BSM physics in neutrino scattering¹

Xun-Jie Xu^a

^aMax-Planck-Institut für Kernphysik, Heidelberg

Joint seminar of ITP and MPIK, November 30, 2017.

¹Based on 1612.04150, 1702.05721, in collaboration with Manfred Lindner, Werner Rodejohann and Carlos Yaguna. Introduction to neutrino scattering Coherent v-nucleus scattering Dirac/Majorana neutrinos with new interactions

Outline

Introduction to neutrino scattering

- What
- Why
- How

2 Coherent v-nucleus scattering

- Concept
- Constraints on NSI and SPVAT

3 Dirac/Majorana neutrinos with new interactions

- Distinguish Dirac/Majorana in v scattering
- Experimental constraints

Introduction to neutrino scattering Coherent v-nucleus scattering Dirac/Majorana neutrinos with new interactions What Why How

What is neutrino scattering?

 $v + X \rightarrow \cdots +$ (observable final states)

- $X = e^{-}$, proton, neutron, nucleus (e.g. Ge, Xe, O,).
- Intensive neutrino sources and large detectors.

Why do we study neutrino scattering?

- neutrinos: portal of new physics
 - v Osc. $\Rightarrow m_v \sim \mathcal{O}(10^{-2}) \text{eV} \Rightarrow$ BSM model building \Rightarrow new interactions
- in v scattering: very weak SM int. + new int. in collider: stronger SM int. + new int.
 - $\bullet\,$ very low SM background $\Rightarrow\,$ very clean for BSM physics

Introduction to neutrino scattering Coherent v-nucleus scattering Dirac/Majorana neutrinos with new interactions

How to detect?

Elastic

$$v + X \rightarrow v + X$$

e.g. $X = e^{-}$, ⁷⁶Ge. Only recoil observable. CHARM II, TEXONO

Quasi-elastic

$$v + X \rightarrow \ell + Y$$

e.g. $\overline{\nu}_e + p \rightarrow e^+ + n$ (IBD, reactor), $\nu_\mu + ^{18}{\rm O} \rightarrow \mu^- + ^{18}{\rm F}$ (CCQE, T2K)

Deep inelastic

 $v + X \rightarrow \cdots$ (dirty final states!!)

e.g. lceCube. using μ track to identify v_{μ} .

I will focus on elastic scattering:

Elastic

 $v + X \rightarrow v + X$

• $X = e^{-}$, elastic *v*-electron scattering.

- CHARM II, TEXNON, LSND...
- contributes to EW precision test

• e.g. $\sin^2 \theta_W = 0.2324 \pm 0.0083$ (CHARM II, 1994)

• X = nucleus, Coherent v-nucleus scattering.

 recently observed by COHERENT (6.7σ, Aug. 2017), CONUS is running, results coming soon.

(日) (四) (문) (문) (문) (문)

What is "Coherent" neutrino-nucleus scattering?

Without Coherency: neutrino wavelength \ll nucleus radius

Sum over cross sections

$$\sigma_{\rm tot} = \sigma_p + \sigma_p + \cdots + \sigma_n + \sigma_n + \cdots$$

With Coherency: neutrino wavelength \gg nucleus radius

Sum over amplitude, then square

$$i\mathcal{M} = i\mathcal{M}_p + i\mathcal{M}_p + \dots + i\mathcal{M}_n + i\mathcal{M}_n + \dots$$
$$\sigma_{\text{tot}} = |i\mathcal{M}_p + i\mathcal{M}_p + \dots + i\mathcal{M}_n + i\mathcal{M}_n + \dots|^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Cross section

$$\frac{d\sigma}{dT} = \frac{G_F^2 \left[N - (1 - 4s_W^2) Z \right]^2 M_{\text{nucleus}}}{4\pi} \left(1 - \frac{T}{T_{\text{max}}} \right)$$

T: recoil energy, N&Z: neutron&proton numbers

- Large cross section for large N
 - because $1 4s_W^2 \approx 0$, $\frac{d\sigma}{dT} \propto N^3$.
- Although large, difficult to detect, T too low,
 - $T_{\rm max}$ determined by kinetics, 1 MeV neutrino \Rightarrow $T_{\rm max}$ pprox0.1 keV
- Modern tech: ultra-low threshold detection
 - thanks to dark matter experiments

100 kg Ge Threshold: 0.1 keV 1GW nuclear reactor Distance: 10m Event number: $7.6 \times 10^6/yr$

< □ > < 個 > < 注 > < 注 > ... 注

Coherent *v*-nucleus scattering

Distribution

Reactor neutrino flux taken from: V. I. Kopeikin, 2012

5900

1. Small, portable detector

2. Precise measurement of neutrino interactions and EW parameters E.g. $\sin^2 \theta_W = 0.238 \pm 0.0022$

3. Finding new physics

E.g. NSI, sterile neutrinos, $Z', \mu_{\nu_{\underline{z}}, \dots, \nu_{\underline{z}}}$

⁽Optimistic estimation in 1612.04150)

new interactions

- If the mediator is heavy, integrated out
 - new gauge bosons (e.g. Z') \Rightarrow NSI (in this talk)
 - any kinds of mediators \Rightarrow SPVAT (in this talk)
- If the mediator is light (WARNING: astrophysical constraints!)
 - interesting case: mediator = photon
 - neutrino magnetic moment μ_{v} (cf. 1510.01684, 1706.02555...)
 - or other light mediator
 - cf. 1612.06350, 1711.04531, 1703.00054, 1710.10889...

A B A B A B A

new interactions

If mediated by a new gauge boson (e.g. Z'), integrated out \Rightarrow NSI

NSI (Non-Standard Interaction)

$$\mathscr{L} \supset rac{G_F}{\sqrt{2}} \sum_{q=u,d} \overline{v}_{lpha} \gamma^{\mu} (1-\gamma^5) v_{eta} \left[\overline{q} \gamma^{\mu} (arepsilon_{lphaeta}^{qV} + arepsilon_{lphaeta}^{qA} \gamma^5) q
ight],$$

- Lepton Flavor Violation (LFV)
- Still V-A in $\overline{v}_lpha \gamma^\mu (1-\gamma^5) v_eta$, because only left-handed v
- the only change in $d\sigma/dT$, ${\it Q}^2: {\it Q}^2_{SM}
 ightarrow {\it Q}^2_{NSI}$

$$\frac{d\sigma}{dT} = \frac{G_F^2 \mathbf{Q}^2 M_{\text{nucleus}}}{4\pi} \left(1 - \frac{T}{T_{\text{max}}}\right)$$

new interactions

If mediated by any kinds of forces, integrated out \Rightarrow SPVAT

SPVAT (Scalar, Pseudo-S, Vector, Axial-V, Tensor)

$$\mathscr{L} \supset \frac{G_F}{\sqrt{2}} \sum_{a=S, P, V, A, T} \overline{v} \Gamma^a v \left[\overline{\psi} \Gamma^a (C_a + D_a i \gamma^5) \psi \right],$$

$$\Gamma^{a} = \{1, i\gamma^{5}, \gamma^{\mu}, \gamma^{\mu}\gamma^{5}, \sigma^{\mu\nu} \equiv \frac{1}{2}[\gamma^{\mu}, \gamma^{\nu}]\}.$$

- Scalar (Pseudo-S) mediator \Rightarrow 1 $(i\gamma^5)$
- Charged scalar (Pseudo-S) mediator \Rightarrow 1 $(i\gamma^5)+\sigma^{\mu
 u}$
- Vector (Axial-V) mediator $\Rightarrow \gamma^{\mu}, \gamma^{\mu}\gamma^{5}$
- contains all possible Lorentz-invariant interactions

NSI signal

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ◆○◆

Constraint on NSI

SPVAT

SM cross section:

$$\frac{d\sigma}{dT} = \frac{G_F^2 Q^2 M}{4\pi} \left(1 - \frac{T}{T_{\max}} \right)$$

SPVAT cross section:

$$\frac{d\sigma}{dT} = \frac{G_F^2 Q^2 M}{4\pi} \left(\frac{\cdots}{1} \times 1 - \frac{T}{T_{\text{max}}} + \frac{T}{T_{\text{max}}} \times \frac{MT}{4E_v^2} \right)$$

 \Rightarrow distortion of the recoil spectrum

▶ < ∃ ▶

Spectrum distortion by SPVAT

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ○○○

Constraint on SPVAT

Constraint on Scalar

Constraint on Tensor

A long standing problem.... Are neutrinos Dirac or Majorana particles?

A better way to ask: Are their masses Dirac or Majorana?

$$\mathscr{L}_D = m_V \overline{v} v, \ \mathscr{L}_M = \frac{1}{2} m_V \overline{v}^c v$$

 $m_{
m v}=\mathscr{O}(10^{-2})~{
m eV}$ measured by oscillation

Introduction to neutrino scattering Coherent v-nucleus scattering Dirac/Majorana neutrinos with new interactions

Distinguish Dirac/Majorana in v scattering Experimental constraints

Dirac or Majorana?

Most promising approach

neutrinoless double beta decay $(0 \nu \beta \beta)$

Alternative

Could be solved by neutrino scattering, if new interactions exist.

< D > < P > < P > < P >

Only SM interactions:

difference suppressed by mass

 $D-M \propto m_v$

e.g.

 $0 \nu \beta \beta \propto |M_{ee}|$

also applies to any process other (v scattering, Z decay) Because:

$$\lim_{m_v\to 0}=\mathrm{SM}$$

with new interactions:

difference not suppressed

 $D - M \propto \text{new int.}$

An early (1982) work by Rosen

• Define:

$$R_{\rho} \equiv \frac{\text{forward cro.sec.}}{\text{backward cro.sec.}}$$

• in SM

$$R_{\rho} = 2$$

• with new int.

$$0 \le R_{\rho} \le 2 \text{ (Majorana)}$$
$$0 \le R_{\rho} \le 4 \text{ (Dirac)}$$

Most general interactions (SPVAT)

$$\mathscr{L} \supset \frac{G_F}{\sqrt{2}} \sum_{a=S,P,V,A,T} \overline{v} \Gamma^a v \left[\overline{\ell} \Gamma^a (C_a + D_a i \gamma^5) \ell \right]$$

$$\Gamma^{a} = \{1, i\gamma^{5}, \gamma^{\mu}, \gamma^{\mu}\gamma^{5}, \sigma^{\mu\nu} \equiv rac{i}{2}[\gamma^{\mu}, \gamma^{\nu}]\}$$

Dirac neutrinos

 $2 \times 5 = 10$ coupling constants: C_a , D_a , (a = S, P, V, A, T)

Majorana neutrinos

10-4=6 coupling constants:

$$C_V = D_V = C_T = D_T = 0$$

$$\mathcal{L} \supset \frac{G_F}{\sqrt{2}} \sum_{a=S,P,V,A,T} \overline{\nu} \Gamma^a \nu \left[\overline{\ell} \Gamma^a (C_a + D_a i \gamma^5) \ell \right]$$
$$\frac{d\sigma}{dT} (\nu + \ell) = \frac{G_F^2 M}{2\pi} \left[A + 2B \left(1 - \frac{T}{E_\nu} \right) + C \left(1 - \frac{T}{E_\nu} \right)^2 \right]$$

T: Recoil energy, (A, B, C) = functions of (C_a, D_a) .

Rosen's ratio:

$$R_{\rho} \equiv \frac{2(A+2B+C)}{A+C}$$

$$C_{V} = D_{V} = C_{T} = D_{T} = 0 \text{ (Majorana)}$$

$$0 \leq R_{\rho} \leq 4 \text{ (Dirac)},$$

$$0 \leq R_{\rho} \leq 2 \text{ (Majorana)}.$$

$$\frac{d\sigma}{dT}(\nu+\ell) = \frac{G_F^2 M}{2\pi} \left[A + 2B \left(1 - \frac{T}{E_\nu}\right) + C \left(1 - \frac{T}{E_\nu}\right)^2 \right]$$

$$R_\rho \equiv \frac{2(A+2B+C)}{A+C}$$
Any other ratios?
$$R_\rho \equiv \frac{2(A+2B+C)}{A+C}$$

2D Projection

$$X \equiv \frac{B}{R}, \, Y \equiv \frac{A - C}{R}$$

$$R \equiv \sqrt{A^2 + B^2 + C^2}$$

Dirac bound

$$3X^2 + Y^2 \le 1$$

Proof: see 1702.05721

Majorana bound

$$2X^2 + (Y \pm X)^2 \le 1$$

and
$$X \leq 0$$

Proof: see 1702.05721

1

Points in the plot: Dirac / Majorana

<ロ> (四) (四) (三) (三) (三)

900

D/M? How to Distinguish?

Current experiments

Future, ¼ uncertainties

Can coherent be used?

$$\frac{d\sigma}{dT}(\nu+\ell) = \frac{G_F^2 M}{2\pi} \left[A + 2B\left(1 - \frac{T}{E_\nu}\right) + C\left(1 - \frac{T}{E_\nu}\right)^2 + D\frac{MT}{4E_\nu^2} \right],$$
$$\frac{d\sigma}{dT}(\overline{\nu}+\ell) = \frac{G_F^2 M}{2\pi} \left[C + 2B\left(1 - \frac{T}{E_\nu}\right) + A\left(1 - \frac{T}{E_\nu}\right)^2 + D\frac{MT}{4E_\nu^2} \right],$$

Conclusion: No

- Coherent *v*-nucleus scattering would be very powerful in searching for BSM physics
 - NSI, SPVAT, ...
- Dirac/Maojarana could be solved by neutrino scattering (if new interactions exist).

< D > < P > < P > < P >