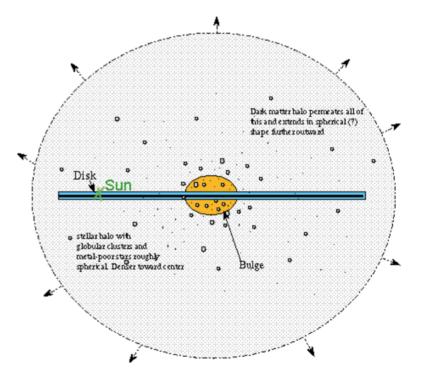

Models of neutrino masses and dark matter

Based on JCAP 1304 (2013) 044 and 1308.3655 (JHEP)

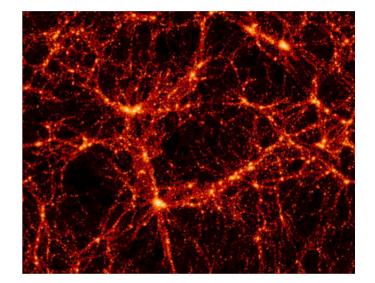
> Carlos E. Yaguna Münster University 2013


Observations indicate that a large fraction of the matter in the Universe is not visible

It is observed via gravitational interactions

Proven principle \longrightarrow e.g. Neptune discovery

The Sun moves faster than expected


Something similar happens in other galaxies

Dark matter accounts for about 25% of the energy-density of the Universe

Additional evidence for DM comes from

Galaxy clusters Large Scale Structure Anisotropies in the CMB

The DM density is obtained from CMB data

 $\Omega_{dm} = 0.25$ $\Omega_{atoms} = 0.05$ The existence of dark matter is a clear indication of physics beyond the SM

DM candidates should be neutral and stable

Neutrinos cannot explain the dark matter

The SM contains no dark matter candidates

Neutrinos?

 $\Omega_
u \ll \Omega_{dm}$ u's are hot dm

New Physics !

Recent experiments demonstrated that neutrinos have non-zero masses

The flavor or a neutrino can oscillate

 $u_{lpha}
ightarrow
u_{eta}$ Solar, atm, reactor

Oscillation parameters are already known

Physics beyond the SM is required

$$\Delta m^2_{ij}$$
, $heta_{ij}$

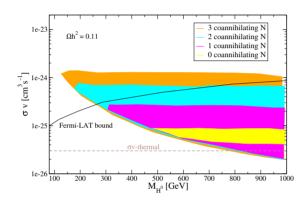
??

Most models try to address only one of these two issues

Many scenarios could account for the DM

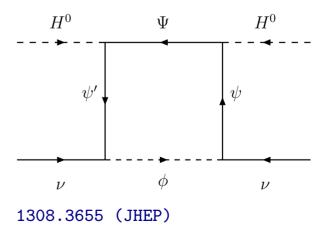
SUSY, UED, minimal models

Different mechanisms might explain ν masses


Could dark matter and M_{ν} be related?

Seesaw, loops, flavor symmetries

Can both be explained by physics at the TeV scale?


I will discuss models that simultaneously address dark matter and ν masses

1. A particular example

JCAP 1304 (2013) 044

2. Many additional models

The best known model of neutrino masses and dark matter is the radiative seesaw

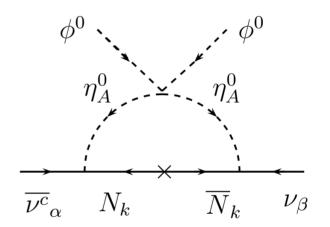
It contains only two new fields

Ma, 2006 $H_2 = \left(egin{array}{c} H^{\pm} \ H^0 + A^0 \end{array}
ight)$, N_i

They are odd under a Z_2 symmetry

It has a very rich phenomenology

To prevent FCNC To stabilize the dm


Many studies: dm, ν , collider

In this model, neutrino masses are generated radiatively at the 1-loop level

No Dirac mass term for L, N_i

Neutrinos acquire masses at 1-loop

Small M_{ν} even for N_i, H_2 at the TeV scale Due to the Z_2 N_i is not a ν_R

Without tiny couplings

In this model, the dark matter particle can be a scalar or a fermion

It contains two dark matter candidates

 H^0 : gauge, scalar, Yukawa N_1 : Only Yukawa int.

 Ω_{N_1} tends to be larger than Ω_{dm}

Large Yukawa couplings Constraints from $\mu \to e \gamma$

 Ω_{H^0} tends to be smaller than Ω_{dm}

 $H^0 H^0 \rightarrow W^+ W^-$ Similar to the Inert Higgs For scalar dark matter the known viable regions feature $M_{H^0} > 500$ GeV

To compensate for the large value of $\langle \sigma v \rangle$

True for the Inert Higgs

The scalar mass splitting has to be small

$$\begin{split} M_{A^0} - M_{H^0} \ll M_{A^0} \\ M_{H^\pm} - M_{H^0} \ll M_{H^\pm} \end{split}$$

Can we make the region $M_{H^0} < 500~{\rm GeV}$ viable?

With N_i coannihilations?

Coannihilations effects may decrease or increase the predicted relic density

They are relevant for small mass splittings

 $egin{aligned} \chi_1\chi_1 & o SM \ \chi_1\chi_2 & o SM, \chi_2\chi_2 & o SM \end{aligned}$

If $\langle \sigma v \rangle_{11} \ll \langle \sigma v \rangle_{22}$ coann. tend to decrease Ωh^2

Bino-like neutralino in SUSY

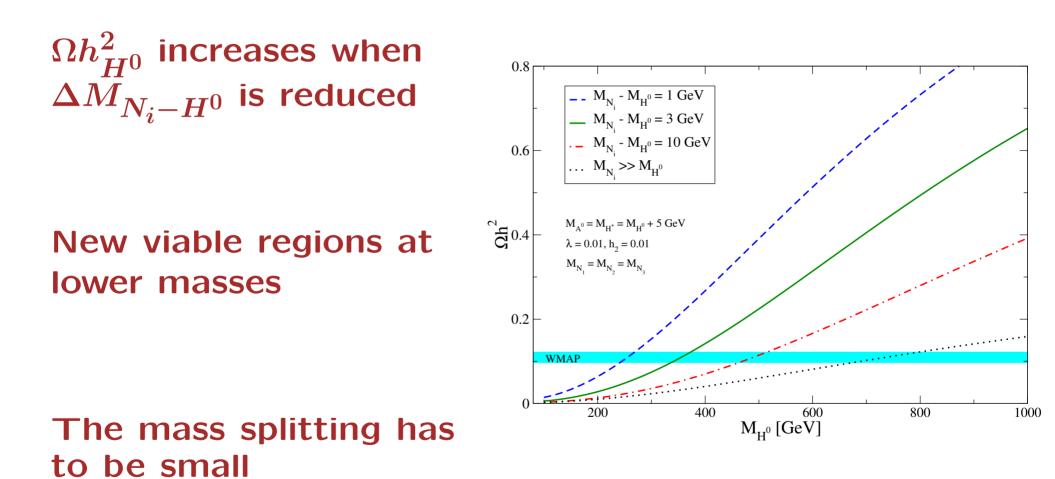
If $\langle \sigma v \rangle_{11} \gg \langle \sigma v \rangle_{22}$ coann. tend to increase Ωh^2

e.g. UED

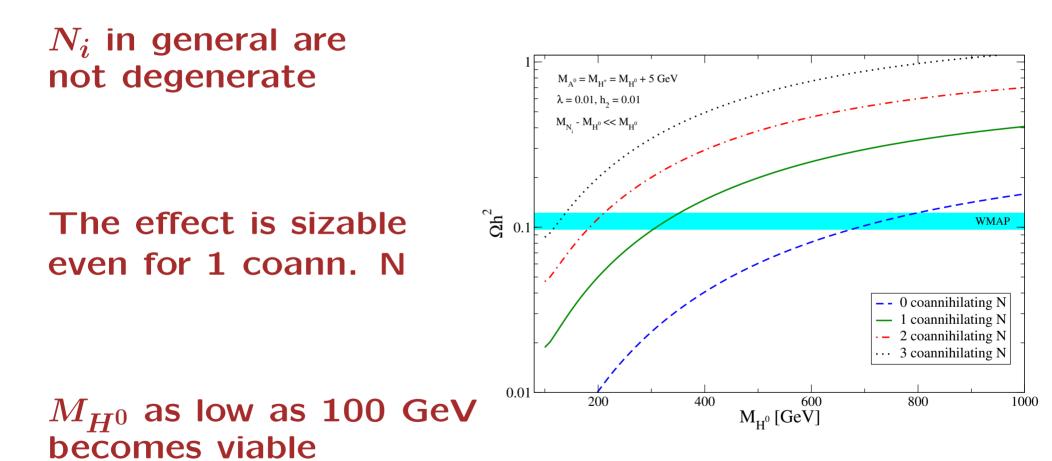
In the radiative seesaw model it naturally happens that $\langle \sigma v \rangle_{H^0 H^0} \gg \langle \sigma v \rangle_{NN}$

 $\langle \sigma v \rangle_{H^0 H^0}$ is determined by gauge interactions

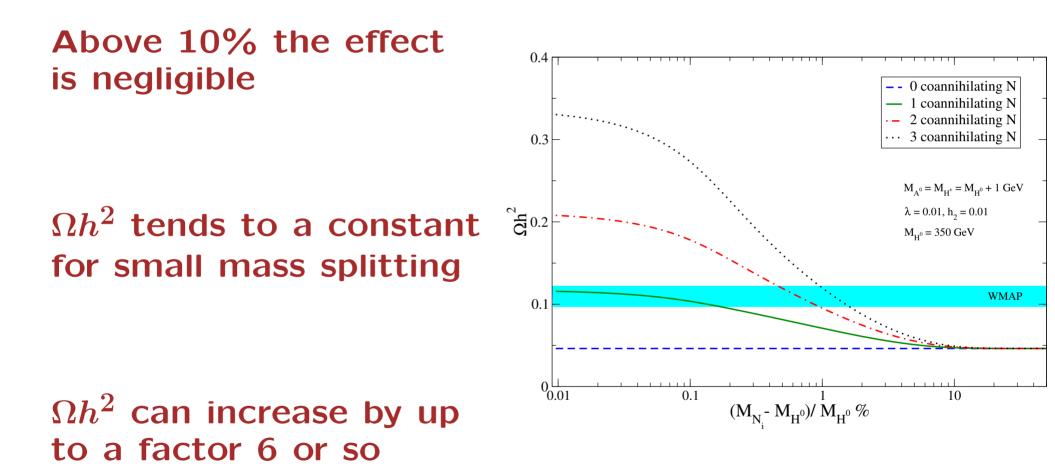
 $H^0 H^0 o W^+ W^-$

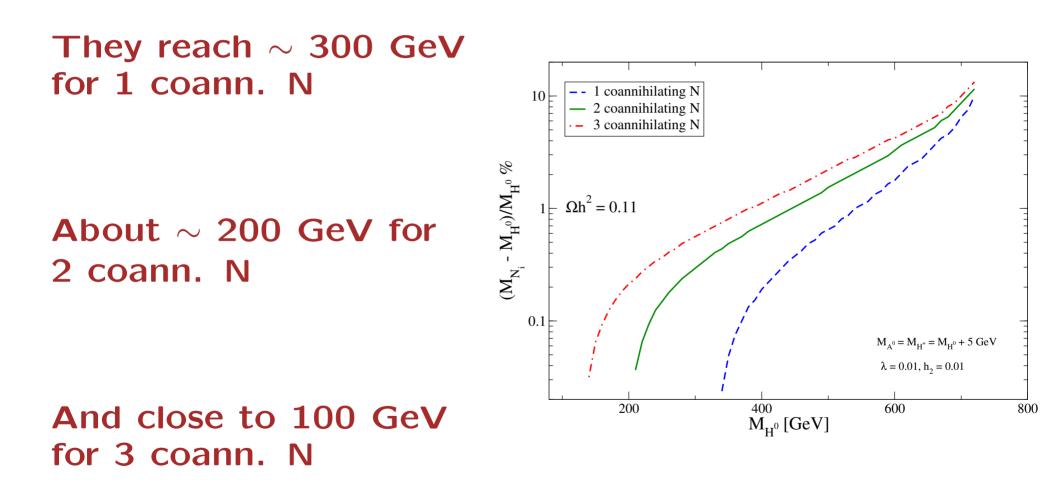

 $\langle \sigma v \rangle_{NN,H^0N}$ are determined by new Yukawa couplings

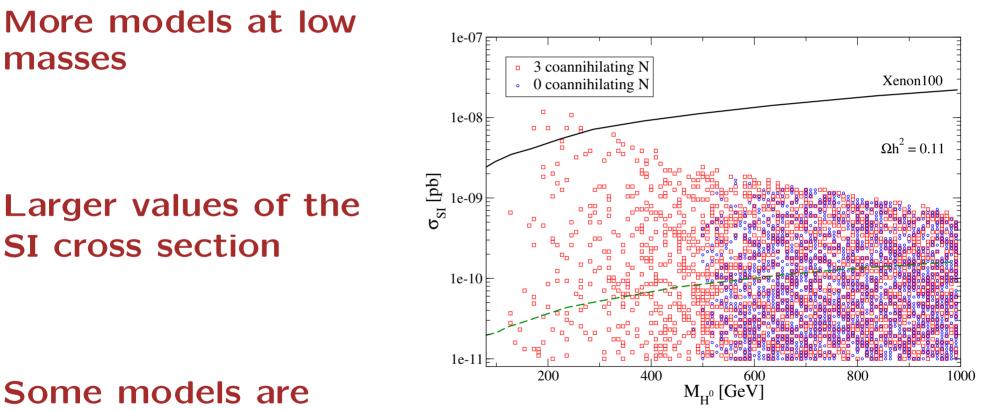
 $h_{ij}ar{L}_i N_j H_2^\dagger$


 h_{ij} are constrained to be small

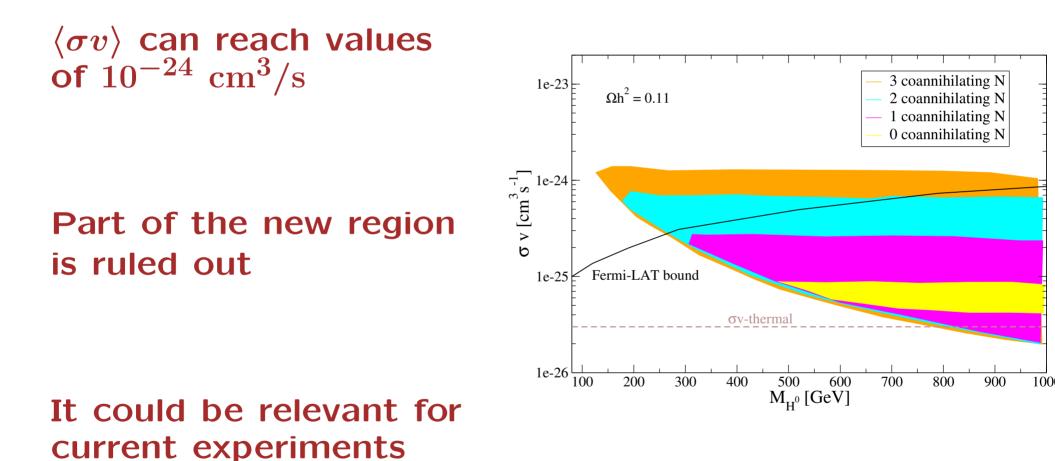
by neutrino masses by $\mu \to e \gamma$


The relic density depends on the $H^0 - N_i$ mass splitting

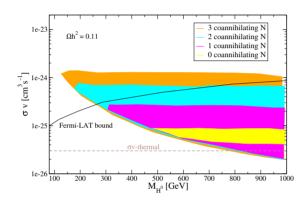

The relic density depends also on the number of coannihilating fermions


A mass degeneracy below 10% is required to obtain significant effects

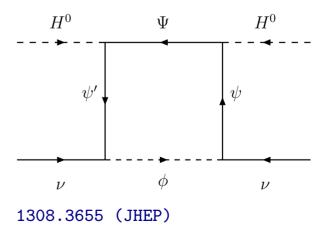
The viable regions now include dark matter masses below 500 GeV



These effects have important implications for dark matter direct detection


already excluded

The annihilation rate today can be much larger than naively expected


I will discuss models that simultaneously address dark matter and ν masses

1. A particular example

JCAP 1304 (2013) 044

2. Many additional models

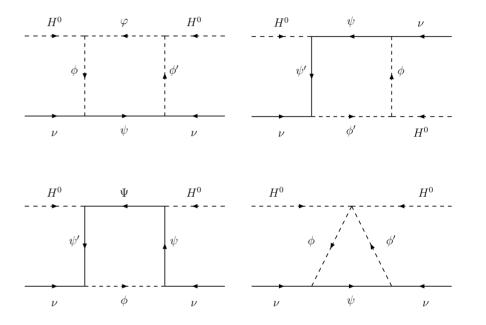
We want to find other models analogous to the radiative seesaw

New particles at the TeV scale

Few of them Small reps

That can account for the dark matter

dm is a WIMP stabilized by a Z_2


 M_{ν} appears at the 1-loop level

Our starting point

The possible 1-loop realizations of the Weinberg operator are already known

Only 4 different topologies exist

The new fields transform as 1, 2 or 3 of SU(2)

Bonnet, Hirsch, Ota, Winter (2012)

They give rise to \sim 30 new field configurations

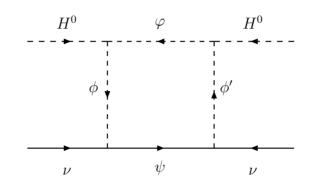
Modulo the hypercharge

We have obtained the full list of minimal models of ν masses and dark matter

All new fields are odd under a Z_2

DM stability

The spectrum should contain a neutral particle

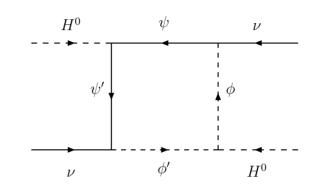

 $Y = -2T_3$ Few viable possibilities

It must be consistent with current experiments

 $\Omega h^2 \rightarrow$ TeV masses Direct detection bounds

We found 12 models compatible with dark matter within the T1-1 topology

All of them allow for scalar dm

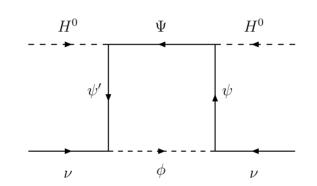


Only four admit fermionic dm

Model	Fields	α	Fermionic		Scalar		Exotic	# of
			DM	DD	DM	DD	Charges	N'plets
Τ11Λ	$1^{S}_{\alpha}, 2^{S}_{\alpha-1}, 1^{F}_{\alpha}, 2^{S}_{\alpha+1}$	± 2	×	×	$2_{\pm 1}$	\checkmark	\checkmark	4
11-1-1		0	1_0	\checkmark	$1_0, 2_{\pm 1}$	\checkmark	×	3
T1-1-B	$1^{S}_{\alpha}, 2^{S}_{\alpha-1}, 3^{F}_{\alpha}, 2^{S}_{1+\alpha}$	± 2	$3_{\pm 2}$	×	$2_{\pm 1}$	\checkmark	\checkmark	4
11-1-D		0	3_0	\checkmark	$1_0, 2_{\pm 1}$	\checkmark	×	3
T1-1-C	$2^{S}_{\alpha}, 1^{S}_{\alpha-1}, 2^{F}_{\alpha}, 1^{S}_{1+\alpha}$	± 1	$2_{\pm 1}$	×	$1_0, 2_{\pm 1}$	\checkmark	\checkmark	4
T1-1-D	$2^{S}_{\alpha}, 1^{S}_{\alpha-1}, 2^{F}_{\alpha}, 3^{S}_{1+\alpha}$	1	2_1	×	$1_0, 2_1, 3_2$	\checkmark	\checkmark	4
		-1	2_{-1}	×	$2_{-1}, 3_0$	\checkmark	×	4
T1-1-F	$2^{S}_{\alpha}, 3^{S}_{\alpha-1}, 2^{F}_{\alpha}, 3^{S}_{1+\alpha}$	± 1	$2_{\pm 1}$	×	$2_{\pm 1}, 3_0, 3_{\pm 2}$	\checkmark	\checkmark	4
T1-1-G	$3^{S}_{\alpha}, 2^{S}_{\alpha-1}, 1^{F}_{\alpha}, 2^{S}_{1+\alpha}$	± 2	×	×	$2_{\pm 1}, 3_{\pm 2}$	\checkmark	\checkmark	4
		0	1_0	\checkmark	$2_{\pm 1}, 3_0$	\checkmark	×	3
T1_1_H	$3^{S}_{\alpha}, 2^{S}_{\alpha-1}, 3^{F}_{\alpha}, 2^{S}_{1+\alpha}$	± 2	$3_{\pm 2}$	×	$2_{\pm 1}, 3_{\pm 2}$	\checkmark	\checkmark	4
11-1-11		0	3_0	\checkmark	$2_{\pm 1}, 3_0$	\checkmark	×	3

Within the T1-2 topology, 8 models are compatible with dark matter

All models admit scalar dm

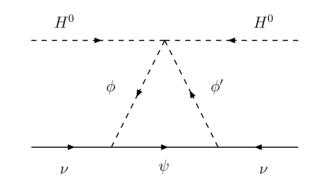


Four allow for fermionic dm

Model	Fields	α	Fermionic		Scalar		Exotic	# of
			DM	DD	DM	DD	Charges	N'plets
T1-2-A	$1^{F}_{\alpha}, 2^{S}_{1+\alpha}, 1^{S}_{\alpha}, 2^{F}_{1+\alpha}$	0	$1_0, 2_1$	\checkmark	$1_0, 2_1$	\checkmark	×	4
		-2	2_{-1}	×	2_{-1}	\checkmark	×	4
T1-2-B	$1^F_{\alpha}, 2^S_{1+\alpha}, 3^S_{\alpha}, 2^F_{1+\alpha}$	0	$1_0, 2_1$	\checkmark	$2_1, 3_0$	\checkmark	×	4
		-2	2_{-1}	×	$2_{-1}, 3_{-2}$	\checkmark	\checkmark	4
T1-2-D	$2^{F}_{\alpha}, 1^{S}_{1+\alpha}, 2^{S}_{\alpha}, 3^{F}_{1+\alpha}$	1	$2_1, 3_2$	×	2_{1}	\checkmark	\checkmark	4
		-1	$2_{-1}, 3_0$	\checkmark	$1_0, 2_{-1}$	\checkmark	×	4
T1-2-F	$2^{F}_{\alpha}, 3^{S}_{1+\alpha}, 2^{S}_{\alpha}, 3^{F}_{1+\alpha}$	1	$2_1, 3_2$	×	$2_1, 3_2$	\checkmark	\checkmark	4
		-1	$2_{-1}, 3_0$	\checkmark	$2_{-1}, 3_0$	\checkmark	×	4

We found 8 models from the T1-3 topology that are consistent with dark matter

All models admit scalar dm



All allow for fermionic dm

Model	Fields	α	Fermioni	Scalar		Exotic	# of	
			DM	DD	DM	DD	Charges	N'plets
T1-3-A	$1^{F}_{\alpha}, 2^{F}_{1+\alpha}, 1^{S}_{\alpha}, 2^{F}_{\alpha-1}$	0	$1_0, 2_{\pm 1}$	\checkmark	10	\checkmark	×	3
T1-3-B	$1^{F}_{\alpha}, 2^{F}_{1+\alpha}, 3^{S}_{\alpha}, 2^{F}_{\alpha-1}$	0	$1_0, 2_{\pm 1}$	\checkmark	3_0	\checkmark	×	3
T1-3-C	$2^{F}_{\alpha}, 1^{F}_{1+\alpha}, 2^{S}_{\alpha}, 1^{F}_{\alpha-1}$	± 1	$1_0, 2_{\pm 1}$	\checkmark	2_1	\checkmark	×	4
T1-3-D	$2^{F}_{\alpha}, 1^{F}_{1+\alpha}, 2^{S}_{\alpha}, 3^{F}_{\alpha-1}$	1	$2_1, 3_0$	\checkmark	2_1	\checkmark	×	4
		-1	$1_0, 2_{-1}, 3_{-2}$	\checkmark	2_{-1}	\checkmark	\checkmark	4
T1-3-F	$2^{F}_{\alpha}, 3^{F}_{1+\alpha}, 2^{S}_{\alpha}, 3^{F}_{\alpha-1}$	± 1	$2_{\pm 1}, 3_0, 3_{\pm 2}$	\checkmark	$2_{\pm 1}$	\checkmark	\checkmark	4
T1-3-G	$3^{F}_{\alpha}, 2^{F}_{1+\alpha}, 1^{S}_{\alpha}, 2^{F}_{\alpha-1}$	0	$2_{\pm 1}, 3_0$	\checkmark	1_0	\checkmark	×	3
Т1-3-Н	$3^{F}_{\alpha}, 2^{F}_{1+\alpha}, 3^{S}_{\alpha}, 2^{F}_{\alpha-1}$	0	$2_{\pm 1}, 3_0$	\checkmark	3_0	\checkmark	×	3

Within the T3 topology, 7 models were found to be consistent with dark matter

All models allow scalar dm

Only two admit fermionic dm

Model	Fields	α	Fermionic		Scalar		Exotic	# of
	r ieius		DM	DD	DM	DD	Charges	N'plets
Т3-А	$1^{S}_{\alpha}, 3^{S}_{2+\alpha}, 2^{F}_{1+\alpha}$	0	2_1	×	$1_0, 3_2$	\checkmark	\checkmark	3
		-2	2_{-1}	×	3_0	\checkmark	×	3
Т3-В	$2^S_{\alpha}, 2^S_{2+\alpha}, 1^F_{1+\alpha}$	1, -3	×	×	$2_{\pm 1}$	\checkmark	\checkmark	3
		-1	1_0	\checkmark	$2_{\pm 1}$	\checkmark	×	2
Т3-С	$2^S_{\alpha}, 2^S_{2+\alpha}, 3^F_{1+\alpha}$	1, -3	$3_{\pm 2}$	×	$2_{\pm 1}$	\checkmark	\checkmark	3
		-1	3_0	\checkmark	$2_{\pm 1}$	\checkmark	×	2
T3-E	$3^{S}_{\alpha}, 3^{S}_{2+\alpha}, 2^{F}_{1+\alpha}$	0, -2	$2_{\pm 1}$	×	$3_0, 3_{\pm 2}$	\checkmark	\checkmark	3

These models of ν masses and dm offer an interesting approach to physics BSM

They address two pressing problems

 M_{ν} at 1-loop DM is an SU(2) n-plet

They are minimal and testable

Most of them have not been studied

Few new fields, a Z_2 $M \sim \text{TeV} \rightarrow \text{LHC}$

Work in progress