

SANDHYA CHOUBEY

PHYSICS WITH INO

MPIK, Heidelberg 2009, 04.05.09

Plan of Talk

SANDHYA CHOUBEY

PHYSICS WITH INO

MPIK, Heidelberg 2009, 04.05.09

Plan of Talk

Ve Vµ

VT Ve Vu

 \mathcal{V}_{τ}

μ V_č V_Ť

- The India-based Neutrino Observatory (INO)
 - INO Proposal
 - ICAL Detector
 - Physics with INO using Atmospheric Neutrinos
 Confirming Neutrino Oscillations
 - Determining Δm_{31}^2 and $\sin^2 \theta_{23}$ precisely
 - Determining $sgn(\Delta m_{31}^2)$
 - \bullet Determining the "octant" of θ_{23}
- Physics with INO using v beams from factories
 Using the Golden Channel
 - Turning on the INO "Magic"
 - Determining θ_{13} and $sgn(\Delta m_{31}^2)$
 - Helping in CP violation Discovery

INO – The Proposal

 $\nu_e \nu_\mu$

 \mathcal{V}_e

 \mathcal{V}_{τ}

Goal: To build an underground facility which can be used mainly as a neutrino physics laboratory due to the low cosmic background

Detector Requirement: A large mass detector with charge indentification capability.

Detector Choice: The accepted choice was to build a large magnetized Iron CALorimeter – called the ICAL.

Detector Choice Based on:

- Existing/Planned detectors elsewhere
- Expertise on detector technology
- Modular design
- Cost

INO – The Proposal

 $\nu_e \nu_\mu$

Vr Vu

 \mathcal{V}_{τ}

The Phased Approach

R & D and Construction of Detector:

Phase I: Detector choice, Site selection, Clearances, Human resource development, Detector R & D, Prototype, Physics studies

Phase II: Construction of the INO lab and the ICAL detector

Operation of the Detector:
 Phase I: Physics with atmospheric neutrinos
 Phase II: Physics with neutrinos from a factory of muon decay and/or beta decay

INO – The Site

μ Ve Ve Vμ

Ve VT

PUSHEP Site (Lat: N11.5°, Long: E76.6°)

PUSHEP-Bangalore: 250km

INO – The Site

 $rac{
u_e}{
u_\mu}$

Ve Ve Ve Vu

BACKGROUNDS

Quite deep compared to other laboratories

SANDHYA CHOUBEY

PHYSICS WITH INO

INO – The Detector

Ve Vt

SANDHYA CHOUBEY

PHYSICS WITH INO

MPIK, Heidelberg 2009, 04.05.09

INO – The Detector

No of modules	3	
Module dimension	16 m X 16 m X 12 m	
Detector dimension	48 m X 16 m X 12 m	
No of layers	140	
Iron plate thickness	6 cm	
Gap for RPC trays	2.5 cm	
Magnetic field	1.5 Tesla	
RPC unit dimension	2 m X 2 m	
Readout strip width	2 cm	
No of RPC units/layer	192	
Total number of RPC units	27000	
Total number of electronic channels	3.6 X 10 ⁶	

SANDHYA CHOUBEY

INO – The Detector

Ve Vµ

 $\overline{\nu_{\tau}}
 \overline{\nu_{e}}$

R&D on glass RPCs running in the avalanche mode at TIFR

R&D on bakelite RPCs running in the streamer mode at SINP/VECC

Stack of 12 (1 m X 1 m) glass RPCs running

at TIFR and observing cosmic ray muons

Live online display of these tracks recorded at TIFR

Long term stability of the glass RPCs tested – some of them running for 2 years

One (1 m X 1 m) bakelite RPCs working at SINP/VECC – more under construction

The bakelite RPCs being coated with silicone from inside

Long term stability checks on bakelite RPCs being done at SINP/VECC

INO – The Detector Prototype

- At VECC, Kolkata
- \square Mass = 40 tons
- No of RPC layers = 12
- \square RPC size = 1 m X 1 m
- Readout channels ~ 1000 being developed
- \blacksquare Magnetic field \sim 1.5 Tesla

Both glass and bakelite RPCs will be tested in the **INO** prototype

Ve Vµ

Vµ Ve Ve

μ Ve Vτ

INO – Simulations

 $\nu_e \nu_\mu$

- Nuance is being used as the generator for atmospheric neutrino events.
- A number of collaborating institutions across India involved in the ICAL@INO simulations.
- Completely ported ICAL/INO code from Geant3 to Geant4. Checks are being done across the two versions.
- New improved code for track reconstruction using cellular automata/Kalman filter. It appears to be working ok for fully contained tracks. Still being optimised.
- Roughly three main sub-groups have been identified: (1) code developer (2) physics studies (3) application of code to physics signals. Since the codes are still in the verifying stages, the physics studies are expected to begin as soon as the code is ready, which should be soon.

INO – Graduate Program

- A training programme with strong emphasis in experimental high energy physics and astroparticle physics has been started in August 2008
- Students will be attached to training guides at various collaborating institutions for a PhD degree
- First batch of students (5 students) have started their training courses at TIFR, Mumbai
- Students will also be visiting other collaborating institutions for further training

 $\nu_e \nu_\mu$

VTUe

 \mathcal{V}_{τ}

Reconfirm neutrino oscillations by observing them

VTVe

- Reconfirm neutrino oscillations by observing them
- Improve precision of $|\Delta m_{31}^2|$ and $\sin^2 2\theta_{23}$

 $\nu_e \nu_\mu$

 $\frac{\nu_{\tau}}{\nu_{e}}$

- Reconfirm neutrino oscillations by observing them
- Improve precision of $|\Delta m_{31}^2|$ and $\sin^2 2\theta_{23}$
- Determine the sign of Δm_{31}^2 for large θ_{13}

 $\nu_e \nu_\mu$

- Reconfirm neutrino oscillations by observing them
- Improve precision of $|\Delta m_{31}^2|$ and $\sin^2 2\theta_{23}$
- Determine the sign of Δm_{31}^2 for large θ_{13}
- Determine the deviation of θ_{23} from maximality and its octant

 ν_e ν_{μ}

VT Vo

- Reconfirm neutrino oscillations by observing them
- Improve precision of $|\Delta m_{31}^2|$ and $\sin^2 2\theta_{23}$
- Determine the sign of Δm_{31}^2 for large θ_{13}
- Determine the deviation of θ_{23} from maximality and its octant
- Probe CPT violation

 ν_e ν_{μ}

VT Vo

- Reconfirm neutrino oscillations by observing them
- Improve precision of $|\Delta m_{31}^2|$ and $\sin^2 2\theta_{23}$
- Determine the sign of Δm_{31}^2 for large θ_{13}
- Determine the deviation of θ_{23} from maximality and its octant
- Probe CPT violation
- Determine θ_{13} to unprecedently levels

 ν_e ν_μ

VT Vo

- Reconfirm neutrino oscillations by observing them
- Improve precision of $|\Delta m_{31}^2|$ and $\sin^2 2\theta_{23}$
- Determine the sign of Δm_{31}^2 for large θ_{13}
- Determine the deviation of θ_{23} from maximality and its octant
- Probe CPT violation
- Determine θ_{13} to unprecedently levels
- Determine sign of Δm_{31}^2 for small θ_{13}

 ν_e ν_μ

- Reconfirm neutrino oscillations by observing them
- Improve precision of $|\Delta m_{31}^2|$ and $\sin^2 2\theta_{23}$
- Determine the sign of Δm_{31}^2 for large θ_{13}
- Determine the deviation of θ_{23} from maximality and its octant
- Probe CPT violation
- Determine θ_{13} to unprecedently levels
- Determine sign of Δm_{31}^2 for small θ_{13}
- Probe CP violation in lepton sector

 ν_e ν_μ

- Reconfirm neutrino oscillations by observing them
- Improve precision of $|\Delta m_{31}^2|$ and $\sin^2 2\theta_{23}$
- Determine the sign of Δm_{31}^2 for large θ_{13}
- Determine the deviation of θ_{23} from maximality and its octant
- Probe CPT violation
- Determine θ_{13} to unprecedently levels
- Determine sign of Δm_{31}^2 for small θ_{13}
- Probe CP violation in lepton sector
- Probe octant, CPTV, sterile neutrinos and NSI

 $\nu_e \nu_\mu$

- Reconfirm neutrino oscillations by observing them
- Improve precision of $|\Delta m_{31}^2|$ and $\sin^2 2\theta_{23}$
- Determine the sign of Δm_{31}^2 for large θ_{13}
- Determine the deviation of θ_{23} from maximality and its octant
- Probe CPT violation
- Determine θ_{13} to unprecedently levels
- Determine sign of Δm_{31}^2 for small θ_{13}
- Probe CP violation in lepton sector
- Probe octant, CPTV, sterile neutrinos and NSI
- UHE neutrinos and VHE muons, neutrinos from Dark Matter

 $\nu_e \nu_\mu$

VT Ve

Physics with INO

SANDHYA CHOUBEY

PHYSICS WITH INO

MPIK, Heidelberg 2009, 04.05.09

Phase-I: Physics with Atmospheric Neutrinos

SANDHYA CHOUBEY

 $\nu_e \nu_{\mu}$

 \mathcal{V}_{e}

VT Vu

PHYSICS WITH INO

MPIK, Heidelberg 2009, 04.05.09

Confirmation of Oscillations

log₁₀(L/E (km/GeV))

 ${\small \ \, }$ The first oscillation dip should be clearly observable Better measurement of Δm^2_{31}

SANDHYA CHOUBEY

Ve

Precision Measurement of Δm_{31}^2 and $\sin^2 \theta_{23}$

■ 3σ spread ($|\Delta m^2_{31}| = 2.39 \times 10^{-3}$ eV², $\sin^2 \theta_{23} = 0.5$).

	$ \Delta m^2{}_{31} $	$\sin^2 \theta_{23}$
current	15%	32%
T2K	6%	23%
NOvA	13%	43%
INO, 50 kton, 5 years	10%	30%

Fogli et al., arXiv:0806.2649, Maltoni,Schwetz, arXiv:0812.3161 Huber,Lindner,Rolinec,Schwetz,Winter, hep-ph/0403068 INO Interim Report

(See also, Samanta, arXiv:0812.4639)

Table refers to the older NO ν A proposal; the revised March 2005 NO ν A proposal is expected to be competitive with T2K.

SANDHYA CHOUBEY

Ve Vu

The Unanswered Questions

SANDHYA CHOUBEY

Ve Vµ

 ν_e

Ve Vu

 ν_{μ}

PHYSICS WITH INO

MPIK, Heidelberg 2009, 04.05.09

The Unanswered Questions

- **•** What is the magnitude of θ_{13} ?
 - Main channels to determine θ_{13}
 - $\mathbf{P}_{e} \rightarrow \nu_{e} \text{ or } \overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$: $P_{ee} \text{ or } P_{\overline{e}\overline{e}}$; Disappearance Expts
 - $\mathbf{P}_{\mu} \rightarrow \nu_{e} \text{ or } \nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e} \text{ or } P_{e\mu}$; Appearance Expts

Is there CP violation in the lepton sector?

- **J** Main channel to see δ_{CP}
 - $\mathbf{P}_{\mu} \rightarrow \nu_{e} \text{ or } \nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e} \text{ or } P_{e\mu}$; Appearance Expts
 - Also in principle possible using $u_{\mu} \rightarrow
 u_{\mu}$

\checkmark What is the sign of Δm^2_{31} ?

- Main channels to determine $sign(\Delta m_{31}^2)$
 - $\mathbf{P}_{\mu} \rightarrow \nu_{e} \text{ or } \nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e} \text{ or } P_{e\mu}$; Appearance Expts
 - "binned" $\nu_{\mu} \rightarrow \nu_{\mu} P_{\mu\mu}$; Disappearance Expts
 - $\boldsymbol{\nu}_{e} \rightarrow \boldsymbol{\nu}_{e} P_{ee}$; Disappearance Expts

SANDHYA CHOUBEY

 $\nu_e \nu_\mu$

Vre Vu

Vµ Ve

V_µ Ve

PHYSICS WITH INC

Neutrino Oscillations in Two Generations

 $\nu_{\mu} = \cos\theta \,\nu_2 + \sin\theta \,\nu_3$

$$\nu_{\mu}(t) = \cos \theta \, e^{-iE_2} \, \nu_2 + \sin \theta \, e^{-iE_3} \, \nu_3$$

$$P_{\mu\mu} = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

No dependence on the octant of θ No dependence on the sign of Δm^2

Ve Vµ

Vie Via

Three Flavor Oscillations in Vacuum

 $\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\mu} \\
\nu_{e} \\
\nu_{e}$

 $P_{\beta\gamma}(L) = \delta_{\beta\gamma} - 4\sum_{i>1} Re\left(U_{\beta i}U_{\gamma i}^{\star}U_{\beta j}^{\star}U_{\gamma j}\right) \frac{\sin^2 \Delta m_{ij}^2 L}{4E}$

$$\pm 2\sum_{j>1} Im \left(U_{\beta i} U_{\gamma i}^{\star} U_{\beta j}^{\star} U_{\gamma j} \right) \frac{\sin \Delta m_{ij}^2 L}{2E}$$

SANDHYA CHOUBEY

 $\mathbf{Flavor}_{\alpha i} = \sum_{i} U_{\alpha i}^{m} |\nu_{i}^{m}\rangle$ Flavor Eigenstates \neq Mass Eigenstates

$$P^{m}_{\beta\gamma}(L) = \delta_{\beta\gamma} - 4\sum_{j>1} Re\left(U^{m}_{\beta i}U^{m\star}_{\gamma i}U^{m\star}_{\beta j}U^{m}_{\gamma j}\right) \frac{\sin^{2}\left(\Delta m^{2}_{ij}\right)^{m}L}{4E}$$

$$\pm 2\sum_{j>1} Im \left(U^m_{\beta i} U^{m\star}_{\gamma i} U^{m\star}_{\beta j} U^m_{\gamma j} \right) \frac{\sin \left(\Delta m^2_{ij} \right)^m L}{2E}$$

SANDHYA CHOUBEY

● Flavor Eigenstates ≠ Mass Eigenstates ● $|\nu_{\alpha}\rangle = \sum_{i} U^{m}_{\alpha i} |\nu^{m}_{i}\rangle$

 $\nu_e \nu_\mu$

• Flavor Eigene • $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{m} |\nu_{i}^{m}\rangle$ **•** Flavor Eigenstates \neq Mass Eigenstates

 $M_F = U M_D U^{\dagger}$ (Vacuum)

Ve Vµ

• Flavor Eigene • $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{m} |\nu_{i}^{m}\rangle$ **•** Flavor Eigenstates \neq Mass Eigenstates

 $M_F^m = U^m M_D^m U^{m\dagger}$ (Matter)

SANDHYA CHOUBEY

Ve Vµ

 ν_{μ}

PHYSICS WITH INO

MPIK, Heidelberg 2009, 04.05.09

• Flavor Eigenstates \neq Mass Eigenstates • $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{m} |\nu_{i}^{m}\rangle$

 $M_F^m = U^m M_D^m U^{m\dagger} \quad (Matter)$

$$M_F^m = U \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_3^2 \end{pmatrix} U^{\dagger} + \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ve Vµ

V
• Flavor Eigenstates \neq Mass Eigenstates • ν_{α} • $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{m} |\nu_{i}^{m}\rangle$

 $M_F^m = U^m M_D^m U^{m\dagger} \quad (Matter)$

$$M_F^m = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^\dagger + \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $A = \pm 2\sqrt{2}G_F n_e E \ (+ \Rightarrow neutrinos) \ (- \Rightarrow antineutrinos)$

Ve Vµ

V

• Flavor Eigene • $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{m} |\nu_{i}^{m}\rangle$ Flavor Eigenstates \neq Mass Eigenstates

 $M_F^m = U^m M_D^m U^{m\dagger} \quad (Matter)$

$$M_F^m = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^\dagger + \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $A = \pm 2\sqrt{2}G_F n_e E$ (+ \Rightarrow neutrinos) (- \Rightarrow antineutrinos) $= \pm 7.56 \times 10^{-5} \rho (\text{gm/cc}) E (\text{GeV}) \text{ eV}^2$

SANDHYA CHOUBEY

 ν_e ν_{μ}

V. Vr

• Flavor Eigenstate • $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{m} |\nu_{i}^{m}\rangle$ \blacksquare Flavor Eigenstates \neq Mass Eigenstates

 $M_F^m = U^m M_D^m U^{m\dagger} \quad (Matter)$

$$M_F^m = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^\dagger + \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $A = \pm 2\sqrt{2}G_F n_e E$ (+ \Rightarrow neutrinos) (- \Rightarrow antineutrinos) $= \pm 7.56 \times 10^{-5} \rho (\text{gm/cc}) E (\text{GeV}) \text{ eV}^2$ $|A| \sim 2 \times 10^{-3} \frac{4.5}{\rho(\text{gm/cc})} \frac{5.0}{E(\text{GeV})} \text{ eV}^2 \sim |\Delta m_{31}^2|$

SANDHYA CHOUBEY

Ve Vµ

V_µ Ve

p Ve Vr

Mass squared difference in matter changes to:

 $(\Delta m_{31}^2)^m = \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$

 $\nu_e \nu_\mu$

VT Ve

Mass squared difference in matter changes to:

 $(\Delta m_{31}^2)^m = \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$

• Mixing angle in matter changes to: $\sin 2\theta_{13}^m = \sin 2\theta_{13} \frac{\Delta m_{31}^2}{(\Delta m_{31}^2)^m}$

Ve Vµ

Vr

Mass squared difference in matter changes to:

 $(\Delta m_{31}^2)^m = \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$

- Mixing angle in matter changes to: $\sin 2\theta_{13}^m = \sin 2\theta_{13} \frac{\Delta m_{31}^2}{(\Delta m_{31}^2)^m}$
- Both of these depend on the sign of Δm^2_{31}

Ve Vµ

VTVe

p Ve Vr

Mass squared difference in matter changes to:

 $(\Delta m_{31}^2)^m = \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$

- Mixing angle in matter changes to: $\sin 2\theta_{13}^m = \sin 2\theta_{13} \frac{\Delta m_{31}^2}{(\Delta m_{31}^2)^m}$
- Both of these depend on the sign of Δm_{31}^2
- Effect is opposite for neutrinos and antineutrinos

Ve Vµ

Vr

p Ve Vr

Mass squared difference in matter changes to:

 $(\Delta m_{31}^2)^m = \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$

- Mixing angle in matter changes to: $\sin 2\theta_{13}^m = \sin 2\theta_{13} \frac{\Delta m_{31}^2}{(\Delta m_{31}^2)^m}$
- Both of these depend on the sign of Δm_{31}^2
- Effect is opposite for neutrinos and antineutrinos
- When $A = \Delta m_{31}^2 \cos 2\theta_{13}$

 $\sin 2\theta_{13}^m = 1$

Ve Vµ

Vr

ju Ve Vr

Mass squared difference in matter changes to:

 $(\Delta m_{31}^2)^m = \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$

- Mixing angle in matter changes to: $\sin 2\theta_{13}^m = \sin 2\theta_{13} \ \frac{\Delta m_{31}^2}{(\Delta m_{31}^2)^m}$
- Both of these depend on the sign of Δm_{31}^2
- Effect is opposite for neutrinos and antineutrinos
- When $A = \Delta m_{31}^2 \cos 2\theta_{13}$

 $\sin 2\theta_{13}^m = 1$

Matter Enhanced (MSW) Resonance

Wolfenstein 1978, Mikheyev and Smirnov 1985-6

SANDHYA CHOUBEY

Ve Vµ

V_µ Ve VT Ve

Ve Ve

Ambiguity in Mass Hierarchy

Ve Vµ

Ve Vr Ve

Ve Vr

 $\tan 2\theta_{13}{}^m = \frac{\Delta m_{31}^2 \sin 2\theta_{13}}{\Delta m_{31}^2 \cos 2\theta_{13} \pm 2\sqrt{2}G_F n_e E}$

Normal Hierarchy	Inverted Hierarchy		
m ₃	m ₂		
	m ₁		
$\Delta m_{31}^2 > 0$			
	$\Delta m_{31}^2 < 0$		
m ₂			
m ₁	m ₃		

- For $\Delta m_{31}^2 > 0$ matter resonance in neutrinos
- For $\Delta m_{31}^2 < 0$ matter resonance in anti neutrinos
- Experiments sensitive to matter effects can probe the mass hierarchy
- Matter effects for Δm_{31}^2 channel depend crucially on θ_{13}
- Thus both parameters get related

Muon Neutrino Survival Probability

$$\lim_{\Delta m_{21}^2 \to 0} P_{\mu\mu}(L, E) = 1 - P_{\mu\mu}^1(L, E) - P_{\mu\mu}^2(L, E) - P_{\mu\mu}^3(L, E)$$

$$P_{\mu\mu}^{1}(L,E) = \sin^{2}\theta_{13}^{M}\sin^{2}2\theta_{23}\sin^{2}\frac{(A+\Delta m_{31}^{2})-(\Delta m_{31}^{2})^{M}}{8E}L$$

$$P_{\mu\mu}^{2}(L,E) = \cos^{2}\theta_{13}^{M}\sin^{2}2\theta_{23}\sin^{2}\frac{(A+\Delta m_{31}^{2})+(\Delta m_{31}^{2})^{M}}{8E}L$$

$$P_{\mu\mu}^{3}(L,E) = \sin^{2}2\theta_{13}^{M}\sin^{4}\theta_{23}\sin^{2}\frac{(\Delta m_{31}^{2})^{M}}{4E}L$$

SANDHYA CHOUBEY

Ve Vµ

Ve Ve Vµ

 ν_{u}

Muon Neutrino Survival Probability

$$\lim_{\Delta m_{21}^2 \to 0} P_{\mu\mu}(L, E) = 1 - P_{\mu\mu}^1(L, E) - P_{\mu\mu}^2(L, E) - P_{\mu\mu}^3(L, E)$$

$$P_{\mu\mu}^{1}(L,E) = \sin^{2}\theta_{13}^{M}\sin^{2}2\theta_{23}\sin^{2}\frac{(A+\Delta m_{31}^{2})-(\Delta m_{31}^{2})^{M}}{8E}L$$

$$P_{\mu\mu}^{2}(L,E) = \cos^{2}\theta_{13}^{M}\sin^{2}2\theta_{23}\sin^{2}\frac{(A+\Delta m_{31}^{2})+(\Delta m_{31}^{2})^{M}}{8E}L$$

$$P_{\mu\mu}^{3}(L,E) = \sin^{2}2\theta_{13}^{M}\sin^{4}\theta_{23}\sin^{2}\frac{(\Delta m_{31}^{2})^{M}}{4E}L$$

- Dependence on θ_{23} in the form $\sin^4 \theta_{23}$
- Octant sensitivity is expected to be good

SANDHYA CHOUBEY

 $\nu_e \nu_\mu$

 ν_e

Vie Vie

V VT

μ V_č V_Ť

SANDHYA CHOUBEY

MPIK, Heidelberg 2009, 04.05.09

Max effect for $L \simeq 7000$ km and $E \simeq 6$ GeV
 ⇒ ($E_{\text{SPMAX}} \simeq E_{\text{res}}$)

• $P_{\mu\mu}$ decreases (increases) at SPMAX (SPMIN) due to matter effects

Sign of the earth matter effects depends on both E and

 \blacksquare Most imp to choose proper bins in both E and L

SANDHYA CHOUBEY

Hierarchy Sensitivity in Atmospheric ν events

 μ^+ Gandhi,Ghoshal,Goswami,Mehta,Umashankar,hep-ph/0411252

SANDHYA CHOUBEY

μ Ve Vt

Effect of E and L Resolution

 $\sin^2 2\theta_{13} = 0.1$ and no marginalization

• With increased energy or angular smearing the χ^2 for muon like events decrease.

Schwetz, Petcov, hep-ph/0511277

Effect of E and L Resolution

• $\sin^2 2\theta_{13} = 0.1$ and no marginalization

• With increased energy or angular smearing the χ^2 for muon like events decrease.

Gandhi, Ghoshal, Goswami, Mehta, Shalgar, Umashankar, arXiv:0707.1723

SANDHYA CHOUBEY

Ve Vµ

Ve Vr Ve

> V V

Hierarchy Sensitivity: comparative study

- INO: 1 Mtyear (100 kT \times 10 years) $\chi^2 = \chi^2_\mu + \chi^2_{\bar{\mu}}$
- HyperKamiokande : 1.8 Mtyear (544 kT \times 3.3 years) $\chi^2 = \chi^2_{\mu + \bar{\mu}}$ + $\chi^2_{e + \bar{e}}$
- LiqAr : 1 Mtyear (100 kT × 10 years) $\chi^2 = \chi^2_{\mu} + \chi^2_{\bar{\mu}} + (\chi^2_e + \chi^2_{\bar{e}})_{1-5GeV} + (\chi^2_{e+\bar{e}})_{5-10GeV}$

$\sin^2 2\theta_{13}$	$HK\chi^2$	$INO\chi^2$	LiqAr χ^2
0.04	3.6	4.5	13.8
0.1	5.9	9.6	27.5
0.15	7.1	16.9	

Gandhi, Ghoshal, Goswami, Umashankar, ar Xiv: 0807.2759

Ve Vµ

Vr Ve Vµ

V_µ Ve

Deviation of $\sin^2 \theta_{23}$ from maximal value

 $D \equiv 1/2 - \sin^2 \theta_{23}$

 $\nu_e \nu_\mu$

UT Ve

- |D| gives the deviation of $\sin^2 \theta_{23}$
- sgn(D) gives the octant of $\sin^2 \theta_{23}$
- Current 3σ limits:
 - |D| < 0.16 at 3σ from the SK data
 - No robust information on sgn(D)

Testing maximality of θ_{23}

• Sensitivity to |D| in SK50 improves remarkably with θ_{13}

SANDHYA CHOUBEY

 $\nu_e \nu_\mu$

 ν_{μ}

Octant of $\sin^2 \theta_{23}$

• <u>Octant</u>:

Ve Vµ

 \mathcal{V}_{τ}

V.

- For every non-maximal $\sin^2 \theta_{23}$ (true) there exists a $\sin^2 \theta_{23}$ (false) $(\sin^2 \theta_{23}$ (false) = 1 $\sin^2 \theta_{23}$ (true))
- Given by the sign of D
- Possible to get some handle on the octant sensitivity thru matter effects in the atmosheric muon neutrino signal in INO, if θ_{13} is large

S.Choubey. and P. Roy hep-ph/0509197

Phase-II: Physics with Neutrino Beams

SANDHYA CHOUBEY

Ve Ve

The "Golden Channel" ($\nu_e \rightarrow \nu_\mu$)

$$P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

 $\pm \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \\ + \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$

$$+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

SANDHYA CHOUBEY

Ve Vµ

 $\begin{array}{c}
 \mathcal{V}_{\mu} \\
 \mathcal{V}_{e} \\
 \mathcal{V}_{\tau} \\
 \mathcal{V}_{e}
 \end{array}$

The "Golden Channel" ($\nu_e \rightarrow \nu_\mu$)

$$P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

 $\pm \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \\ + \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$

$$+\alpha^2\cos^2\theta_{23}\sin^22\theta_{12}\frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

•
$$\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$$
, $\hat{A} = A / \Delta m_{31}^2$
• $\Delta = \Delta m_{31}^2 L / 4E$, $A = \pm 2\sqrt{2}G_F n_e E$

- \blacksquare *A* is positive for neutrinos
- A is negative for antineutrinos

Cervera et al., hep-ph/0002108

Freund, Huber, Lindner, hep-ph/0105071

Ve Vµ

The "Golden Channel" ($\nu_e \rightarrow \nu_\mu$)

$$P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

 $\pm \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \\ + \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$

$$+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

• Depends on θ_{13} , δ_{CP} and $sgn(\Delta m_{31}^2)$ and hence can measure them all simultaneously: GOLDEN

This dependence however brings in the problem of PARAMETER DEGENERACIES

SANDHYA CHOUBEY

 $\nu_e \nu_\mu$

 \mathcal{V}_{τ}

Degeneracies in the Golden Channel

$$P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

 $\pm \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \\ + \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$

$$+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

● Octant of θ_{23} Degeneracy ■ $Sgn(\Delta m_{31}^2) - \delta_{CP}$ Degeneracy ■ Intrinsic (δ_{CP}, θ_{13}) Degeneracy Burguet-Castell, Gavela, Gomez-Cadenas, Hernandez, Mena, hep-ph/0103258 ■ Degeneracies create Clone Solutions

SANDHYA CHOUBEY

Ve Vu

 \mathcal{V}_{τ}

Killing the Clones at The Magic Baseline

SANDHYA CHOUBEY

 $\nu_e \nu_\mu$

 ν_e

Vie Viu

PHYSICS WITH INO

MPIK, Heidelberg 2009, 04.05.09

The Magic Baseline

 $P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$ $\pm \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$ $+ \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$ $+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$

The Magic Baseline

 $P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$ $\pm \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$ $+\alpha\sin 2\theta_{13}\sin 2\theta_{12}\sin 2\theta_{23}\cos \delta_{CP}\cos \Delta \frac{\sin(\hat{A}\Delta)}{\hat{A}}\frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$ $+\alpha^2\cos^2\theta_{23}\sin^22\theta_{12}\frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$

 $If \sin(\hat{A}\Delta) \simeq 0$

 \mathcal{V}_{u}

$$P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

SANDHYA CHOUBEY

PHYSICS WITH INO

MPIK, Heidelberg 2009, 04.05.09

The Magic Baseline

 $\nu_e \nu_\mu$

$$P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

• All δ_{CP} dependent terms drop out • (δ_{CP}, θ_{13}) and ($\delta_{CP}, sgn(\Delta m_{31}^2)$) degeneracies vanish • "Clean" measurement of θ_{13} and $sgn(\Delta m_{31}^2)$
The Magic Baseline

Ve Vu

$$P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

• All δ_{CP} dependent terms drop out • (δ_{CP}, θ_{13}) and ($\delta_{CP}, sgn(\Delta m_{31}^2)$) degeneracies vanish • "Clean" measurement of θ_{13} and $sgn(\Delta m_{31}^2)$

 $\sin(\hat{A}\Delta) \simeq 0$ \Rightarrow $L_{magic} \simeq 7690 \text{ km}$

Barger, Marfatia, Whisnant, hep-ph/0112119

Huber, Winter, hep-ph/0301257

Smirnov, hep-ph/0610198

The Magical Reach of INO

CERN to INO distance = 7152 km

SANDHYA CHOUBEY

PHYSICS WITH INO

The Magical Reach of INO

- CERN to INO distance = 7152 km
- JPARC to INO distance = 6556 km

$\nu_e \nu_\mu$ \mathcal{V}_{e} UT Ve Vp

The Magical Reach of INO

- CERN to INO distance = 7152 km
- JPARC to INO distance = 6556 km
- RAL to INO distance = 7653 km

The Magical Reach of INO

- CERN to INO distance = 7152 km
- JPARC to INO distance = 6556 km
- RAL to INO distance = 7653 km
- **9** T

 $\nu_e \nu_\mu$

The "Magic Baseline" is about 7500 km

The Magical Reach of INO

- CERN to INO distance = 7152 km
- JPARC to INO distance = 6556 km
- RAL to INO distance = 7653 km
- .

Ve Vµ

 \mathcal{V}_{τ} \mathcal{V}_{e}

The "Magic Baseline" is about 7500 km

Location of INO is ideal!!

Beta-beams

SANDHYA CHOUBEY

PHYSICS WITH INO

Beta-beams

 $\nu_e \nu_\mu$

*V*_e

V_µ Ve

Vp

Description
Descripti

 $(A, Z) \to (A, Z+1) + e^+ + \nu_e$ or $(A, Z) \to (A, Z-1) + e^- + \bar{\nu}_e$

Pure Flavor –

- Intense Source –
- Mown beam –
- \blacksquare Spectrum $\Rightarrow \gamma \& E_0 -$

• Flux norm $\Rightarrow \gamma \& N_{\beta} -$

• Beam divergence $\Rightarrow \gamma -$

Very low systematic uncertainties Very small backgrounds

Zucchelli, PLB 532, 166, (2002)

SANDHYA CHOUBEY

PHYSICS WITH INO

SANDHYA CHOUBEY

Ve Vµ

 \mathcal{V}_{e}

De Du

PHYSICS WITH INO

CERN-INO distance is equal to 7152 km

This is tantalizingly close to the magic baseline

 ν_e ν_{μ}

Ve Vu

CERN-INO distance is equal to 7152 km

This is tantalizingly close to the magic baseline

Energy threshold of ICAL would be about 1 GeV

 ν_e ν_{μ}

 \mathcal{V}_{τ}

- CERN-INO distance is equal to 7152 km
- This is tantalizingly close to the magic baseline
- Energy threshold of ICAL would be about 1 GeV
- $\ensuremath{{\rm Seta}}$ Beta beam spectrum depends on the end point energy of the beta unstable ion and Lorentz boost γ
- The standard Beta-Beam ions ${}^{18}Ne$ and ${}^{6}He$ would require very large gamma

 $\nu_e \nu_\mu$

VT Ve

- CERN-INO distance is equal to 7152 km
- This is tantalizingly close to the magic baseline
- Energy threshold of ICAL would be about 1 GeV
- $\hfill \blacksquare$ Beta beam spectrum depends on the end point energy of the beta unstable ion and Lorentz boost γ
- The standard Beta-Beam ions ${}^{18}Ne$ and ${}^{6}He$ would require very large gamma
- Alternative ions ${}^{8}B$ and ${}^{8}Li$ have large end-point energy and hence "harder" spectra. Works!!

 $\nu_e \nu_\mu$

V_T Ve

V-

The CERN-INO Beta-Beam Experiment

Agarwalla, SC, Raychaudhuri, hep-ph/0610333

. Flux peaks at $E \simeq 6$ GeV for $\gamma = 350 - 500$

 $\nu_e \nu_{\mu}$

Vµ

• Large Distance \Rightarrow Large Matter effects

SANDHYA CHOUBEY

 ν_e ν_{μ}

VT Ve

- Large Distance \Rightarrow Large Matter effects
- Resonance energy

 $\nu_e \nu_\mu$

VT Ve

$$E_{res} = \frac{|\Delta m_{31}^2|\cos 2\theta_{13}}{2\sqrt{2}G_F N_e}$$

- Large Distance \Rightarrow Large Matter effects
- Resonance energy

 $\nu_e \nu_\mu$

V_T Ve

V

$$E_{res} = \frac{|\Delta m_{31}^2|\cos 2\theta_{13}}{2\sqrt{2}G_F N_e}$$

• For $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{13} = 0.1$ and the PREM profile $\rho_{av} = 4.13$ gm/cc, $E_{res} \simeq 7.5$ GeV

- Large Distance \Rightarrow Large Matter effects
 - Resonance energy

 ν_e ν_μ

 \mathcal{V}_{τ} \mathcal{V}_{e}

$$E_{res} = \frac{|\Delta m_{31}^2|\cos 2\theta_{13}}{2\sqrt{2}G_F N_e}$$

- For $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{13} = 0.1$ and the PREM profile $\rho_{av} = 4.13$ gm/cc, $E_{res} \simeq 7.5$ GeV
- Maximal oscillations when $\sin^2 2\theta_{13}^m \simeq 1$ and $\sin^2(\frac{(\Delta m_{31}^2)^m L}{4E}) \simeq 1$ simultaneously Gandhi, Ghoshal, Goswami, Mehta, Umashankar, hep-ph/0408361

- Large Distance \Rightarrow Large Matter effects
- Resonance energy

Ve Vu

νμ Ve Vτ

$$E_{res} = \frac{|\Delta m_{31}^2|\cos 2\theta_{13}|}{2\sqrt{2}G_F N_e}$$

- For $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{13} = 0.1$ and the PREM profile $\rho_{av} = 4.13$ gm/cc, $E_{res} \simeq 7.5$ GeV
- Maximal oscillations when $\sin^2 2\theta_{13}^m \simeq 1$ and $\sin^2(\frac{(\Delta m_{31}^2)^m L}{4E}) \simeq 1$ simultaneously Gandhi, Ghoshal, Goswami, Mehta, Umashankar, hep-ph/0408361
- At the magic baseline, largest oscillations come when $E \simeq 6 \text{ GeV}$

SANDHYA CHOUBEY

The Probability

*Ve V*μ

Vµ

Agarwalla, S.C., Raychaudhuri, hep-ph/0610333

The Probability

ν_εν_μ

Vµ

P K

Agarwalla, S.C., Raychaudhuri, hep-ph/0610333

The Magic

Agarwalla, S.C., Raychaudhuri, arXiv:0711.1459

SANDHYA CHOUBEY

PHYSICS WITH INO

Optimizing the Beta-Beam Experiment

Best sensitivity comes at the Magic Baseline

Agarwalla, S.C., Raychaudhuri, Winter, arXiv:0802.3621

Location of INO is indeed ideal!!

SANDHYA CHOUBEY

PHYSICS WITH INO

CP Violation with ICAL@INO PLUS

- No CP sensitivity at the magic baseline
- Add another detector at a different baseline
- The combined two baseline set-up could be used to study CP violation to exceptional levels

Agarwalla, S.C., Raychaudhuri, arXiv:0804.3007 Coloma, Donini, Fernandez-Martinez, Lopez-Pavon, arXiv:0712.0796

 ν_e ν_μ

 \mathcal{V}_{τ}

Neutrino Factory

SANDHYA CHOUBEY

Ve VT

PHYSICS WITH INO

Neutrino Factory

 $\nu_e \nu_\mu$

V_T Ve

$$\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu \qquad \mu^- \to e^- + \bar{\nu}_e + \nu_\mu$$

- Charge identification is a MUST for nufacts
- ICAL@INO is a NuFact detector!
- Physics performance using NuFact beam has been carried out
- Sensitivity to neutrino parameters is tremendous
- Optimization of both the Beta-beam and NuFact technology is underway under a number of R&D initiatives world-wide
- Efforts are on for doing dedicated INO simulations for Beta-beam and NuFact beams

Optimizing the NuFact Experiment

Ota, Winter, arXiv:0804.2261

Huber, Lindner, Rolinec, Winter, hep-ph/0606119

 $v_e v_\mu$

P Ve

> V V

Other Physics with ICAL@INO

SANDHYA CHOUBEY

Ve Vµ

 \mathcal{V}_{e}

VT e Vµ

PHYSICS WITH INO

Other Physics with ICAL@INO

Constraining CPT violation:

Datta, Gandhi, Mehta, Uma Sankar, hep-ph/0312027

Dighe, Ray, arXiv:0802.0121

Ve Vu

Probing sterile neutrinos:

Dighe, Ray, arXiv:0709.0383

Constraining NSI:

Adhikari, Agarwalla, Raychaudhuri, hep-ph/0608034

Probing WIMP dark matter models:

Mena, Palomares-Ruiz, Pascoli, arXiv:0706.3909

Gandhi and Panda, hep-ph/0512179

 ν_e

Vie Vu

SANDHYA CHOUBEY

PHYSICS WITH INO

Conclusions

 ν_e ν_μ

V_T Ve

- A large magnetized iron calorimeter detector has substantial physics potential using atmospheric neutrinos.
 - Reconfirmation of L/E dip and precision of $|\Delta m^2_{31}|$
 - Matter effect and Sign of Δm^2_{31}
 - Determination of octant of θ_{23}
 - OPT violation, Long Range Forces
- It will complement the planned water Cerenkov and Liquid Argon Detectors as well as the long baseline and reactor experiments
- In its second phase it can serve as a end detector for a beta-beam or beam from a neutrino factory
- Location is close to the Magic Baseline from all major accelerator facilities
- Clean measurement of hierarchy and θ_{13}

More details at http://www.imsc.res.in/~ ino

SANDHYA CHOUBEY

PHYSICS WITH INO

Conclusions

THANK YOU

SANDHYA CHOUBEY

PHYSICS WITH INO

Reach of The Resonant-Magical Experiment

• Signal for θ_{13} at 3σ if $\sin^2 2\theta_{13}$ (true) $\geq 5.1 \times 10^{-4}$

Agarwalla, S.C., Raychaudhuri, arXiv:0711.1459

 ν_e ν_μ

 $\frac{\nu_{\tau}}{\nu_{e}}$

Reach of The Resonant-Magical Experiment

Agarwalla, S.C., Raychaudhuri, arXiv:0711.1459

This is a no-risk experiment

SANDHYA CHOUBEY

Ve Vµ

Ve Ve

> U V V V

> > PHYSICS WITH INO

Physics Reach of Neutrino Factory

• Sensitivity to $\sin^2 2\theta_{13} \lesssim 2.0 \times 10^{-4}$ (3 σ)

Huber et al., hep-ph/0606199

Best sensitivity comes at the Magic Baseline

SANDHYA CHOUBEY

Ve Vr

PHYSICS WITH INO

Physics Reach of Neutrino Factory

• Sensitivity to $sgn(\Delta m_{31}^2) \gtrsim 1.8 \times 10^{-4} (3\sigma)$

Huber et al., hep-ph/0606199

Best sensitivity comes near the Magic Baseline

μ Ve Vr
Analysis of Hierarchy Sensitivity in INO

- **Exposure:** $100 \text{ Kt} \times 10 \text{ yr} = 1000 \text{ Kt} \text{ yr}$
- Muon event number: $(\phi_{\mu} \times P_{\mu\mu} + \phi_e \times P_{e\mu}) \times \sigma_{CC} \times \epsilon$
- Detection efficiency: 87%
- Charge i.d. of muons 100%
- 3-dimensional Honda fluxes
- Range studied for matter effects: E = 2 to 10 GeV, $\cos \theta_z = -0.1$ to -1.0
- Muon threshold: 1 GeV
- Detector resolution of $10^{\circ}, 15\%$
- Energy and $\cos \theta_z$ range divided into 8 × 18 = 144 bins
- Oscillation parameters uncerts are taken care of by Marginalization

Ve Vµ