Tribrid inflation

- A framework for connecting inflation with particle physics

Stefan Antusch

University of Basel Department of Physics

Particles & Cosmology group

Particle and Astroparticle Theory Seminar, Max-Planck-Institut für Kernphysik, Heidelberg

November 12, 2012

Inflation = Era of accelerated expansion in the very early universe

How can inflation be realised?

Starting point: Einstein's equations of General Relativity

∧: Cosmological constant

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 8\pi G_N T_{\mu\nu}$$

Metric $g_{\mu\nu}$: Gravity \leftrightarrow geometry of space-time

Energy momentum tensor: Represents particle theory

How can inflation be realised?

Simple possibility: Slowly rolling scalar field (minimally coupled to gravity)

$$T_{\mu\nu} = \partial_{\mu}\phi\partial_{\nu}\phi - g_{\mu\nu}\left(\frac{1}{2}\partial_{\rho}\phi\partial_{\rho}\phi + V(\phi)\right)$$

If the vacuum energy V(ϕ) dominates: $\Rightarrow \quad a(t) = \exp\left(\sqrt{\frac{8\pi G_N V(\phi)}{3}}t\right)$

and the universe "inflates"!

Important: The field ϕ is dynamical \Rightarrow inflation can end!

Dynamics during and after inflation

Inflation can successfully set the right initial conditions for the evolution of the universe ...

Open question:

How is inflation connected to particle physics?

A typical problem

A typical problem

Basic types of inflation models

... many variants of scalar field potentials can lead to inflation ...

Basic types of inflation models

'Large field' (chaotic) inflation

... many variants of scalar field potentials can lead to inflation ...

'Small field' (new) inflation

Basic types of inflation models

... many variants of scalar field potentials can lead to inflation ...

'Small field' (new) inflation

... in Hybrid inflation: connection
 → to a 2nd order phase transition at high energies (~ M_{GUT})

The "standard" way to realise hybrid inflation SUSY/SUGRA introduces a singlet superfield Φ ...

Copeland, Liddle, Lyth, Stewart, Wands ('94); Dvali, Shafi, Schaefer ('94), Linde, Riotto ('97), ...

The "standard" way to realise hybrid inflation SUSY/SUGRA introduces a singlet superfield Φ ...

$$W = \kappa \phi (H^2 - M^2)$$

Inflaton superfield (has to be a <u>total singlet</u>, apart from possible R symmetry)

(Remark: typically $H^2 \rightarrow H \overline{H}$, with \overline{H} in the conjugate representation)

Waterfall superfield

Fields are superfields: (index S dropped!)

$$\phi = \phi_S + \sqrt{2}\theta\phi_F + \theta\theta F_{\phi}$$

Copeland, Liddle, Lyth, Stewart, Wands ('94); Dvali, Shafi, Schaefer ('94), Linde, Riotto ('97), ...

Scalar potential (for simplicity: global SUSY, gauge singlet H) $V_F = \sum_{i} |F_i|^2 = \sum_{i} |\frac{\partial W}{\partial \Phi_i}|^2_{\theta=0}$

 $V_F = |F_{\phi}|^2 + |F_H|^2 \text{ with } \begin{cases} |F_{\phi}|^2 = |\kappa|^2 |H^2 - M^2|^2 \\ |F_H|^2 = |\kappa|^2 |2H\phi|^2 \end{cases}$

Scalar potential (for simplicity: global SUSY, gauge singlet H)

"Mexican hat" potential for H

$$V_F = |F_{\phi}|^2 + |F_H|^2$$
 with

 $V_{F} = \sum |F_{i}|^{2} = \sum \left|\frac{\partial W}{\partial \Phi_{i}}\right|^{2}_{\theta=0}$

$$\begin{cases} |F_{\phi}|^{2} = |\kappa|^{2} |H^{2} - M^{2}|^{2} \\ |F_{H}|^{2} = |\kappa|^{2} |2H\phi|^{2} \end{cases}$$

For stable $\langle H \rangle = 0$: Large V₀ = $\kappa^2 M^4$, Φ is a "F-flat" direction ... suitable for inflation Total m² for H (at <H>=0): $m_{H|<H>=0}^{2} = -\kappa^{2}M^{2} + 4\kappa^{2}|<\Phi>|^{2} > 0$ \Rightarrow H=0 stable for $|<\Phi>| > \Phi_{c} = M^{2}/4$

Scalar potential (for simplicity: global SUSY, gauge singlet H)

$$W = \kappa \phi (H^2 - M^2)$$

Inflaton superfield

Waterfall superfield

⇒ Hybrid potential for <u>singlet</u> <u>inflaton field</u>

Copeland, Liddle, Lyth, Stewart, Wands ('94); Dvali, Shafi, Schaefer ('94), Linde, Riotto ('97), ...

Tribrid Inflation: Hybrid-like inflation with non-singlet inflaton field

Tribrid Inflation from Generalized Superpotential

Tribrid Inflation: Three fields play a role ...

<u>Note:</u> in Planck units, somewhat simplified ... (e.g. $\Phi^n \rightarrow \Phi_1 \Phi_2 \Phi_3 ...$)

$$W = \kappa S(H^{\ell} - M^2) + \lambda H^{m} \Phi^{n}$$

Driving superfield (here: $\langle S \rangle = 0$ during and after inflation; S not the inflaton! Vacuum energy V₀ from $|F_S|^2$, m_S > Hubble from Kähler potential operator ~ $|S|^4$)

S.A., Bastero-Gil, King, Shafi ('04), S.A., Bastero-Gil, Dutta, King, Kostka ('08), S.A., Ur-Rehmann, Nolde ('12)

Waterfall superfield

Inflaton superfield

(D-flat combination of fields from the matter sector; fields <u>can be charged under</u> the symmetry of the theory!)

$$V_D = \frac{1}{2} \sum_{a} g^2 \left(\phi_i^{\dagger} \mathcal{T}^a \phi_i \right)^2 \stackrel{!}{=} 0$$

Effective Supergravity Framework

▶ Inflaton field values $\Phi < M_P \Rightarrow$ effective field theory approach possible, Kähler potential can be written as

$$K = \text{general expansion in } \frac{\phi}{M_p}, \frac{H}{M_p}, \frac{S}{M_p}$$

Explicitly, in Planck units:

$$K = |\Phi|^2 + |H|^2 + |S|^2 + \sum_{i+j+k\geq 2} \kappa_{ijk} |\Phi|^{2i} |H|^{2j} |S|^{2k}$$

In general: Parameters have to be chosen carefully in order to maintain a flat enough inflaton potential (η-problem)

Tribrid Inflation: Scalar potential

Scalar potential (for simplicity: global SUSY, gauge singlet H)

 $V_F = \sum_i \left| F_i \right|^2 = \sum_i \left| \frac{\partial W}{\partial \Phi_i} \right|^2_{ heta=0}$

$$V_F = \sum_{i} |F_i|^2 \text{ with } \begin{cases} |F_i|^2 - |k| \\ |F_H|^2 = |k| \\ +\lambda \end{cases}$$

$$|F_{S}|^{2} = |\kappa|^{2} |H^{c} - M|^{2}|^{2}$$
$$|F_{H}|^{2} = |\kappa \ell H^{\ell-1} S$$
$$+ \lambda m H^{m-1} \phi^{n}|^{2}$$
$$|F_{\phi}|^{2} = |\kappa n \lambda H^{m} \phi^{n-1}|^{2}$$

101

-2

Tribrid Inflation: Scalar potential

Scalar potential (for simplicity: global SUSY, gauge singlet H)

Generalized "Mexican hat"-like potential for H $V_F = \sum_{i} |F_i|^2 \text{ with } \begin{cases} |F_S|^2 = |\kappa|^2 |H^\ell - M^2|^2 \\ |F_H|^2 = |\kappa\ell H^{\ell-1}S \\ +\lambda m H^{m-1} \phi^n|^2 \\ |F_{\phi}|^2 = |\kappa n \lambda H^m \phi^{n-1}|^2 \end{cases}$

For $\langle \Phi \rangle \neq 0$: Additional terms for the potential of H; can stabilize $\langle H \rangle = 0$

Tribrid Inflation: Scalar potential

Scalar potential (for simplicity: global SUSY, gauge singlet H)

$$V_F = \sum_i |F_i|^2$$
 with

$$|F_{S}|^{2} = |\kappa|^{2} |H^{\ell} - M^{2}|^{2}$$
$$|F_{H}|^{2} = |\kappa\ell H^{\ell-1} \mathcal{S}$$
$$+\lambda m H^{m-1} \phi^{n}|^{2}$$
$$|F_{\phi}|^{2} = |\kappa n \lambda H^{m} \phi^{n-1}|^{2}$$

For stable $\langle H \rangle = 0$: Large V₀ = $\kappa^2 M^4$; Φ is a "F-flat" direction ... suitable for inflation

Shape of the potential depends on I, m and n ... different types of potentials for tribrid inflation ...

Tribrid Inflation: Types of potentials ...

<u>Pseudosmooth:</u> Mixture between models with a "waterfall" and models of "smooth" inflation ...

... can avoid topological defects

In addition:

With inflaton field(s) charged under the symmetry, higher-dimensional operators are expected to deform the potential slightly → vacuum can be "preselected"; monopole production after inflation avoided!

Tribrid Inflation: Slope for the inflaton potential

$$W = \kappa S(H^{\ell} - M^2) + \lambda H^{m} \Phi^{n}$$

So far, the inflaton was introduced as tree-level D-flat & F-flat direction of the potential ...

Slope of the inflaton potential can come from:

- Icop corrections (Coleman-Weinberg potential)
- Planck-suppressed operators from the Kähler potential
- ③ small $\langle H \rangle \neq 0$ already during inflation (only for m > 2) (happens in pseudosmooth potentials)

 \rightarrow different regimes depending on which contribution dominates

flaton

"Regimes" of Tribrid Inflation

S.A., Nolde, Ur Rehman ('12) S.A., Nolde ('12)

$$W = \kappa S(H^{\ell} - M^2) + \lambda H^m \Phi^n$$
 Inflato

	<i>m</i> = 2	<i>m</i> = 3	<i>m</i> = 4	
$\ell = 2$	Kähler-driven	not nossible	not possible	
	or loop-driven			
$\ell = 3$	Kähler-driven	nsaudasmaath	not possible	
	or loop-driven	pseudosmootn		
$\ell = 4$	Kähler-driven	pseudosmooth	pseudosmooth	
	or loop-driven	or smooth		

Tribrid Inflation: Possible connection to particle physics models ...

 $W = \kappa S(H^{\ell} - M^2) + \lambda H^m \Phi^n$ Inflaton

 $n = 2 \implies$ Mass for a matter field after inflation $n = 3 \implies$ Yukawa coupling after inflation

Phase transition around the GUT scale:GUT symmetry? - Family symmetry? ...

Explicit example: Sneutrino Inflation from a Tribrid Superpotential

Origin of neutrino masses? Here: Seesaw mechanism ...

$$m_{\rm LL}^{\rm I} \approx -\frac{v_u^2}{2} Y_\nu^T M_{\rm RR}^{-1} Y_\nu$$

The Seesaw mechanism:

P. Minkowski ('77), Gell-Mann, Glashow, Mohapatra, Ramond, Senjanovic, Slanski, Yanagida ('79/'80)

Seesaw + SUSY \rightarrow The RH sneutrino as the inflaton $y_{\nu}^{2}v_{EW}^{2}$

The right-handed neutrino superfield:

$$\nu_{\rm R} = \widetilde{N_{\rm R}} + \sqrt{2\theta N_{\rm R}} + \theta \theta F_{N_{\rm R}}$$

P. Minkowski ('77), Mohapatra, Senjanovic, Yanagida, Gell-Mann, Ramond, Slansky, Schechter, Valle, ...

The right-handed sneutrinos, i.e. the scalar superpartners of the RH neutrinos \rightarrow possible candidates for acting as the inflaton field!

Framework: local supersymmetry = supergravity

Two possibilities for the origin of the large RH neutrino masses

↔ two options for realising inflation with right-handed sneutrinos

Origin of right-handed neutrino masses

I) Direct mass terms:

II) Mass terms from spontaneous symmetry breaking

$$\mathcal{W}_{M_{\mathrm{R}}} = \frac{1}{2} M_{\mathrm{R}} \nu_{\mathrm{R}} \nu_{\mathrm{R}}$$

$$\mathcal{W}_{M_{\mathrm{R}}} = \frac{\lambda}{M_{\mathrm{Pl}}} \nu_{\mathrm{R}} \nu_{\mathrm{R}} H H$$

Origin of right-handed neutrino masses

I) Direct mass terms:

II) Mass terms from spontaneous symmetry breaking ... more in the spiri

... more in the spirit of LR-symm. GUTs and family symmetry models

$$\mathcal{W}_{M_{\mathrm{R}}} = \frac{1}{2} M_{\mathrm{R}} \nu_{\mathrm{R}} \nu_{\mathrm{R}}$$

$$\mathcal{W}_{M_{\mathrm{R}}} = rac{\lambda}{M_{\mathrm{Pl}}} \nu_{\mathrm{R}} \nu_{\mathrm{R}} H H$$

For example:

In SO(10) GUTs: $\frac{1}{M_{\rm Pl}} 16_i 16_j H_{\bar{16}} H_{\bar{16}}$

In some A_4 flavour models (with $\theta^{(i)}$ flavons in 3 of A_4):

$$\frac{1}{\mathrm{M}_{\mathrm{Pl}}}\nu_{\mathrm{Ri}}\nu_{\mathrm{Rj}}\theta^{(i)}\theta^{(j)}$$

Large Field (Chaotic) Sneutrino Inflation

I) Direct mass terms:

Murayama, Suziki, Yanagida, Yokoyama ('93)

$$\mathcal{W}_{M_{\mathrm{R}}} = \frac{1}{2} M_{\mathrm{R}} \nu_{\mathrm{R}} \nu_{\mathrm{R}}$$

Inflaton scalar potential:

$$V_{F} = \left|F_{\nu_{R}}^{2}\right|^{2} = \sum_{i} \left|\frac{\partial W}{\partial \nu_{R}}\right|_{\theta=0}^{2} = \left|M_{R}\widetilde{N}_{R}\right|^{2}$$

'Large field' (chaotic) sneutrino inflation

In supergravity: W+ suitable Kähler potential K

II) Mass term from spontaneous symmetry breaking (SSB)

II) Mass term from spontaneous symmetry breaking (SSB)

$$\mathcal{W} = \kappa S(H^2 - M^2) + \frac{\lambda}{M_{\rm Pl}} \nu_{\rm R} \nu_{\rm R} H H$$

Additional term in W is just a SUSY version of a SSB potential

 $V(H, \tilde{N}_{R}=0)$

S.A., Bastero-Gil, King, Shafi ('04); S.A., Baumann, Domcke, Kostka ('10)

Here: S plays no role for the inflationary dynamics! <S>=0 during & after inflation.

Stefan Antusch

 $|\mathsf{F}_{\mathrm{S}}|^2 \Rightarrow$

S.A., Bastero-Gil, King, Shafi ('04); S.A., Baumann, Domcke, Kostka ('10)

II) Mass term from spontaneous symmetry breaking (SSB)

$$\mathcal{W} = \kappa S(H^2 - M^2) + \frac{\lambda}{M_{\text{Pl}}} \nu_{\text{R}} \nu_{\text{R}} H H$$

Additional term in W is just a SUSY
version of a SSB potential
$$|\mathsf{F}_{\text{S}}|^2 \Rightarrow$$

$$V(H, \tilde{N}_{\text{R}} = 0)$$
Usuble V(H, $\tilde{N}_{\text{R}} = 0)$
Usuble V suitable Kahler potential K

i) <Ñ_R> ≠ 0 can stabilise H at <H> = 0 and leads to large vacuum energy V₀ ~ M
 ii) Large masses for the RH (s)neutrinos when H gets a vev after inflation

'Hybrid-type' sneutrino inflation

Chaotic ↔ Hybrid models can be distinguished by the results of the Planck satellite

$$\mathcal{W} = \kappa S(H^2 - M^2) + \frac{\lambda}{M_{\rm Pl}} \nu_{\rm R} \nu_{\rm R} H H$$

Driving superfield

(its F-term generates the potential for H and provides the vacuum energy V_0 ; During and after inflation: $\langle S \rangle = 0$.)

Waterfall superfield

(contains the "waterfall field" (e.g. GUT- or Flavour-Higgs field) that ends inflation by a 2nd order phase transition)

> In supergravity: W + suitable Kähler potential K

$$\mathcal{W} = \kappa S(H^2 - M^2) + \frac{\lambda}{M_{\rm Pl}} \nu_{\rm R} \nu_{\rm R} H H$$

Inflaton superfield

 $(v_R \text{ contains the inflaton} \\ field <math>\tilde{N}_R$ as scalar component; For $< \tilde{N}_R > > \tilde{N}_{R,crit}$ it stabilises H at <H> = 0)

> Note: Inflaton field values still sufficiently below *M*_P for effective field theory treatment!

$$\mathcal{W} = \kappa S(H^2 - M^2) + \frac{\lambda}{M_{\rm Pl}} \nu_{\rm R} \nu_{\rm R} H H$$

Inflaton superfield

(v_R contains the inflaton field \tilde{N}_R as scalar component; For $\langle \tilde{N}_R \rangle > \tilde{N}_{R,crit}$ it stabilises H at $\langle H \rangle = 0$)

University of Basel

$$\mathcal{W} = \kappa S(H^2 - M^2) + \frac{\lambda}{M_{\rm Pl}} \nu_{\rm Ri} \nu_{\rm Ri} H H + ((y_\nu)_{ij} \nu_{\rm Ri} h L_j)$$

Neutrino Yukawa couplings

$$\mathcal{W} = \kappa S(H^2 - M^2) + \frac{\lambda}{M_{\rm Pl}} \nu_{\rm Ri} \nu_{\rm Ri} H H + (y_{\nu})_{ij} \nu_{\rm Ri} h L_j)$$

Neutrino Yukawa couplings

Non-thermal leptogenesis after sneutrino inflation: very efficient way of generating the observed baryon asymmetry!

In Sneutrino Hybrid Inflation: S.A., Baumann, Domcke, Kostka ('10)

University of Basel

CMB observables

S.A., K. Dutta, P. M. Kostka ('09)

Example: Predictions in a toy model (here: slope from loops) ...

Stefan Antusch

50

50

CMB observables

S.A., K. Dutta, P. M. Kostka ('09)

Example: Predictions in a toy model (here: slope from loops) ...

Sneutrino Tribrid Inflation and Non-thermal Leptogenesis

At some stage in the early universe, a small abundance of matter ove antimatter has to be generated ... otherwise we would not exist!

Non-thermal Leptogenesis after Sneutrino Tribrid Inflation

Step 1 (here):

The right-handed sneutrinos \widetilde{N}_R dominate the universe after inflation. No thermal production necessary! Their decays produce a lepton asymmetry ΔL ...

Leptogenesis mechanism: Fukugita, Yanagida ('86)

Step 2:

Sphaleron processes (conserve B-L but violate B and L) partly convert the lepton asymmetry Δ L into a baryon asymmetry Δ B

Kuzmin, Rubakov, Shaposhnikov ('85)

Successful Inflation & Leptogenesis

In our toy model of Sneutrino Tribrid Inflation:

S.A., Baumann, Domcke, Kostka ('10)

Successful Inflation & Leptogenesis

S.A., Baumann, Domcke, Kostka ('10)

Tribrid Inflation and the η-problem ...

Inflationary epoch in the early universe

Requirements for "slow roll" inflation

• "Slow roll parameters" small: ε , $|\eta|$, $\xi << 1$, $V \sim V_0$ dominates

$$\epsilon = \frac{M_P^2}{2} \left(\frac{V'}{V}\right)^2, \quad \eta = M_P^2 \left(\frac{V''}{V}\right), \quad \xi = M_P^4 \left(\frac{V'V'''}{V^2}\right)$$

"slope of V" "inflaton mass"

The η-problem

Challenge for realising inflation: Flat enough potential,

Generic (effective field theory)

$$V \subset V_0 \, rac{\phi^\dagger \phi}{M_P^2} \, \Rightarrow \, m_\phi \sim \mathcal{H} \, \leftrightarrow \, \eta \sim 1$$

$$m_{\phi} << \mathcal{H}$$
 $\mathcal{H} = rac{\sqrt{V}}{\sqrt{3}M_P}$

• In supergravity (with $K = \phi^* \phi$ and V_0 from F-term)

$$\begin{split} V_F &= \mathrm{e}^{K/M_P^2} \left(K^{i\bar{j}} D_i W D_{\bar{j}} W^* - \frac{3|W|^2}{M_P^2} \right) \\ V_F &\sim \left(1 + \frac{\phi^{\dagger} \phi}{M_P^2} + \dots \right) V_0 \end{split} \text{ with } D_i W := W_i + K_i W \end{split}$$

E.J Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart, D. Wands ('94)

Approaches to the η-problem: 3 strategies in supergravity

Expansion of K in fields/ M_P :

requires tuning of parameters! (at few %-level)

$$K = |\phi|^2 + rac{\lambda_\phi}{M_P^2} |\phi|^4 + rac{\lambda_{\phi i}}{M_P^2} |\phi|^2 |X_i|^2 + \dots$$

 -1α

'Shift' symmetry:

$$= f(\phi + \phi^*)$$

protects Im[φ] from obtaining a SUGRA mass by symmetry! (used in many works ...)

• 'Heisenberg' symmetry:

K

solves the η -problem for $|\phi|$ by symmetry!

$$T
ightarrow T + \mathrm{i}\,eta$$
 , $T
ightarrow T + lpha^*\,\phi + |lpha|^2/2$, $\phi
ightarrow \phi + lpha$

$$\mathcal{K}=f(
ho)$$
 , with $ho=\mathcal{T}+\mathcal{T}^*-|\phi|^2$

T: 'modulus field' \rightarrow can be stabilised using V₀

Gaillard, Murayama, Olive ('95), S.A., Bastero-Gil, Dutta, King, Kostka ('08,'09)

Approaches to the η-problem in classes of models

*) problems pointed out by Brax et al ('06), Davis, Postma ('08)

	K expansion + tuning	Shift symmetry	Heisenberg symmetry	
S is the inflaton ('Hybrid inflation')	(yes) Copeland et al; Dvali, Shafi, Schaefer ('94)	X *	X	
H is the inflaton ('New inflation')	(yes) Shafi, Senoguz ('04)	X	X	
N is the inflaton in 'Tribrid inflation'	(yes) S.A. et al ('04)	yes S.A. et al ('09) Postma, Mooij ('10)	yes S.A. et al ('08)	
N is the inflaton in 'Chaotic' inflation	X	yes Kawasaki, Yamaguchi, Yanagida ('00),	yes S.A. et al ('09)	

Note: ... incomplete table!

New

Can the inflaton field be a gauge non-singlet in SUGRA inflation?

Note: ... incomplete table!

	K expansion + tuning	Shift symmetry	Heisenberg symmetry	Non- singlet Inflaton
S is the inflaton ('Hybrid inflation')	(yes) Copeland et al; Dvali, Shafi, Schaefer ('94)	X *	X	X
H is the inflaton ('New inflation')	(yes) Shafi, Senoguz ('04)	X	X	yes
N is the inflaton 'Tribrid inflation'	(yes) S.A. et al ('04)	yes S.A. et al ('09) Postma, Mooij ('10)	yes S.A. et al ('08)	yes S.A. et al ('10)
N is the inflaton in 'Chaotic' inflation	X	Yes Kawasaki, Yamaguchi, Yanagida ('00),	yes S.A. et al ('09)	X

Gauge Non-Singlet Inflaton field possible!

Heisenberg symmetry solution to the η-problem

Heisenberg symmetry solution to the η-problem

Example for K:

$$K = -3 \ln \rho + |X|^2 + \kappa_{\rho} \frac{\rho |X|^2}{M_P} + \dots$$
, with $\rho = T + T^* - |\phi|^2$

Example: No-scale form; More general: $f(\rho)$

K invariant under Heisenberg symmetry

- Field X: Provides the vacuum energy V_0 by $|F_X|^2$ during inflation
- Consider suitable W with (i) $W_{inf} = 0$, $W_{\phi} = 0$ during inflation and (ii) which yields a tree-level ϕ -flat potential in global SUSY limit

• Parameter κ_0 : Couples ρ to V_0

S.A., M. Bastero-Gil, K. Dutta, S. F. King, P. M. Kostka ('08)

Heisenberg symmetry solution to the η-problem

Calculate L_{kin} and V_F:

In the the (φ,ρ)-basis: no kinetic mixing between φ and ρ

$$\mathcal{L}_{\rm kin} = \frac{f^{\prime\prime}(\rho)}{4} \left(\partial_{\mu}\rho\right)^2 - \frac{f^{\prime}(\rho)}{2} \left(\partial_{\mu}\phi\right)^2$$

 The F-term scalar potential depends only on ρ (and not on φ)

$$V_F \sim rac{V_0}{
ho^3(1+\kappa_
ho
ho)}$$

 \rightarrow no η-problem

 $\rightarrow \rho$ can be stabilised by large V₀

Summary and conclusions

 Tribrid Inflation is a novel class of models for connecting inflation with particle physics ...
 with various attractive features

Goal: Inflation as a substantial part of a more fundamental theory of particles & cosmology

► Temperature anisotropies of the CMB are a powerful probe of inflation → PLANCK satellite (First cosmology results: 1/2013)

