{W}^{2}}$$

$$P_{L}(z) = \frac{g_{A}^{2} + g_{V}^{2}}{4\pi^{2}} \frac{1 - z}{z}$$

$$M_{jj} > 500 \text{ GeV}$$

$$p_{Tj} < 120 \text{ GeV}$$

$$p_{TW} > 300 \text{ GeV}$$

 $\sigma(signal) = \sigma(a \neq 1) - \sigma(SM)$

• ~O(10) events in fully leptonic channel $W^{\pm}W^{\pm} \rightarrow l^{\pm}\nu l^{\pm}\nu$ with 100 fb⁻¹ for a=0

LHC at 14 TeV sensitive to $a^2 \lesssim 0.5$ with 100 fb⁻¹

[Giudice et al. JHEP 0706:045 (2007)]

Extracting b from WW→hh scattering

No Coulomb singularity enhancement of transverse scattering

■ Longitudinal scattering always dominating: cleaner than WW → WW

Breaking the model degeneracy

Breaking the model degeneracy

 $H_T = \sum_{i=1,2} |p_{TH_i}|$

More central Higgses (larger H_T)

Signal pure s-wave

■ Moral: extracting (a²-b) requires studying events at large m_{hh} / H_T

Problem: very few events:

			3 lep	3 leptons		2 SS leptons		4 leptons	
	# Events with 300fb^{-1}		signal	bckg.	signal	bckg.	signal	bckg.	
		$\xi = 1$	(4.9)	1.1	15.0	16.6	1.3	0.08	
	MCHM4	$\xi = 0.8$	3.3	1.2	10.1	18.3	0.9	0.14	
		$\xi = 0.5$	1.5	1.4	4.9	21.0	0.4	0.23	
	мения	$\xi = 0.8$	4.5	1.8	14.3	26.0	1.1	0.19	
	монмэ	$\xi = 0.5$	2.3	1.2	7.6	18.4	0.6	0.21	
	\mathbf{SM}	$\xi = 8$	0.2	1.7	0.8	25.4	0.05	0.37	
		A							
	Total 3	leptons ci	uts passed		Final				
# events:	2790 →	61 →	9.1 -		4.9				
	2.2%	15%		54%		[last	step for	Bckg: ~ 3	

Efficiency of `standard` cuts drastically drops for energetic (boosted) events

 $\begin{array}{ll} p_{Tj} > 30 \, {\rm GeV} & |\eta_j| < 5 & \Delta R_{jj'} > 0.7 \\ \\ p_{Tl} > 20 \, {\rm GeV} & |\eta_l| < 2.4 & \Delta R_{jl} > 0.4 & \Delta R_{ll'} > 0.2 \end{array}$

The larger m(hh), the more boosted the Higgses, the more collimated its decay products

	4 jets	3 jets (1 'fat')
No cut on m_{hh}	40%	17%
$m_{hh} > 750 \mathrm{GeV}$	36%	32%
$m_{hh} > 1500 \mathrm{GeV}$	18%	59%

These events are lost with a standard analysis

LUMINOSITY vs ENERGY UPGRADE

With a tenfold Luminosity upgrade (3 ab⁻¹) our analysis predicts:

~ 50 three-lepton events ~150 two same-sign lepton events

even with a standard strategy should be possible to extract the energy growing behavior of the signal

With a higher-energy collider one can probe larger values of m_{hh}

Luminosity upgrade as effective as a 28 TeV collider to study the signal

Full optimized analysis required to properly estimate the background

 $\frac{d\sigma}{dm_{hh}^2} = \frac{1}{m_{hh}^2} \,\hat{\sigma}(W_i W_j \to hh) \,\rho_W^{ij}(m_{hh}^2/s, Q^2)$

EFFECT OF RESONANCES IN WW SCATTERING

Amplitude for the scattering of four Goldstones:

 $\pi^{i} = \chi^{i} + \dots \quad (i = 1, 2, 3), \quad \pi^{4} = h + \dots$

$$A(\pi^{a}\pi^{b} \to \pi^{c}\pi^{d}) = A(s,t,u)\delta^{ab}\delta^{cd} + A(t,s,u)\delta^{ac}\delta^{bd} + A(u,t,s)\delta^{ad}\delta^{bc} + B(s,t,u)\epsilon^{abcd}$$

$$Violates LR parity$$

$$\chi^{i} \to -\chi^{i}$$

$$h \to +h$$

Mediates: $WW \rightarrow Zh$

Consider the possibility:

one resonance accidentally lighter than the cutoff scale

 $m_{\rho} \ll \Lambda \sim 4\pi f$

Quantum numbers of resonances:

It must be included in the low-energy chiral Lagrangian

Consider for example a light $\rho_L = (3, I)$:

The Callan-Coleman-Wess-Zumino (CCWZ) formalism is most convenient to construct its Lagrangian:

$$U(x) = e^{i\pi^{\hat{a}}(x)T^{\hat{a}}} \qquad U^{\dagger}(x)\partial_{\mu}U(x) = i\,d_{\mu}^{\hat{a}}T^{\hat{a}} + i\,E_{\mu}^{a}T^{\hat{a}}$$
$$d_{\mu} \sim \partial_{\mu}\pi + \cdots \qquad E_{\mu} \sim \pi\partial_{\mu}\pi + \cdots$$

Under a global transformation $g \in G$

(with $h \in H$ local)

$$d_{\mu} \to h(\pi, g) d_{\mu} h^{-1}(\pi, g)$$

 $E_{\mu} \to h(\pi, g) E_{\mu} h^{-1}(\pi, g) + i [\partial_{\mu} h(\pi, g)] h^{-1}(\pi, g)$

$$\rho_{\mu} \to h(\pi, g) \rho_{\mu} h^{-1}(\pi, g) + \frac{i}{g_{\rho_L}} \left[\partial_{\mu} h(\pi, g) \right] h^{-1}(\pi, g)$$

$$\mathcal{L} = -\frac{1}{4} \rho_{\mu\nu}^{a_L} \rho^{a_L \,\mu\nu} + \frac{m_{\rho}^2}{2} \left(\rho_{\mu}^{a_L} - \frac{1}{g_{\rho_L}} E_{\mu}^{a_L} \right)^2 + \dots$$

Contribution of the resonance to the scattering amplitude:

from contact term unitarizes for

2

$$a_{\rho_{L}} = \frac{1}{\sqrt{3}}$$

$$A(s,t,u) = \frac{s}{f^{2}} \left(1 - \frac{3}{4} a_{\rho_{L}}^{2} \right) - \frac{1}{4} a_{\rho_{L}}^{4} g_{\rho_{L}}^{2} \left[\frac{s-u}{t-m_{\rho_{L}}^{2}} + (u \leftrightarrow t) \right]$$

$$m_{\rho_{L}} \equiv a_{\rho_{L}} g_{\rho_{L}} f$$

$$B(s,t,u) = \frac{1}{4}a_{\rho_L}^4 g_{\rho_L}^2 \left[\frac{u-t}{s-m_{\rho_L}^2} + \frac{s-u}{t-m_{\rho_L}^2} + \frac{t-s}{u-m_{\rho_L}^2}\right] \longrightarrow O\left(\frac{E^6}{m_{\rho_L}^6}\right)$$

EFFECT OF RESONANCES AT THE LHC

We make the following simplifying assumptions:

- Effective W approximation
 - Neglect $m_h, m_W \ll m_{WW}$

Effect of the resonance monitored through the ratio:

kinematical cut:

$$R(\Phi, \xi, m_{\text{cut}}) = \frac{\sigma(\Phi, \xi, m_{\text{cut}})}{\sigma(\text{LET}, \xi, m_{\text{cut}})}$$

 $m_{WW} > m_{\rm cut}$

Results for a ρ_L [spin=1, (3,1) of SU(2)_L × SU(2)_R, isospin=1]

 $\xi = 0.5$ $m_{\rm cut} = 800 \,{\rm GeV}$

Results for a ρ_L [spin=1, (3,1) of SU(2)_L × SU(2)_R, isospin=1]

 $\xi = 0.5$ $m_{\rm cut} = 800\,{\rm GeV}$

CONCLUSIONS

- LHC goal: Unraveling the mechanism of EWSB main question: weak or strong ?
- WW→hh only process to probe the (hhWW) coupling

```
LHC reach (3\sigma) with 300 fb<sup>-1</sup>: \xi \sim 1
3 ab<sup>-1</sup>: \xi \sim 0.5
```

- Model dependency due to the trilinear coupling important
- Effect of resonances in general negligible for $m_{
 m res}\gtrsim 2\,{
 m TeV}$
- For $m_{\rm res} \lesssim 1.5 \,{\rm TeV}$ pattern of enhancement/suppression in the various channels gives information on the quantum numbers of the resonance and thus on the strong sector