Mixing of Active and Sterile Neutrinos

Takehiko Asaka (Niigata Univ.)

In collaboration with Shintaro Eijima (Niigata Univ.) Hiroyuki Ishida (Niigata Univ.)

Reference: arXiv:1101.1382

Contents

§ Introduction

The vMSM (Neutrino Minimal Standard Model)
 The MSM + three RH neutrinos

§ Mixing elements of sterile neutrinos

§ Neutrinoless double beta decay

§ Search for light sterile neutrinos

§ Summary

Introduction

Takehiko Asaka (Niigata Univ.)

Neutrino oscillations

- Neutrino mass scales
 - Atmospheric: $\Delta m_{\rm atm} \simeq 2.5 \times 10^{-3} {\rm eV}^2$
 - Atmospheric neutrino exps. (..., SuperK)
 - Long-baseline accelerator exps. (K2K, MINOS)
 - Solar : $\Delta m_{\rm sol} \simeq 8.0 \times 10^{-5} {\rm eV}^2$
 - Solar neutrino exps. (…, SuperK, SNO)
 - Reactor exp. (KamLand)
- Need for physics beyond the MSM !

Extension by RH neutrinos

• Introduce three RH neutrinos ν_{R1} , ν_{R2} , ν_{R3}

$$\delta L = i \overline{v_{RI}} \partial_{\mu} \gamma^{\mu} v_{RI} - F_{\alpha I} \overline{L_{\alpha}} v_{RI} \Phi - \frac{M_{I}}{2} \overline{v_{RI}} v_{RI}^{c} + \text{h.c.} \qquad I = 1, 2, 3$$
$$\alpha = e, \mu, \tau$$

Mass terms of neutrinos

$$-L = \frac{1}{2} (\overline{\nu_L}, \overline{N^c}) \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N \end{pmatrix} + h.c.$$

Dirac massesMajorana masses

$$M_{D} = F \langle \Phi \rangle$$
$$M_{M} = diag(M_{1}, M_{2}, M_{3})$$

• We shall assume:

$$[M_D]_{\alpha I}| \ll M_I \implies$$
 Seesaw mechanism works

Seesaw mechanism

Minkowsi (77), Yanagida (79),Gell-Mann, Ramond, Slansky (79), Glashow (79),...

If Majorana masses » Dirac masses,

$$\begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} \Rightarrow \begin{pmatrix} M_v & 0 \\ 0 & M_M \end{pmatrix}$$

a Active neutrinos
 v_1, v_2, v_3
b Sterile neutrinos
 N_1, N_2, N_3

$$\begin{pmatrix} M_v = -M_D^T \frac{1}{M_M} M_D \\ U^T M_v U = diag(m_1, m_2, m_3) \end{pmatrix}$$

Flavor mixing in CC current

$$v_{L\alpha} = U_{\alpha i} v_i + \Theta_{\alpha I} N_I$$
 active-sterile mixing
 $\Theta_{\alpha I} = [M_D]_{\alpha I}/M_I$

Scale for Majorana mass

- Neutrino oscillations are explained by flavor mixing between active neutrinos !
 - **D** Masses of active neutrinos

$$M_{\nu} = -M_D \frac{1}{M_M} M_D^T \implies \Delta m_{atm}^2 \simeq 2.5 \times 10^{-3} \text{ eV}^2$$

 $\Delta m_{sol}^2 \simeq 8.0 \times 10^{-5} \text{ eV}^2$

Where is the scale of Majorana mass ??

- **•** Two "natural" options
 - The conventional seesaw scenario

$$M_M$$
???

• The vMSM

Scale of Majorana mass

$$M_{\nu} = -M_{D}^{T} \frac{1}{M_{M}} M_{D} \implies F^{2} = M_{M} M_{\nu} / \langle H \rangle^{2}$$

Conventional seesaw scenario:

 Neutrino Yukawa couplings are comparable to those of quarks and charged leptons

 $\Box M_{M} \gg 100 \text{ GeV}$ $M_{M} \simeq 6 \times 10^{14} \text{GeV} F^{2} \left(\frac{2.5 \times 10^{-3} \text{eV}^{2}}{m_{\nu}^{2}}\right)^{\frac{1}{2}}$

- Explain "naturally" smallness of neutrino masses [Minkowski, Yanagida; Gell-Mann, Ramond, Slansky]
- Decays of RH neutrino(s) can account for BAU through leptogenesis

[Fukugita, Yanagida]

 Physics of RH neutrinos can NOT be tested directly by experiments No new mass scale is introduced

$$\Box M_{M} < 100 \text{ GeV}$$

$$F \simeq 4 \times 10^{-7} \left(\frac{M_{M}}{100 \text{ GeV}}\right)^{\frac{1}{2}} \left(\frac{m_{\nu}^{2}}{2.5 \times 10^{-3} \text{ eV}^{2}}\right)$$

• One keV sterile neutrino can be DM

[Dodelson, Widrow '93,…]

- Oscillation of quasi degenerate sterile neutrinos can account for BAU [Akhmedov, Rubakov, Smirnov '98]
- Physics of RH neutrinos can be tested directly by experiments !

10

Roles of three sterile (RH) neutrinos

• N_1 : Dark Matter Candidate • $M_1 = 4-50 \text{ keV}$ $|F_{\alpha 1}| = 5 \cdot 10^{-15} - 4 \cdot 10^{-13}$ • Negligible contribution to M_{ν} • Test by X-rays from $N_1 \rightarrow \nu \gamma$

- N_2 and N_3 :
 - Neutrino Oscillation data
 - Masses and mixings of active neutrinos
 - Baryon Asymmetry of the Universe (BAU)
 - Mechanism via RH neutrino oscillation

Mass region of N₂ and N₃

BAU requires quasi-degenerate N_2 and N_3

Experimental test of N₂ and N₃ is crucial to reveal the origin of masses and BAU !

Takehiko Asaka (Niigata Univ.)

Purpose of this talk

- Study the mixing elements Θ_{αI} for N₂ and N₃
 Interactions of sterile neutrinos
 - Yukawa int. $F_{\alpha I} \propto \Theta_{\alpha I}$
 - Weak gauge int. $g_W \Theta_{\alpha I}$

 $\Rightarrow \Theta_{\alpha I}$ determine the strength of int.

- Discuss
 - **\square** How $\Theta_{\alpha I}$ depend on neutrino parameters?
 - **D** Impacts on
 - Neutrinoless double beta decay
 - Search for N_2 and N_3 ($M_{2,3} < m_{\pi}$)

Mixing elements of sterile neutrinos

Mixing elements of N_{2,3}

Flavor mixing in the CC interaction

$$\nu_{L\alpha} = U_{\alpha i} \, \nu_i + \Theta_{\alpha I} \, N_I$$

$$\Theta_{\alpha I} = \frac{[M_D]_{\alpha I}}{M_I} = \frac{F_{\alpha I} \langle \Phi \rangle}{M_I}$$

• Model with one pair of active and sterile neutrinos

$$|\Theta|^{2} = \frac{|M_{D}|^{2}}{M_{M}^{2}} = \frac{m_{\nu}}{M_{M}} = 5 \times 10^{-11} \left(\frac{m_{\nu}^{2}}{m_{\text{atm}}^{2}}\right)^{\frac{1}{2}} \left(\frac{1\text{GeV}}{M_{M}}\right)$$

I In the ν MSM, $|\Theta_{\alpha I}|$ can be much larger / smaller !

• Parameterization of $\Theta_{\alpha I}(F_{\alpha I})$ for $N_{2,3}$

$$[M_{\nu}]_{\alpha\beta} = -\sum_{I=1,2,3} \frac{[M_D]_{\alpha I} [M_D]_{\beta I}}{M_I} = -\sum_{I=2,3} \frac{[M_D]_{\alpha I} [M_D]_{\beta I}}{M_I}$$

Essentially no contribution from Dark matter $N_1 \implies "F_{\alpha 1} = 0"$

$$F = U_{\text{PMNS}} D_{\nu}^{1/2} \Omega D_{N}^{1/2} / \langle \Phi \rangle \quad \text{(in NH)}$$
[Casas, Ibarra '01]

Parameters of active neutrinos

$$D_{\nu}^{1/2} = \text{diag}(\sqrt{m_{1}} = 0, \sqrt{m_{2}}, \sqrt{m_{3}}): \text{ active } \nu \text{ masses}$$

$$U_{\text{PMNS}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{12} - s_{23}s_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \\ \end{pmatrix} \quad \text{Majorana phase } \eta$$

$$D_{N}^{1/2} = \text{diag}(\sqrt{M_{2}}, \sqrt{M_{3}}) : \text{ sterile } \nu \text{ masses}$$

$$D_{N}^{1/2} = \text{diag}(\sqrt{M_{2}}, \sqrt{M_{3}}) : \text{ sterile } \nu \text{ masses}$$

$$\Omega = \begin{pmatrix} 0 & 0 \\ \cos \omega & -\sin \omega \\ \xi \sin \omega & \xi \cos \omega \end{pmatrix} \quad \omega: \text{ complex number}$$

Enhancement of $\Theta_{\alpha I}$

• In the vMSM, $\Theta_{\alpha I}$ can be larger!

□ Im ω in Ω matrix is important [cos ω = cos Re ω cosh Im ω – *i* sin Re ω sinh Im ω]

□ For Im $\omega \gg 1$, $\Omega \propto e^{\text{Im}\omega}$

 $F, \Theta \propto e^{\mathrm{Im}\omega} \equiv X_{\omega}$

Enhancement of $\boldsymbol{\Theta}$ **by large** X_{ω}

Cf. U(1) flavor symmetry model [Shaposhnikov '06]

- Masses of active neutrinos do not change
- **\square** Large $\Theta_{\alpha I}$ is crucial for
 - larger production/detection rates of $N_{2,3}$
 - shorter lifetimes of N_{2,3}

Mixing elements in NH case

• Leading
$$O(X_{\omega}^{2})$$
 terms
 $|\Theta_{eI}|^{2} = X_{\omega}^{2} \frac{m_{\text{atm}}}{4 M_{I}} \cos^{2} \theta_{13} [\tan^{2} \theta_{13} + 2\xi \sin(\delta + \eta)\sqrt{r_{m}} \sin \theta_{12} \tan \theta_{13} + r_{m} \sin^{2} \theta_{12}]$
 $|\Theta_{\mu I}|^{2} = X_{\omega}^{2} \frac{m_{\text{atm}}}{4 M_{I}} \cos^{2} \theta_{13} \sin^{2} \theta_{23} [1 + O(\sqrt{r_{m}})]$
 $|\Theta_{\tau I}|^{2} = X_{\omega}^{2} \frac{m_{\text{atm}}}{4 M_{I}} \cos^{2} \theta_{13} \cos^{2} \theta_{23} [1 + O(\sqrt{r_{m}})]$
 $r_{m} = \frac{m_{\text{atm}}}{m_{\text{sol}}} \simeq 0.18$

•
$$\mu$$
 and τ types
• $\theta_{23} \simeq \pi/4$ and $\theta_{13} \ll 1$
 $\left|\Theta_{\mu I}\right|^2 \simeq |\Theta_{\tau I}|^2 \simeq X_{\omega}^2 \frac{m_{\text{atm}}}{8 M_I} = 6 \times 10^{-11} X_{\omega}^2 \left(\frac{100 \text{MeV}}{M_I}\right)^2$
• $\left|\Theta_{\mu I}\right|^2 \simeq |\Theta_{\tau I}|^2 \propto X_{\omega}^2 \parallel$

e type behaves differently !

Mixing elements in NH case

• *e* type

 $|\Theta_{eI}|^2 = X_{\omega}^2 \frac{m_{\text{atm}}}{4 M_I} \cos^2 \theta_{13} \left[\tan^2 \theta_{13} + 2\xi \sin(\delta + \eta) \sqrt{r_m} \sin \theta_{12} \tan \theta_{13} + r_m \sin^2 \theta_{12} \right]$

 $\Box O(X_{\omega}^2)$ and $O(X_{\omega}^0)$ terms in $|\Theta_{eI}|^2$ vanish, when

 $\begin{aligned} & \tan \theta_{13}^{cr} = \sqrt{r_m} \sin \theta_{12} \\ & \xi \sin(\delta + \eta) = -1 \end{aligned} \qquad \begin{array}{l} \sin^2 \theta_{13}^{cr} = 0.041 \sim 0.070 \ (3\sigma), \ 0.046 \sim 0.065 \ (2\sigma) \\ & \sin^2 \theta_{13} < 0.053 \ (3\sigma), \ 0.039 \ (2\sigma) \\ & [Schwetz, \ Tortola, \ Valle \ '08] \end{aligned} \\ & |\Theta_{eI}|^2 \simeq 3 \times 10^{-11} \frac{1}{X_{\omega}^2} \left(\frac{100 \text{MeV}}{M_I}\right)^2 \\ & \bullet \text{ In this case, } |\Theta_{\mu I}|^2 \simeq |\Theta_{\tau I}|^2 \propto X_{\omega}^2 \gg |\Theta_{eI}|^2 \propto X_{\omega}^{-2} !! \end{aligned}$ $& \bullet \text{ When } \theta_{13} = 0, \quad \frac{|\Theta_{eI}|^2}{|\Theta_{\mu I}|^2} \simeq \frac{|\Theta_{eI}|^2}{|\Theta_{\tau I}|^2} \simeq 2r_m \sin^2 \theta_{12} \simeq 0.11 \\ & \text{ [Shaposhnikov '08]} \end{aligned}$

NH case

IH case

- [TA, Eijima, Ishida '11]
- No cancellation (suppression) for large X_{ω}

• " $\xi sin\eta$ " is important !

Takehiko Asaka (Niigata Univ.)

Neutrinoless Double Beta Decay

Takehiko Asaka (Niigata Univ.)

Effective neutrino mass

Constraint on Θ_{eI} **??**

 Benes, Faessler, Simkovic, Kovalenko ('05) derived a stringent limit on Θ_{eI}

- We will show the vMSM receives no such a limit !
 - **B** Bezrukov ('05) considered $M_{2,3} \gg 100$ MeV
 - **u** We also consider $M_{2,3} \leq 100 \text{ MeV}$

$m_{\rm eff}$ in the vMSM

$$m_{\rm eff} = \sum_{i=1,2,3} m_i U_{ei}^2 + f_{\beta}(M_1) M_1 \Theta_{e1}^2 + \sum_{I=2,3} f_{\beta}(M_I) M_I \Theta_{eI}^2$$

DM Sterile Neutrino N₁

$m_{\text{eff}} \text{ in the } \nu \text{MSM}$ $m_{\text{eff}} = \sum_{i=1,2,3} m_i U_{ei}^2 + f_\beta(M_1) M_1 \Theta_{e1}^2 + \sum_{I=2,3} f_\beta(M_I) M_I \Theta_{eI}^2$

- Sterile Neutrinos N_2 and N_3
 - BAU requires mass degeneracy

$$m_{\rm eff}^{N_{2,3}} = \overline{m}_{\rm eff}^{N_{2,3}} + \delta m_{\rm eff}^{N_{2,3}}$$

$$\int M_3 = M_N + \frac{\Delta M}{2} \qquad \Delta M \ll M_N$$
$$M_2 = M_N - \frac{\Delta M}{2} \qquad \Delta M \ll M_N$$

$$\overline{m}_{\text{eff}}^{N_{2,3}} = f_{\beta}(M_N) \sum_{I=2,3} M_I \Theta_{eI}^2$$

$$\delta m_{\text{eff}}^{N_{2,3}} = \sum_{I=2,3} [f_{\beta}(M_I) - f_{\beta}(M_N)] M_I \Theta_{eI}^2 \propto \Delta M / M_N$$

$$\delta m_{\text{eff}}^{N_{2,3}} \text{ gives negligible contribution !}$$
[TA, Eijima, Ishida '11]

$m_{\rm eff}$ in the vMSM $m_{\rm eff} = \sum m_i U_{ei}^2 + f_\beta (M_1) M_1 \Theta_{e1}^2 + \overline{m}_{\rm eff}^{N_{2,3}} + \delta m_{\rm eff}^{N_{2,3}}$ i = 123Active neutrinos and sterile neutrinos N₂ and N₃ **a** 6x6 neutrino mass matrix $\widehat{M_{\nu}} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix}$ $0 = \left[\widehat{M_{\nu}}\right]_{ee} = \left[\widehat{U}\widehat{M_{\nu}}^{diag}\widehat{U}^{T}\right]_{ee} = \sum_{i=1,2,2} m_{i} U_{ei}^{2} + \sum_{V \in \mathcal{O}} M_{I}\Theta_{eI}^{2}$ $\overline{m}_{\text{eff}}^{N_{2,3}} = f_{\beta}(M_N) \sum_{I=2,3} M_I \Theta_{eI}^2 = -f_{\beta}(M_N) \sum_{i=1,2,3} m_i U_{ei}^2$ $m_{\rm eff} \simeq [1 - f_{\beta}(M_N)] \sum_{i=1,2,3} m_i U_{ei}^2$ independent on Θ_{eI} ! [TA, Eijima, Ishida '11]

Takehiko Asaka (Niigata Univ.)

$m_{\rm eff}$ in the vMSM

[TA, Eijima, Ishida '11]

• $m_{\rm eff}$ in the vMSM is smaller than active v's one

• No significant constraint on Θ_{eI} in the vMSM !

Search for N_2 and N_3 with $M_{2,3} < m_{\pi}$

Takehiko Asaka (Niigata Univ.)

Limits on light sterile neutrinos

- Direct search experiments put
 Dpper bounds on Θ_{αI}
- Big Bang Nucleosynthesis puts
 Upper bounds on lifetimes
 ⇒ Lower bounds on Θ_{αI}
- Allowed range of Θ_{αI}
 Gorbunov, Shaposhnikov ('07) claimed
 No allowed region for M_{2,3} < m_π !

D Let us reconsider this point

Search for light sterile neutrinos ³¹

• Production by meson decays $\pi^+ \rightarrow e^+ N$ $K^+ \rightarrow e^+ N, K^+ \rightarrow \mu^+ N$

Peak search [Shrock '80]

• Measure E_e in $\pi^+ \rightarrow e^+ N$

$$E_e = \frac{m_{\pi}^2 - m_e^2 - M_N^2}{2 m_{\pi}}$$

Decays inside the detector

Experimental Upper bounds $\Theta_{\alpha I}$

• Bounds on $\Theta_{\tau I}$ are much weaker and irrelevant

• Bound on $|\Theta_{eI}|^2$ is severer than others

• $|\Theta_{\alpha I}| \propto X_{\omega} \implies$ Upper bound on X_{ω}

Takehiko Asaka (Niigata Univ.)

Upper bounds on $X\omega$

- Due to cancellation in $|\Theta_{eI}|$ for the NH case, bound in NH is much weaker than IH
- $N_{2,3}$ are long-lived particles \Rightarrow BBN constraint!

BBN constraint on lifetime

Long-lived N_{2,3} may spoil the success of BBN
 Speed up the expansion of the universe

•
$$\rho_{\text{tot}} = \rho_{\text{MSM}} + \rho_{N_{2,3}} \Rightarrow H^2 = \frac{\rho_{\text{tot}}}{3 M_P^2}$$

• p-n conv. decouples earlier \Rightarrow overproduction of ${}^{4}\text{He}$

 $n + \nu \leftrightarrow p + e^-, \dots$

Distortion of spectrum of active neutrinos

•
$$N_{2,3} \rightarrow \nu \overline{\nu} \nu, e^+ e^- \nu, \dots$$

- Additional neutrinos may not be thermalized
- \Rightarrow Upper bound on lifetime
- Dolgov, Hansen, Rafflet, Semikoz ('00)
 - One family case:

 $\tau_{\rm BBN}[\rm sec] = 128.7 (M_N/MeV)^{0.04179} - 1.828$

Bounds on lifetime

- Allowed region $M_N = 34 \text{MeV} \sim m_{\pi}$ in the NH case.
- The suppression of Θ_{eI} in the NH is crucial !

Allowed regions (search & BBN)

07 March, 2011

36

Branching ratios in NH case

§5

Summary

Summary

• We considered the *v*MSM

The MSM + 3 RH neutrinos with $M_N < O(10^2)$ GeV

- N_1 : dark matter
- N_2 and N_3 : seesaw + BAU
- \blacksquare Mixing elements $\Theta_{\alpha 2}$ and $\Theta_{\alpha 3}$
 - $|\Theta_{\alpha I}|$ can be very large for large X_{ω}
 - Cancellation of $|\Theta_{eI}|$ is possible in NH
- Neutrinoless double beta decay
 - **•** Effective neutrino mass is smaller than that of active neutrinos
 - **\square** No significant constraint on Θ_{eI}
- Search for N_2 and N_3 with $M_{2,3} < m_{\pi}$
 - Allowed region $(M_{2,3} \simeq 34 \text{MeV} \sim m_{\pi})$ in NH

• $K^+ \rightarrow \mu^+ N_{2,3}$ is promising to test

• $Br(\pi^+ \rightarrow e^+ N_{2,3})$ and $Br(K^+ \rightarrow e^+ N_{2,3})$ may be very small

NH case

IH case

Branching ratios

 $M_N = 120 MeV$

Branching ratios

