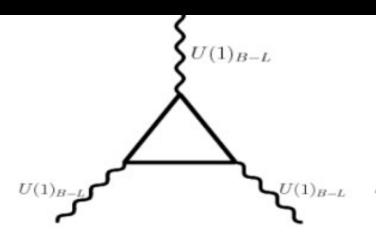
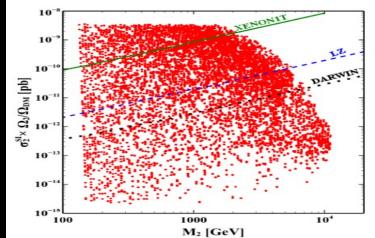

Two-component dark matter in a new B-L model



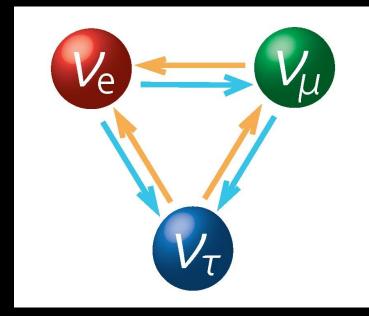
Based on 1808.03352 (PRD) by Bernal, Restrepo, Yaguna and Zapata

Carlos E. Yaguna UPTC, Tunja, Colombia 2019

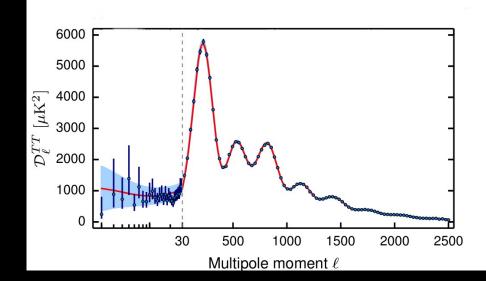
I will discuss a new extension of the Standard Model by a $U(1)_{B-L}$ symmetry


1. Motivation

2. The model


ξ_L	10/7	(1, 1, 0)
η_R	-4/7	$({f 1},{f 1},0)$
ζ_R	-2/7	$({f 1},{f 1},0)$
χ_L	-9/7	(1, 1, 0)

3. DM Predictions



Currently there is solid evidence of physics beyond the Standard Model

Neutrino oscillations have been observed

Dark matter has been detected

What we do not know yet is what this new physics looks like

SUSY does not seem to be the answer

Different models for neutrino masses

Several possible DM candidates

No signals at the LHC

Seesaws, loops, symmetries, ...

Wimps, axions, scalars, v_s,... Baryon number (B) and Lepton number (L) are accidental symmetries of the SM

They are conserved automatically

No proton decay

Can they be gauged?

They are both anomalous

B-L is almost free of anomalies

Easier to gauge!

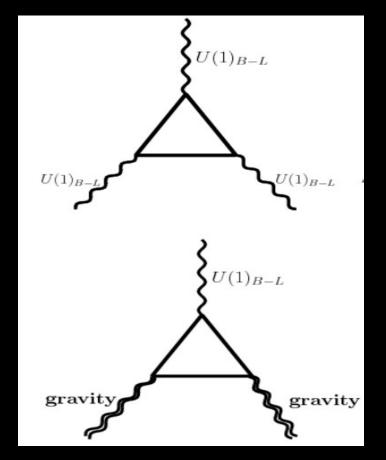
Models extended with a U(1)_{B-L} are a compelling alternative for new physics

They allow to explain neutrino masses

e.g. via the seesaw

DM candidates can be incorporated

Fermion or Scalar


They include a new gauge boson (Z')

Signals at the LHC LEP: $M_{z}/g_{BL} > 7$ TeV

These models require new fermions to cancel the gauge anomalies

They must be SM singlets

But their number is not fixed

Infinite solutions are possible

$$\sum Y_{B-L} = -3, \ \sum Y_{B-L}^3 = -3$$

The simplest way to cancel the B-L anomalies is to add three v_{R}

Each of them has L = 1

$$\sum Y_{B-L} = -3, \ \sum Y_{B-L}^3 = -3$$

v masses can be easily explained

What about dark matter?

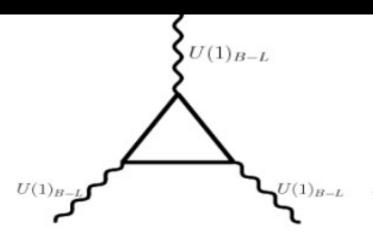
Majorana or Dirac

Vector-like fermion or a scalar

The B-L anomaly conditions can also be satisfied in other ways

With 3 fields another solution is -4,-4,5

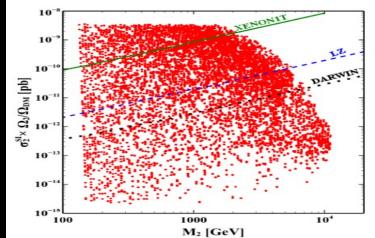
Several v mass models


A 4-field solution is: -4/3,-2/3,-2/3,-1/3

It easily leads to DM

Could DM and v masses be related by the anomaly conditions?

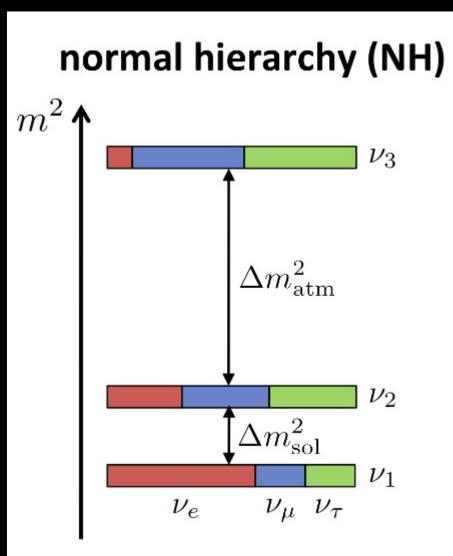
I will discuss a new extension of the Standard Model by a $U(1)_{B-L}$ symmetry


1. Motivation

2. The model

ξ_L	10/7	(1, 1, 0)
η_R	-4/7	$({f 1},{f 1},0)$
ζ_R	-2/7	$({f 1},{f 1},0)$
χ_L	-9/7	(1, 1, 0)

3. DM Predictions



Current neutrino data is consistent with just two massive neutrinos

A seesaw with 2 RH v's is viable

But they do not cancel the anomalies

The extra fermions explain the DM

We propose to cancel the anomalies with RH neutrinos and DM particles

Only 2 RH neutrinos are needed

And 4 fermions with fractional charges

Two new scalar fields are also needed

Particles	$U(1)_{B-L}$	$(SU(3)_c, SU(2)_L, U(1)_Y)$
Q_{Li}	1/3	(3 , 2 , 1/6)
u_{Ri}	1/3	$(\overline{3}, 1, 2/3)$
d_{Ri}	1/3	$\left(\overline{3}, 1, -1/3\right)$
L_i	-1	(1 , 2 , -1/2)
e_{Ri}	-1	(1, 1, -1)
N_{R1}	-1	(1, 1, 0)
N_{R2}	-1	(1, 1, 0)
ξ_L	10/7	(1, 1, 0)
η_R	-4/7	(1, 1, 0)
ζ_R	-2/7	(1, 1, 0)
χ_L	-9/7	(1, 1, 0)
Н	0	(1 , 2 , 1/2)
ϕ_1	1	(1, 1, 0)
ϕ_2	2	(1, 1, 0)

In this model v's are Majorana particles and the lightest one is massless

It is a seesaw with two RH neutrinos

And with M_{R} at the TeV scale

This is consistent with current data

$$m_{\nu} = -\frac{v^2}{2} \, y \, M_R^{-1} \, y^T$$

 $M_{R} \sim M_{DM} \sim \langle \Phi_{2} \rangle$ Low-scale seesaw

And testable

This model automatically includes two dark matter particles

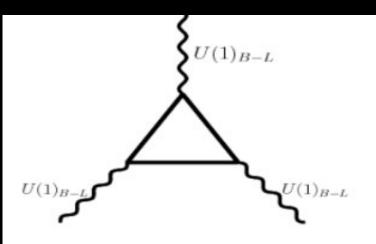
The 4 fermions form 2 Dirac particles

$$\mathcal{L} \supset -a \,\overline{\xi_L} \,\eta_R \,\phi_2 - b \,\overline{\zeta_R} \,\chi_L \,\phi_1$$

Both are neutral and stable

A two-component DM scenario is realized

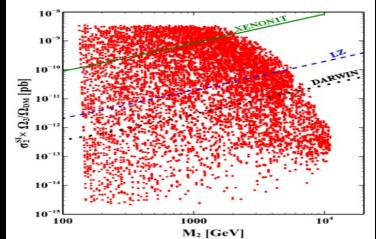
Two DM particles


Without any discrete symmetries

The model is quite simple in terms of particles and free parameters

Sector	Particles	Free Parameters
Gauge	1 (Z')	3 (Μ _{z'} , g _{BL} ,ε)
Neutrino	2 (N _{R1,2})	11 (M _{R1,2} , 9 Yukawas)
Dark Matter	2 (Ψ _{1,2})	2 (M _{1,2})
Scalar	3 (H _{1,2} , A)	5 (M _{H1,2} , M _A , θ, tanβ)

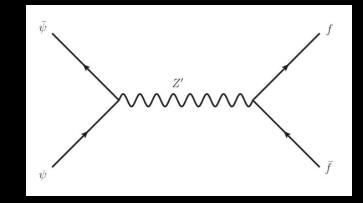
I will discuss a new extension of the Standard Model by a $U(1)_{B-L}$ symmetry


1. Motivation

2. The model

ξ_L	10/7	(1, 1, 0)
η_R	-4/7	$({f 1},{f 1},0)$
ζ_R	-2/7	$({f 1},{f 1},0)$
χ_L	-9/7	(1, 1, 0)

3. DM Predictions

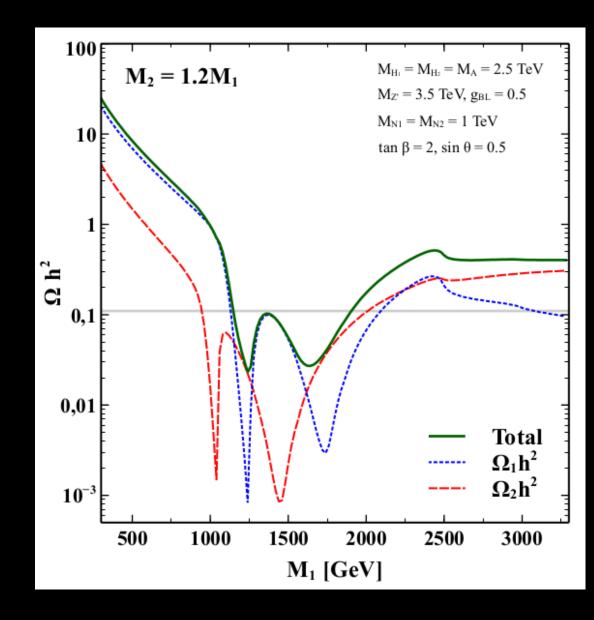


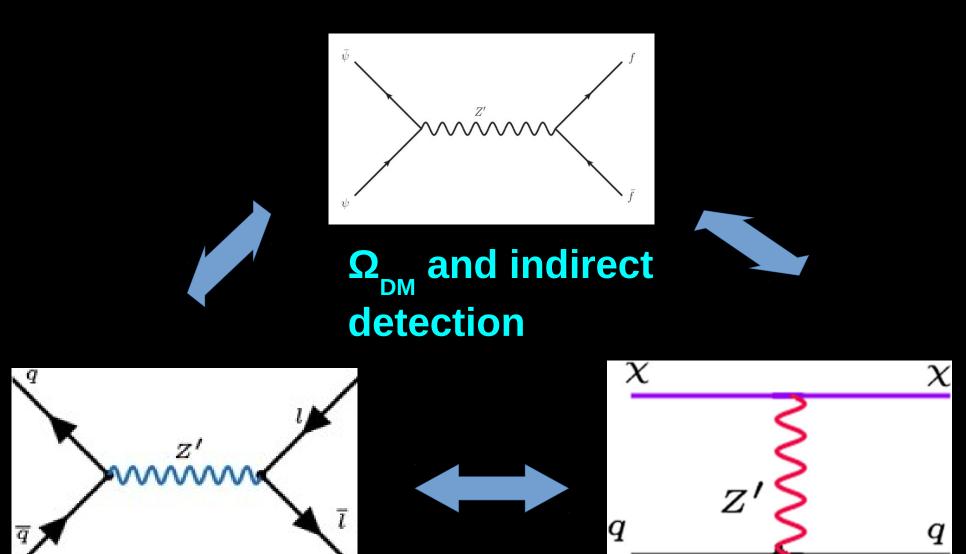

Both dark matter particles are WIMPs

DM annihilates into different final states

They may be enhanced resonantly

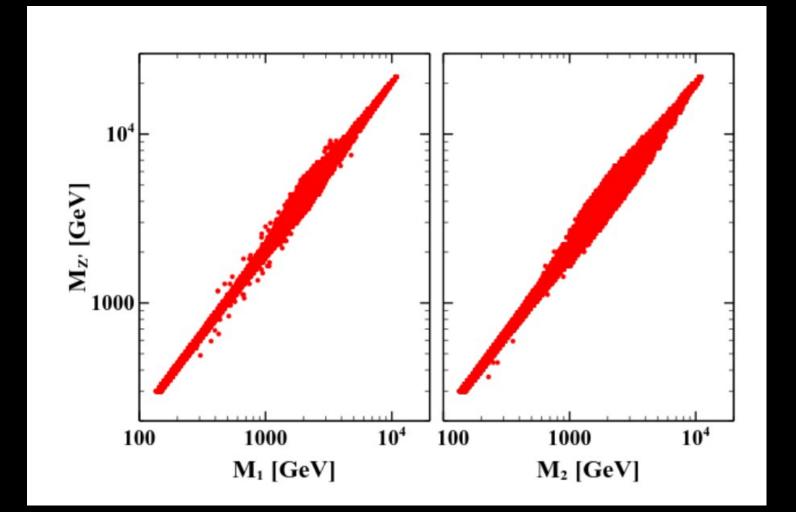
Gauge and Yukawa couplings play a role




The observed dark matter density can be dominated by any of the two particles

Both DM particles contribute to Ω

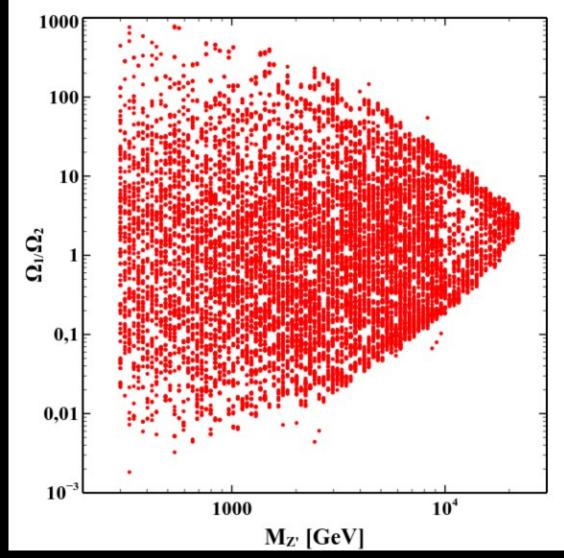
Their contributions vary significantly


Interesting correlations are expected for DM annihilations mediated by the Z'

Signals at the LHC

Direct detection

Viable models feature dark matter masses as high as 11 TeV

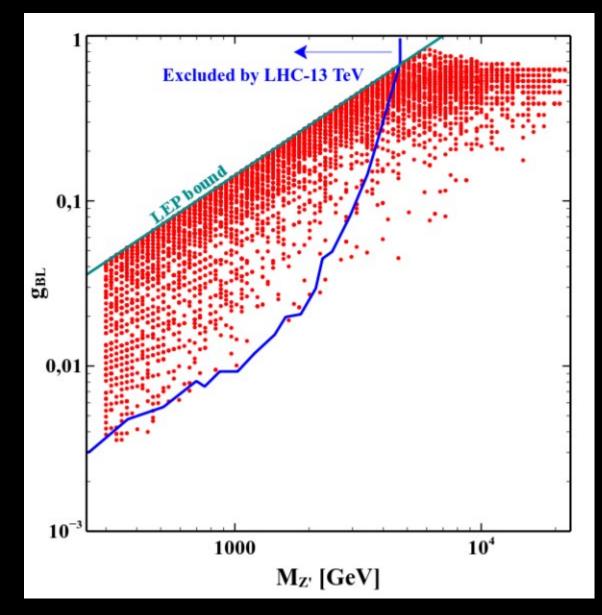

The Z' resonance is preferred

The Z' mass may reach 22 TeV

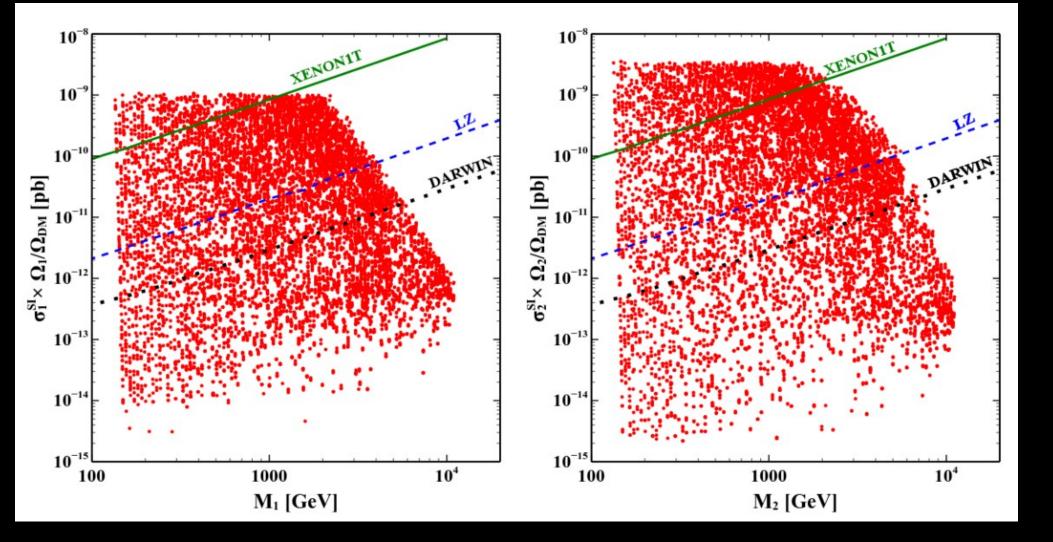
For viable models, Ω_1 and Ω_2 are of the same order at large dark matter masses

At low M_{DM} , Ω_1/Ω_2 varies over a wide range

At high M_{DM} , Ω_1/Ω_2 tends to about 3



The LHC data severely restricts the low mass region of this model


Di-lepton bounds are very constraining

Models with M_z,< 5 TeV are nearly excluded

Viable models feature M_{DM} > 2.5 TeV

Future direct detection experiments will probe many viable models

We proposed an appealing extension of the SM based on the B-L gauge symmetry

It gives rise to a rich phenomenology

It contains two DM particles

It is being probed by current experiments

Particles	$U(1)_{B-L}$	$(SU(3)_c, SU(2)_L, U(1)_Y)$
Q_{Li}	1/3	(3 , 2 , 1/6)
u_{Ri}	1/3	$(\overline{3}, 1, 2/3)$
d_{Ri}	1/3	$\left(\overline{3},1,-1/3 ight)$
L_i	-1	(1 , 2 , -1/2)
e_{Ri}	-1	(1, 1, -1)
N_{R1}	-1	(1, 1, 0)
N_{R2}	-1	(1, 1, 0)
ξ_L	10/7	(1, 1, 0)
η_R	-4/7	(1, 1, 0)
ζ_R	-2/7	(1, 1, 0)
χ_L	-9/7	(1, 1, 0)
Н	0	(1 , 2 , 1/2)
ϕ_1	1	(1, 1, 0)
ϕ_2	2	(1, 1, 0)