

Baryogenesis via leptonic phase transition

Ye-Ling Zhou, Southampton, 11 Nov 2019

Southampton High Energy Physics

Introduction

Neutrino oscillations

Introduction

Outline

Review of neutrino mass and mixing

Leptogenesis via phase transition

SM (massless neutrinos)

Neutrino oscillations confirmed neutrino masses and lepton mixing

-1

Neutrino masses and lepton mixing

SM + massive neutrinos

Neutrino oscillations

Neutrino oscillations

NuFIT 4.1 (2019)

8		Normal Ord	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 6.2)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
without SK atmospheric data	$\sin^2 \theta_{12}$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	
	$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	
	$\sin^2 heta_{23}$	$0.558\substack{+0.020\\-0.033}$	$0.427 \rightarrow 0.609$	$0.563^{+0.019}_{-0.026}$	$0.430 \rightarrow 0.612$	
	$\theta_{23}/^{\circ}$	$48.3^{+1.1}_{-1.9}$	$40.8 \rightarrow 51.3$	$48.6^{+1.1}_{-1.5}$	$41.0 \rightarrow 51.5$	
	$\sin^2 \theta_{13}$	$0.02241\substack{+0.00066\\-0.00065}$	$0.02046 \rightarrow 0.02440$	$0.02261\substack{+0.00067\\-0.00064}$	$0.02066 \rightarrow 0.02461$	
	$\theta_{13}/^{\circ}$	$8.61^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.99$	$8.65^{+0.13}_{-0.12}$	$8.26 \rightarrow 9.02$	
	$\delta_{ m CP}/^{\circ}$	222^{+38}_{-28}	$141 \rightarrow 370$	285^{+24}_{-26}	$205 \rightarrow 354$	
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV^2}}$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV^2}}$	$+2.523\substack{+0.032\\-0.030}$	$+2.432 \rightarrow +2.618$	$-2.509\substack{+0.032\\-0.030}$	$-2.603 \rightarrow -2.416$	
1.1			7+ PANA			

ZANA A

Origin of neutrino masses

Weinberg Operator

$$\mathcal{L}_W = \frac{\lambda_{\alpha\beta}}{\Lambda} \ell_{\alpha L} H C \ell_{\beta L} H + \text{h.c.}$$

Lepton number violation

Majorana masses

U(1)_{B-L}, Left Right Symm Model, GUT, ...

Origin of lepton flavour mixing

	Continuous	Discrete
Abelian	U(1)	Zn
Non-Abelian	SU(3), SO(3),	A ₄ , S ₄ , T', A ₅ , Δ(48), …

Origin of lepton flavour mixing

Spacetime-varying Weinberg operator

Option 2: varying Yukawa coupling Option 1: varying RH neutrino mass

 ϕ_i

 ϕ_j

 Ψ : vector-like fermion

After the decouple of heavy fermions

$$\mathcal{L}_{W} = \frac{\lambda_{\alpha\beta}}{\Lambda} \ell_{\alpha L} H C \ell_{\beta L} H + \frac{\lambda_{\alpha\beta}^{*}}{\Lambda} \overline{\ell_{\alpha L}} H^{*} C \overline{\ell_{\beta L}} H^{*},$$
$$\lambda_{\alpha\beta} = \lambda_{\alpha\beta}^{0} + \sum_{i=1}^{n} \lambda_{\alpha\beta}^{i} \frac{\phi_{i}}{v_{\phi_{i}}} + \sum_{i,j=1}^{n} \lambda_{\alpha\beta}^{ij} \frac{\phi_{i}}{v_{\phi_{i}}} \frac{\phi_{j}}{v_{\phi_{j}}} + \cdots$$

Assuming phase transition temperature lower than the mass scale of heavy fermions

Spacetime-varying Weinberg operator

Weinberg operator before phase transition

Weinberg operator after phase transition

Baryon-antibaryon asymmetry

Parameter(s)	$\Omega_{ m b} h^2$	$\Omega_{ m c}h^2$	$100\theta_{\rm MC}$	H_0	n _s	$\ln(10^{10}A_{\rm s})$
Base ACDM	0.02237 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.54	0.9649 ± 0.0042	3.044 ± 0.014
<i>r</i>	0.02237 ± 0.00014	0.1199 ± 0.0012	1.04092 ± 0.00031	67.40 ± 0.54	0.9659 ± 0.0041	3.044 ± 0.014
$dn_s/d\ln k$	0.02240 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.53	0.9641 ± 0.0044	3.047 ± 0.015
$dn_s/d\ln k, r$	0.02243 ± 0.00015	0.1199 ± 0.0012	1.04093 ± 0.00030	67.44 ± 0.54	0.9647 ± 0.0044	3.049 ± 0.015
$d^2n_s/d\ln k^2$, $dn_s/d\ln k$.	0.02237 ± 0.00016	0.1202 ± 0.0012	1.04090 ± 0.00030	67.28 ± 0.56	0.9625 ± 0.0048	3.049 ± 0.015
Nor	0.02224 ± 0.00022	0.1179 ± 0.0028	1.04116 ± 0.00043	663 ± 14	0.9589 ± 0.0084	3.036 ± 0.017

Baryogenesis via leptogenesis

Sakharov conditions for leptogenesis

(sphaleron processes)

C/CP violation

Out of equilibrium dynamics

Leptogenesis via RH neutrinos

Classical thermal leptogenesis (in type-I seesaw)

Flavour effects, Resonant leptogenesis, N₂ decay leptogenesis, ...

Pilaftsis, hep-ph/9702393, hep-ph/9707235; Pilaftsis, Underwood, hep-ph/ 0309342; Barbieri, Creminelli, Strumia, Tetradis, hep-ph/9911315; Vives, hepph/0512160; Nardi, Nir, Roulet, Racker, hep-ph/0601084; Abada, Davidson, Josse-Michaux, Losada, Riotto, hep-ph/0601083; Blanchet, Di Bari, hep-ph/ 0607330,

Leptogenesis via RH neutrinos

The "generalised" lepton number $L = L + L_N$ is conserved.

Akhmedov, Rubakov, Smirnov, hep-ph/9803255

Asaka and Shaposhnikov, hep-ph/0505013; Drewes, et al, 1606.06690, 1609.09069; Hernández, et al, 1606.06719; Drewes et al, 1711.02862,

Leptogenesis via leptonic phase transition

Weinberg operator + leptonic phase transition

- 1. Baryogenesis via leptonic CP-violating phase transition S Pascoli, J Turner, YLZ, <u>arXiv:1609.07969</u>
- Leptogenesis via Varying Weinberg Operator: the Closed-Time-Path Approach, J Turner, YLZ, <u>arXiv:1808.00470</u>
- Leptogenesis via Varying Weinberg Operator: a Semi-Classical Approach S Pascoli, J Turner, YLZ, <u>arXiv:1808.00475</u>

Role of Weinberg operator

A consistent Weinberg operator provides two Sakharov conditions

The Weinberg operator violates lepton number and leads to LNV processes in the thermal universe.

 $\begin{array}{ll} H^*H^* \leftrightarrow \ell \ell \,, & \overline{\ell}H^* \leftrightarrow \ell H \,, & \overline{\ell}H^*H^* \leftrightarrow \ell \,, & \text{and their CP-} \\ \overline{\ell} \leftrightarrow \ell H H \,, & H^* \leftrightarrow \ell \ell H \,, & 0 \leftrightarrow \ell \ell H H & \text{conjugate processes} \end{array}$

The Weinberg operator is very weak and can directly provide out of equilibrium dynamics in the early Universe.

CP violation induced by varying Weinberg operator

The coefficient of the Weinberg operator is varying

 Including spacetime-varying effect, the CP violation can be satisfied, and the lepton asymmetry is generated by the interference of the Weinberg operators at different times

$$\Delta f_{\ell_{\alpha}} \propto \operatorname{Im} \left\{ \begin{array}{c} H \\ \ell_{\alpha}^{+} \\ \frac{\ell_{\beta}^{+}}{\Lambda} \end{array} \times \begin{array}{c} \ell_{\beta}^{-} \\ \frac{\lambda_{\alpha\beta}^{*}(t_{1})}{\Lambda} \\ H \end{array} \times \begin{array}{c} \ell_{\alpha}^{-} \\ \frac{\lambda_{\alpha\beta}(t_{2})}{\Lambda} \\ H \end{array} \right\}$$

Lepton asymmetry in Semi-classical approach

In the rest wall frame

• We treating the Higgs as a background field in the thermal bath $\langle H^{0*}H^0 \rangle = \langle H^{+*}H^+ \rangle = \frac{1}{2} \langle H^{\dagger}H \rangle = 2 \int \frac{d^3k}{(2\pi)^3} \frac{1}{2\omega} \frac{1}{e^{\beta\omega} - 1} = \frac{T^2}{12},$

Lepton asymmetry in Semi-classical approach

- The "EOM" of lepton and antilepton $i\partial \ell_L + M_\ell C \overline{\ell_L}^T = 0$
- We further include the decoherence effect is included by replacing the incoming and outgoing momentums

$$k_{\rm in} \to K_{\rm in} = k_{\rm in} + \frac{i}{2L}, \quad k_{\rm out} \to K_{\rm out} = k_{\rm out} - \frac{i}{2L}$$

$$\ell_L = egin{pmatrix} \exp[-i(\omega t - k_{
m in}z)]\chi_{1\ell}(z) \ \exp[-i(\omega t + k_{
m out}z)]\chi_{2\ell}(z) \ 0 \ 0 \ \end{bmatrix} \ \overline{\ell_L}^T = egin{pmatrix} 0 \ 0 \ \exp[+i(\omega t - k_{
m in}z)]\chi_{1ar{\ell}}(z) \ \exp[+i(\omega t - k_{
m out}z)]\chi_{2ar{\ell}}(z) \end{pmatrix}$$

 $L = \frac{1}{6\gamma}$ decoherence length, avoiding interference between infinite distance EOM of lepton-antilepton propagating along the z direction is given by

$$\begin{bmatrix} (-i\partial_z + \omega) \mathbb{1}_2 - \begin{pmatrix} -K_{\rm in} & M_\ell^{\dagger}(z) \\ -M_\ell(z) & -K_{\rm out} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \chi_{1\ell}(z) \\ \chi_{2\bar{\ell}}(z) \end{pmatrix} = 0$$
$$\begin{bmatrix} (-i\partial_z - \omega) \mathbb{1}_2 - \begin{pmatrix} K_{\rm in} & -M_\ell(z) \\ M_\ell^{\dagger}(z) & K_{\rm out} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \chi_{1\bar{\ell}}(z) \\ \chi_{2\ell}(z) \end{pmatrix} = 0$$

 $j_z = +\frac{1}{2}$ $j_z = -\frac{1}{2}$

The semi-classical approximation follows the technique of varying mass for left-right chirality transition developed for electroweak baryogenesis in Huet, Sather, hep-ph/9404302

Lepton asymmetry in Semi-classical approach

In the rest wall frame

The closed-time-path approach

The closed-time-path approach

Propagators

$$\begin{aligned} & t_{1} \quad t_{2} \\ & \text{Feynman } S_{\alpha\beta}^{T}(x_{1}, x_{2}) = \langle T[\ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2})] \rangle \\ & \text{Dyson } S_{\alpha\beta}^{\overline{T}}(x_{1}, x_{2}) = \langle \overline{T}[\ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2})] \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = -\langle \overline{\ell}_{\beta}(x_{2})\ell_{\alpha}(x_{1}) \rangle \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{>}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & \text{Wightman } \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{1})\overline{\ell}_{\beta}(x_{2}) \rangle \\ & S_{\alpha\beta}^{<}(x_{1}, x_{2}) = \langle \ell_{\alpha}(x_{$$

Classical QFT vs CTP formalism

Leptogenesis via RH neutrino oscillation Dr

Drewes, et al, 1711.02862

Self energy including CPV source in CTP formalism

Lepton asymmetry in CTP approach

$$x = \frac{1}{2}(x_1 + x_2) \qquad r = x_1 - x_2$$

Lepton asymmetry in CTP approach

$$\begin{split} \Sigma_{\alpha\beta}^{<,>}(x_1,x_2) &= 3 \times \frac{4}{\Lambda^2} \sum_{\gamma\delta} \lambda_{\alpha\gamma}^*(x_1) \lambda_{\delta\beta}(x_2) \\ &\times \Delta^{>,<}(x_2,x_1) \Delta^{>,<}(x_2,x_1) S_{\gamma\delta}^{>,<}(x_2,x_1) \,, \end{split}$$

Lepton asymmetry

$$\Delta N_\ell = -rac{12}{\Lambda^2}\int d^4x d^4r \, (-i) \mathrm{tr}[\lambda^*(x_1)\lambda(x_2)] \mathcal{M} \, .$$

$$\mathcal{M} = i \int \frac{d^4k}{(2\pi)^4} \frac{d^4k'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} e^{iK \cdot (-r)} \left\{ \Delta_q^<(x) \Delta_{q'}^<(x) \operatorname{tr}[S_k^<(x)S_{k'}^<(x)] - \Delta_q^>(x) \Delta_{q'}^>(x) \operatorname{tr}[S_k^>(x)S_{k'}^>(x)] \right\}$$

The final lepton asymmetry is determined by the behaviour of Weinberg operator during the phase transition and thermal properties of leptons and the Higgs.

Influence of phase transition

Influence of phase transition

Multi-scalar phase transition (in the thick-wall limit)

$$\Theta.\mathsf{g.}, \qquad \lambda(x) = \lambda^0 + \lambda^1 f_1(x) + \lambda^2 f_2(x)$$

 $\operatorname{Im}\{\operatorname{tr}[\lambda^*(x_1)\lambda(x_2)]\} = \operatorname{Im}\{\operatorname{tr}[\lambda^0\lambda^{1*}]\}[f_1(x_1) - f_1(x_2)] + \operatorname{Im}\{\operatorname{tr}[\lambda^0\lambda^{2*}]\}[f_2(x_1) - f_2(x_2)]$

+Im{tr[$\lambda^{1*}\lambda^{2}$]}[f_1(x_1)f_2(x_2) - f_1(x_2)f_2(x_1)]

Interferences of different scalar VEVs cannot be neglected.

$$\int d^4 r \operatorname{Im}\{\operatorname{tr}[\lambda^*(x_1)\lambda(x_2)]\}\mathcal{M} = \int d^4 r \operatorname{Im}\{\operatorname{tr}[\lambda^*(x+r/2)\lambda(x-r/2)]\}\mathcal{M}$$
$$\approx \operatorname{Im}\{\operatorname{tr}[\lambda^*(x)\partial_\mu\lambda(x)]\}\int d^4 r r^\mu \mathcal{M}.$$
$$\Delta n_\ell^{\mathrm{I}} \propto \operatorname{Im}\{\operatorname{tr}[\lambda^*(x)\partial_t\lambda(x)]\}\int d^4 r r^0 \mathcal{M}$$
 time-dependent integration

 $\Delta n_{\ell}^{\mathrm{II}} \propto \mathrm{Im}\{\mathrm{tr}[\lambda^*(x)\partial_z\lambda(x)]\} \int d^4r \, r^3 \, \mathcal{M} \text{ space-dependent integration}$

Time derivative/spatial gradient

Influence of thermal effects

Thermal effects influence the timeand space-dependent integration.

$$\int d^4 r \, r^3 \, \mathcal{M}$$

 $\mathcal{M} = i \int \frac{d^4k}{(2\pi)^4} \frac{d^4k'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} e^{iK \cdot (-r)} \left\{ \Delta_q^<(x) \Delta_{q'}^<(x) \mathrm{tr}[S_k^<(x) S_{k'}^<(x)] - \Delta_q^>(x) \Delta_{q'}^>(x) \mathrm{tr}[S_k^>(x) S_{k'}^>(x)] \right\}$

Resummed propagators of the Higgs and leptons

By assuming thermal equilibrium in the rest frame of plasma, the space-dependent integration is zero.

$$\mathcal{M} \quad \frac{\text{is invariant under parity transformation}}{r \to r^P = (r^0, -\mathbf{r}), \quad k_n \to k_n^P = (k_n^0, -\mathbf{k}_n)} \Longrightarrow \int d^4r \, r^3 \, \mathcal{M} = 0$$

Influence of thermal effects

Performing the time-dependent integration

From 4D momentum space to 3D momentum space + 1D time

$$\begin{aligned} \Delta_{\mathbf{q}}^{<,>}(t_{1},t_{2}) &= \int \frac{dq^{0}}{2\pi} e^{-iq^{0}y} \Delta_{q}^{<,>} = \frac{\cos(\omega_{\mathbf{q}}y^{\mp})}{2\omega_{\mathbf{q}}\sinh(\omega_{\mathbf{q}}\beta/2)} e^{-\gamma_{H,\mathbf{q}}|y|}, \qquad y = r^{0} \\ S_{\mathbf{k}}^{<,>}(t_{1},t_{2}) &= \int \frac{dk^{0}}{2\pi} e^{-ik^{0}y} S_{k}^{<,>} = -P_{L} \frac{\gamma^{0}\cos(\omega_{\mathbf{k}}y^{\mp}) + i\vec{\gamma}\cdot\hat{\mathbf{k}}\sin(\omega_{\mathbf{k}}y^{\mp})}{2\cosh(\omega_{\mathbf{k}}\beta/2)} e^{-\gamma_{\ell,\mathbf{k}}|y|}, \qquad y^{-} = y - i\beta/2 \end{aligned}$$

Integrating out the time

$$\omega_{f q}~=~\sqrt{m_{H,{
m th}}^2+{f q}^2},~\omega_{f k}~=~\sqrt{m_{\ell,{
m th}}^2+{f k}^2}~~{
m and}~~\hat{f k}~\equiv~{f k}/\omega_{f k}$$

Influence of thermal effects

Leptogenesis via Weinberg operator (in CTP approach)

Lepton models vs neutrino experiments

In the single-scalar case

determined by symmetries (Discrete, U(1), SO(3), SO(10)...) and order of scalars getting vevs nu oscillation exp: DUNE, T2HK, ...

0v2β exp: Gerda, EXO-200, KamLAND-Zen

Temperature for phase transition

Summary

- I give a brief review of neutrino mass and mixing. Models related to these issues usually introduces new symmetries, which may result in a spacetime-varying Weinberg operator.
- I introduce a novel mechanism of leptogenesis via phase transition. No explicit new particles are required, but just a spacetime-varying Weinberg operator.
- In order to generate enough baryon-antibaryon asymmetry, the temperature for phase transition is roughly around 10¹¹ GeV.

Thank you very much!