

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Towards light dark matter with superfluid helium: The DELight experiment

Gentner-Kolloquium, MPIK, 18.10.2023

Belina VON KROSIGK (bkrosigk@kip.uni-heidelberg.de)

Ways to detect dark matter particles

Shake it

Matter

Make it

accelerator searches

(collider, fixed target)

Brake it

indirect searches

Ways to detect dark matter particles

direct searches

Shake it

Make it

accelerator searches

(collider, fixed target)

Dark matter

Brake it

indirect searches

Matter

Ways to detect dark matter particles

direct searches Shake it

Make it

accelerator searches

(collider, fixed target)

Dark matter

σ_{eff}.

Brake it

indirect searches

Matter

Ways to detect dark matter particles

Although direct detection experiments don't probe the fundamental couplings directly, the effective scattering cross sections depend on them and can vary.

direct searches Shake it

Dark matter

Basic idea of direct detection

Assume that the dark matter is not only gravitationally interacting.

Dark matter - nucleon scattering

 $\frac{dR}{dE_R} = \frac{\rho_0}{m_{\chi}m_N} \int_{v_{\min.}}^{\infty} vf(\vec{v}) \frac{d\sigma}{dE_R} d\vec{v}$

Dark matter - nucleon scattering

$$\frac{dR}{dE_R} = \frac{\rho_0}{m_\chi m_N}$$

The DM-nucleon cross section can be separated:

arises from scalar or vector couplings to quarks

$$\frac{d\sigma}{dE_R} = \left[\left(\frac{d\sigma}{dE_R} \right)_{\rm SI} + \left(\frac{d\sigma}{dE_R} \right)_{\rm SD} \right]$$

Spin Independent Spin Dependent

$$= \frac{m_N}{2\mu^2 v^2} \left[\sigma_0^{\text{SI}} F_{\text{SI}}^2(E_R) + \sigma_0^{\text{SD}} F_{\text{SD}}^2(E_R) \right]$$

 $-\int_{V} vf(\vec{v}) \frac{d\sigma}{dE_{R}} d\vec{v}$

arises from axialvector coupling to quarks

F: nuclear form-factor

Dark matter - nucleon scattering

particle theory $\frac{d\sigma}{dE_R} = \frac{m_N}{2\mu^2 v^2} \left[\sigma_0^{\text{SI}} F_{\text{SI}}^2(E_R) + \sigma_0^{\text{SD}} F_{\text{SD}}^2(E_R) \right]$ nuclear form factors: quantum mechanics of interaction with nucleus

Dark matter - nucleon scattering

$$\frac{d\sigma}{dE_R} = \frac{m_N}{2\mu^2 v^2} \left[\sigma_0^{\text{SI}} F \right]$$

Spin-Independent

Spin-Dependent

Dark matter - nucleon scattering

$$\frac{d\sigma}{dE_R} = \frac{m_N}{2\mu^2 v^2} \left[\sigma_0^{\text{SI}} F \right]$$

Spin-Independent

In most models $f_p \sim f_n$.

 \Rightarrow scattering adds coherently with A^2 enhancement.

Spin-Dependent

Nuclei with non-zero angular momentum required. No coherent effect!

Dark matter - nucleon scattering

$$\frac{d\sigma}{dE_R} = \frac{m_N}{2\mu^2 v^2} \left[\sigma_0^{\text{SI}} F \right]$$

Spin-Independent

In most models $f_p \sim f_n$.

 \Rightarrow scattering adds coherently with A^2 enhancement.

Spin-Dependent

Nuclei with non-zero angular momentum required. No coherent effect!

Dark matter - nucleon scattering

Dark matter - nucleon scattering

The power of LXe TPC experiments

What's the motivation then for helium?

Towards light dark matter with superfluid 4He

Towards light dark matter with superfluid 4He

via kinetic mixing with SM photon.

Dark matter - nucleon scattering

$$E_R = \frac{1}{2} \frac{q^2}{m_N} \lesssim \frac{2 m_\chi^2 v^2}{m_N}$$

Dark matter - nucleon scattering

Advantages of helium

- Very light
- Cheap
- Ultra-pure (no internal background)
- Multiple signals (phonon & rotons, photons, excimers)
 - NR / ER discrimination
- Fiducialization possible
- Scalable
- Overall concept demonstrated

S. Bandler et al. PRL 78, 2429 (1992) C. Enss et al. Physica B 194-196, 515 (1994) S. Bandler et al. PRL 74, 3169 (1995) D.N. McKinsey et al. PRA 59, 200 (1999) W. Guo et al. PRL 102, 235301 (2009) F.W. Carter et al. JLTP 186, 183 (2017)

HERON: HElium-ROton detection of Neutrinos

C. Enss et al., Physica B 194-196, 515 (1994) S. Bandler et al., PRL 74, 3169 (1995) J. S. Adams et al. Phys. Let. B 341, 431-434 (1995)

The DELight Collaboration

SciPost Phys. Proc. 12, 016 (2023)

DELight: a Direct search Experiment for Light dark matter with superfluid helium

B. von Krosigk^{1*}, K. Eitel¹, C. Enss^{2,3}, T. Ferber⁴, L. Gastaldo², F. Kahlhoefer⁵, S. Kempf^{6,3}, M. Klute⁴, S. Lindemann⁷, M. Schumann⁷, F. Toschi^{1,7} and K. Valerius¹ + K. Gerbig, G.S. Heine, B. Maier, M. Mikaya and A. Reiser

universität freiburg

DELight: Direct search Experiment for Light dark matter

Multiple signals in superfluid ⁴He

Atomic excitation: singlet

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- First excited level excimer: IR (atomic de-exc. ΔE_f)

- First excited level excimer: IR (atomic de-exc. ΔE_f)

Energy partitioning and pulse-shape discrimination

Vibrations: phonons and rotons

	Collective long-lived excitations in superfluid He
axon	Classified based on momentum
ton	Phonons, R- rotons, R+ rotons
	■ Roton ≈ high-momentum phonon

Vibrations: phonons and rotons

Vibrations: phonons and rotons

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

The DELight concept

Film burner to keep external MMC wafers He free

Maintain amplification factor

heat flush purifier

The DELight concept

Film burner to keep external MMC wafers He free

Maintain amplification factor

3-inch Si wafers of 300 µm thickness

heat flush purifier

MMC: Magnetic MicroCalorimeter

Current R&D activities: DELight

- R&D program started
- DELight v0 cell built
 - first run expected this/next month
- existing MMCs as test-bed

arXiv:2310.08698

arXiv:2310.08512

 $\Delta E_{\text{FWHM}} = (1.25 \pm 0.17(\text{stat})^{+0.05}_{-0.07}(\text{syst})) \text{ eV}$

Towards light dark matter with superfluid 4He

HeRALD

S. A. Hertel et al. Phys. Rev. D 100, 092007 (2019)

He projections:

- 1: 1 kg•d, 40 eV
- 2: 1 kg•yr, 10 eV
- 3: 10 kg•yr, 0.1 eV
- 4: 100 kg•ry, 1 meV

Towards light dark matter with superfluid 4He

- 10 L cell in shallow lab
- 1 kg·d exposure
- 20-30 eV threshold
- Long range plan:
 - Up to 200 L cell in underground lab
 - O(kg•yr) exposure
 - <10 eV threshold

He projections:

- 1: 1 kg•d, 40 eV
- 2: 1 kg•yr, 10 eV
- 3: 10 kg•yr, 0.1 eV
- 4: 100 kg•ry, 1 meV

