Perspectives for the next generation of liquid-scintillator neutrino experiments

Gentner-Colloquium for Astroparticle Physics MPI-K Heidelberg 18 June 2014

Michael Wurm JGU Mainz

Outline

Next-generation neutrino detectors

- Physics program
- Detector technologies

Future liquid-scintillator detectors

- JUNO neutrino mass hierarchy and precise mixing parameters
- LENA neutrino astrophysics, long-baseline oscillations, nuleon decay ...

Neutrino oscillations: Current status

Neutrino oscillations: Unresolved issues

Observation of astrophysical sources

Indirect DM search

→ discover DM or extend excluded parameter space

Supernova neutrinos

v burst established
 → extract information on core-collapse and neutron star formation

Solar neutrinos pp-chain measured → CNO neutrino flux → study solar interior

Observation Range <1 to 50 MeV

Geoneutrinos

now: 4σ observation
 → geology: radiogenic heat, U/Th conc.

Diffuse SN neutrinos
 still unobserved
 → discovery, z-dep. SN rate and average spectrum

Search for nucleon decay

			x \overline{d} \overline{d} π^0
Decay channel	Preferred by	Life time limit (from Super-K)	Best technology
$p \rightarrow \pi^0 e^+$	Standard GUTs	8 x 10 ³³ yrs	Water Cherenkov
$p \rightarrow K^+ \overline{\nu}$	SUSY/SUGRA	2 x 10 ³³ yrs	Scintillator/LAr
others (many)		10 ³³ vrs	LAr (?)

\rightarrow main requirement: event discrimination at ~1 GeV energy

Michael Wurm (JGU Mainz/EC PRISMA)

Detector technologies: Water-Cherenkov

Characteristics at MeV energies

- Photoelectron yield: <10 pe/MeV
 → threshold: ~5 MeV
 ΔE/E ≈ 30%/VE
- Directionality from Cherenkov cone
- Moderate background discrimination
- Easy realization of great target masses
 → large count rates

Performance at GeV energies

- Good vertex reconstruction for small number of particles (E_v<1 GeV)
- Good flavor and CC/NC event separation
- Relatively coarse energy resolution: >20%

Running detectors

Super-Kamiokande: 22.5 kt fiducial mass

Detector technologies: Liquid-Argon

Performance at GeV energies

- Superior spatial resolution
 - → allows reconstruction of multi-GeV neutrino vertices
- Calorimetric measurement
 - \rightarrow precise energy resolution
- Very potent event ID predicted

Characteristics at MeV energies

- Potentially very interesting channels complementary to WCh and LSc
- Depends on radiopurity levels, realized energy threshold, trigger

Running detectors

ICARUS (600t)

Detector technologies: Liquid-Scintillator

Characteristics at MeV energies

- High photoelectron yield: 500pe/MeV → 0.2 MeV threshold, $\Delta E/E \approx 5\%/VE$
- Potent background discrimination: coincidence signals, pulse shaping
- Effective techniques for radiopurification
- No directionality

Performance at GeV energies

- Basic tracking capabilities
- Calorimetric energy measurement
 → energy resolution <10%
- Particle ID and complex event topologies: under development

Running detectors

KamLAND (1kt), Borexino (300t), SNO+

Proposed next-generation projects

PINGU – low-threshold IceCh

Future liquid-scintillator detectors

JUNO Experiment

- Reactor antineutrino experiment
- Target mass: 20 kt (LAB)
- Energy resolution: 2-3 % @ 1MeV

Physics Program

- → Neutrino Mass Hierarchy
- → Precision measurement of mixing parameters
- → Supernova neutrinos, DSNB
- → Solar neutrinos
- → Geoneutrinos
- → Sterile neutrinos
- → Atmospheric neutrinos
- → Exotic searches

JUNO – Mass Hierarchy Determination

- detector at 1st solar osc. maximum
- interference of sub-dominant oscillations via Δm²₃₂ and Δm²₃₁
- \rightarrow phase depends on MH

[S.T. Petcov et al., PLB533 (2002) 94

Survival probability

$$P_{\overline{e}\overline{e}} = 1 - P_{21} - P_{31} - P_{32}$$

 $P_{21} = \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$
 $P_{31} = \cos^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{31}$
 $P_{32} = \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{32}$

Michael Wurm (JGU Mainz/EC PRISMA)

JUNO – Signature of Mass Hierarchy

JUNO – Detector Layout

JUNO – Site and baselines

JUNO – Sensitivity for mass hierarchy

- In this analysis: Fourier transform of the spectrum
- Most important parameters:
 Energy resolution and energy-scale linearity

in default setup:

- Reactor power: 34 GW
- Baseline: 58 km
- ■ΔE/E = 3% @ 1MeV
- \rightarrow MH at 3 σ after 6 yrs

Alternative: Long-Baseline Oscillations

• Sensitivity based on matter effects changing oscillation probabilities at first oscillation maximum (atmospheric Δm^2)

Normal hierarchy \rightarrow Amplitude increases for neutrinos

Inverted hierarchy \rightarrow Amplitude increases for antineutrinos

Alternative: Long-Baseline Oscillations

- Sensitivity based on matter effects changing oscillation probabilities at first oscillation maximum (atmospheric Δm^2)
- Size of effect increases with neutrino energy/baseline length

Alternative: Long-Baseline Oscillations

- Sensitivity based on matter effects changing oscillation probabilities at first oscillation maximum (atmospheric Δm^2)
- Size of effect increases with neutrino energy/baseline length

→ multi-GeV neutrino beams with baseline of >10³ km → atmospheric neutrinos (baselines from $20 - 10^4$ km)

Michael Wurm (JGU Mainz/EC PRISMA)

Long Baseline Neutrino Experiment LBNE (US)

LBNE: $v_{\mu} \rightarrow v_{e}$ Appearance Signal

normal hierarchy

inverted hierarchy

\rightarrow MH discrimination at ~4 σ significance (configuration/ δ_{CP})

European LAGUNA-LBNO Design Study

Oscillation baseline: 2300 km
 CERN → Pyhäsalmi mine

Expected sensitivity:

Liquid Argon TPC (20kt): >5σ Liquid Scintillator (50kt): (3-5)σ

PINGU – Atmospheric Neutrinos

low statistics → large detector (✓)

oscillation at low energy → low threshold (1GeV)

Low-Energy Extension 20 extra strings inserted into DeepCore array

MH Imprint on Atmospheric v Oscillations

significance	_(expected event number IH – NH,
of deviation	(expected event number NH) ^½

Oscillation mode $\rightarrow v_{\mu} / \overline{v}_{\mu}$ disappearance

Influence of Hierarchy

→ matter effect affects either v or v sector

Detectors

- \rightarrow only detect sum of $v_{\mu} + \overline{v}_{\mu}$
- ightarrow but difference in
 - cross-sections $\frac{\sigma(\nu_{\mu})}{\sigma(\bar{\nu}_{\mu})} \approx 2$

PINGU – Signal and Sensitivity

Mass hierarchy sensitivity

- original paper by Akhmedov et al. $(3-10)\sigma$
- PINGU letter of intent
 3.5σ after 3yrs

Projected Sensitivity for Mass Hierarchy

[M. Blennow et al., 1311.1822]

Sensitivity depends mainly on:

JUNO: Energy resolution (3.5 – 3 %)
 PINGU, INO: True value of θ₃₂
 NOvA, LBNE: True value of δ_{CP}

Precision Measurement of Mixing Parameters

- Fundamental to the standard model and beyond
- Probing the unitarity of U_{PMNS} to ~1% level!

Parameter	Current	Projected	Experiment
Δm ² ₂₁	3%	0.6%	JUNO
Δm² ₃₁	5%	0.6%	JUNO
sin²θ ₁₂	6%	0.7%	JUNO
$sin^2\theta_{23}$	20%	2.5-10%	PINGU
$sin^2\theta_{13}$	14%	5%	Daya Bay
δ_{CP}	_	≠0 (3σ?)	LBL

Large Detectors as Neutrino Observatories

- Neutrino telescopes
 access to integral signal
 of a galactic Supernova
- Liquid Argon sensitive to SN/DSNB (?) threshold/target mass
- Water Cherenkov
 DSNB Gd-doping?
 threshold depends
 on mass, optical coverage

Liquid Scintillator

solar & geoneutrinos threshold depends on radiopurity & cosmics

LENA Experiment

- Observatory for "natural" neutrinos
- Target: 50 kt of liquid-scintillator
- Optimized for low-background levels: radiopurity + rock shielding

Focus on neutrino observation

- → Supernova neutrinos
- → Diffuse SN neutrino background
- → Solar neutrinos
- → Geoneutrinos

But also particle physics

- → Neutrino oscillations (MH, δ_{CP})
- \rightarrow Non-standard searches (NSI, v_s)
- → Proton decay

LENA at the Pyhäsalmi mine (Finland)

LENA at the Pyhäsalmi mine (Finland)

LENA at the Pyhäsalmi mine (Finland)

Thermonuclear fusion in the sun

Michael Wurm (JGU Mainz/EC PRISMA)

Solar neutrino signal in LENA

Can LENA do better than Borexino?

Physics programme for solar neutrinos

Astrophysics

- contribution of CNO cycle to solar fusion rate
- metallicity of solar core
- presence of time variations in solar neutrino flux (10⁻³ level)
 → helioseismic g-modes ...

Physics programme for solar neutrinos

Astrophysics

- contribution of CNO cycle to solar fusion rate
- metallicity of solar core
- presence of time variations in solar neutrino flux (10⁻³ level)
 → helioseismic g-modes ...

Neutrino physics, e.g.

precision measurement (~5 σ) of $P_{ee}(E)$ in MSW transition region

- \rightarrow non-standard interactions
- → light sterile neutrinos ($\Delta m^2 \approx 0.1 \text{ eV}^2$)

Supernova neutrino signal

→ requires high-statistics and flavor-resolved measurement

SN signal in LENA

Event rates expected for a galactic core-collapse SN:

 $10 \text{kpc} - 8 \text{M}_{\odot} - < \text{E}_{v} > = 14 \text{MeV}$

	Channel		Events	Threshold (MeV)	Spectrum
(1)	$\bar{\nu}_{\rm e}{\rm p} ightarrow{\rm n}{\rm e}^{\scriptscriptstyle +}$	CC	1.3x10 ⁴	1.8	✓
(2)	$\nu_e^{12}C \rightarrow {}^{12}N e^{-1}$	СС	3.4x10 ²	17.3	(✓)
(3)	${\overline v_e}^{12}{ m C} ightarrow^{12}{ m B} { m e}^+$	СС	1.8x10 ²	13.4	(✓)
(4)	$\nu {}^{12}C \rightarrow {}^{12}C^* \nu$	NC	1.0x10 ³	15.1	×
(5)	$\nu p \rightarrow p \nu$	NC	2.6x10 ³	1.0	\checkmark
(6)	$\nu e^{-} \rightarrow e^{-} \nu$	NC CC	6.2x10 ²	0.2	✓

• primary detection channel is **inverse beta decay** (1) $\rightarrow \overline{v}_{e}$

- CC/NC on carbon (2-4) and v-proton scattering (5) channels in LSc provide important information on other flavors
- flavor discrimination by event signatures (e.g. fast coincidences)

Michael Wurm (JGU Mainz/EC PRISMA)

 $\rightarrow \Sigma \approx 1.7 \times 10^4$

Supernova neutrino physics in LENA

Observables

- high-statistics $\bar{\nu}_e$ spectrum
- v_e spectrum (few 100 ev)
- ν_{µ,τ} sum spectrum (few 10³)
 total flux

Astro- and neutrino physics

- Initial neutronization burst
- Time-resolved cooling phase
- Neutrino temperature
 w/ and w/o oscillations (CC/NC)
- Neutrino mass hierarchy from SN/Earth matter effects

• $v \rightarrow \overline{v}$ conversion

from neutronization burst

 Trigger for gravitational wave antennae

Diffuse Supernova Neutrino Background (DSNB)

DSNB spectrum

average SN spectrum

redshifted by cosmic expansion flux: ~10² /cm²s

milky way

3 SN per 100yr present v detectors

neighbouring galaxy clusters ~1SN per year single bursts need Mton++ detectors

DSNB 10⁸SN per year average flux

5

DSNB signal in LENA

Detection by inverse β-decay:

 $\overline{\nu}_{e}$ +p \rightarrow n+e⁺

- coincidence signature
 → background suppression
- Energy window: 10-25 MeV
- Most important background: atmospheric v NC events
 → S:B-ratio ≥1 by pulse shape
- Expected event rate after pulse-shape cuts: ~5 /yr

LENA's sensitivity for the DSNB

- based on current models: evidence at 3-5 σ after 10 yrs
- if no signal is seen: SK flux limit improved by factor 8:

Geoneutrinos

Geoneutrinos produced by natural ⁴⁰K, ²³⁸U and ²³²Th

- Flux dominated by the Earth's crust
- scales with crust thickness
 - most from continents
 - less from oceanic crust
- Some contribution from the mantle
- Earth's core is supposed to be depleted in radioisotopes

Composition of geoneutrino spectrum

Low endpoint energy (3.3 MeV) → only detectable by LSc detectors
 Different end-points of U/Th spectra → can be separated by spectral shape

Michael Wurm (JGU Mainz/EC PRISMA)

Detection of geoneutrinos in LENA

Detection of geoneutrinos in LENA

■ reactor-v background 7X10²

Output for geophysics/chemistry

- Urey ratio: fraction of radiogenic heat production to total heat flow
 - \rightarrow geochemistry: 0.3 ... 1
 - \rightarrow in LENA: U/Th fraction to 1%
- ratio of U/Th abundances
 - \rightarrow geochemistry: U/Th = 3.5 ... 4
 - → in LENA: 5% rel. unc.
- Oceanic vs. continental crust contributions to geoneutrino flux
 - ightarrow needs detectors at different sites

Proton decay into kaon and antineutrino

SUSY-favored decay mode

- \rightarrow kaon visible in liquid scintillator!
- \rightarrow fast coincidence signature ($\tau_{\rm K}$ = 13 ns)
- \rightarrow signal efficiency: ~65% (atm. v bg)

Proton decay into kaon and antineutrino

SUSY-favored decay mode

 $\begin{array}{lll} \mbox{Signature} & p \rightarrow \mbox{K}^{\!+}\,\overline{\nu} \\ & \stackrel{\sc \mapsto}{\longrightarrow} \mu^{\!+}\!\nu_{\mu}\,/\,\pi^{0}\!\pi^{\!+} \end{array}$

 \rightarrow kaon visible in liquid scintillator!

 \rightarrow fast coincidence signature ($\tau_{\rm K}$ = 13 ns)

 \rightarrow signal efficiency: ~65% (atm. v bg)

Expected background: <0.1 /yr \rightarrow no event observed in 10yrs: $\tau_p > 4x10^{34}$ yrs (90%C.L.)

LENA: Neutrino physics with artificial sources

π^+ decay-at-rest beam (DAE δ ALUS)

- $v_{e}, v_{\mu}, \overline{v}_{\mu}$ with E<50MeV, but no \overline{v}_{e}
- high-power cyclotrons at 3 different baselines → from \overline{v}_{μ} → \overline{v}_{e} oscillations: **CP phase** at ~3 σ

LENA: Neutrino physics with artificial sources

π^+ decay-at-rest beam (DAE δ ALUS)

- $v_{e}, v_{\mu}, \overline{v}_{\mu}$ with E<50MeV, but no \overline{v}_{e}
- high-power cyclotrons at 3 different baselines \rightarrow from $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillations: **CP phase** at ~3 σ
- close-by cyclotron:
 - → sterile neutrinos in $v_e \rightarrow v_s$ disappearance and $\overline{v}_{\mu} \rightarrow \overline{v}_e$ appearance modes
 - \rightarrow allows test of all anomalies

LENA: Neutrino physics with artificial sources

π^+ decay-at-rest beam (DAE δ ALUS)

- = $\nu_{\rm e}$, ν_{μ} , $\overline{\nu}_{\mu}$ with E<50MeV, but no $\overline{\nu}_{\rm e}$
- high-power cyclotrons at 3 different baselines → from \overline{v}_{μ} → \overline{v}_{e} oscillations: **CP phase** at ~3 σ
- close-by cyclotron:
 - → sterile neutrinos in $v_e \rightarrow v_s$ disappearance and $\overline{v}_{\mu} \rightarrow \overline{v}_e$ appearance modes
 - \rightarrow allows test of all anomalies

Radioactive sources

- v_e , \overline{v}_e at <3 MeV
- → 2nd generation sterile neutrino experiment based on v_e→v_s disappearance
 → discern (3+N) scenarios etc.

Conclusions

 Liquid-scintillator detectors have proven as versatile tools for the detection of low-energy neutrinos and their oscillations.

- For the next generation of large-volume neutrino detectors, liquid-scintillator experiments are still an interesting choice:
 - → JUNO will determine the MH with good sensitivity, on a short time scale and with independent systematics (+precision measurement of oscillation parameters)
 - → LENA will be unique in its sensitivity for astrophysical neutrinos and has the potential to give important contributions to oscillation and particle physics.

Backup Slides

Detector technologies

Detector technology	Water Cherenkov	Liquid Scintillator	Liquid Argon
Target mass	500 kt	50 kt	20 kt
Energy threshold	5-10 MeV	0.2 MeV	10-20 MeV (?)
Maximum energy	few GeV	few GeV	few GeV
Best performance	10 MeV – 1 GeV	0.5 – 50 MeV	1 – 10 GeV
Remarks	LE program depends on Gd-doping	HE program depends on reco development	LE program depends on overburden, detector cleanliness

Competing experiments

Project	Technology	Target mass (kilo-ton)	Overburden (mwe)	Site
Hyper- Kamiokande	WCh	560	1750	Kamioka
MeMPhys	WCh	500	4800 ?	Fréjus Garpenberg
JUNO	LSc	20	2000	Kaiping
LENA	LSc	50	4000	Pyhäsalmi
GLACIER/ LBNO	LAr	20	4000	Pyhäsalmi
LBNE	LAr	10	0? 4400?	Homestake

Acronym	from	to Baseline (km)		Beam power (MW)
LBNE	Fermilab	Homestake 1300		0.7 – 2.3
LBNO/C2PY	CERN	Pyhäsalmi	2300	0.7 – 2.0
C2FR	CERN	Fréjus	130	0.7 – 2.0
P2PY	Protvino	Pyhäsalmi 1100		0.5
ESSvSB	Lund	Garpenberg	540	5.0
Т2НК	Tokai J-PARC	Kamioka	300	1.66

Neutrino physics

ltem	500 kt – Water Cherenkov	50 kt – Liquid Scintillator	20 kt Liquid Argon	Others
Mass hierarchy	atmospheric v's → 3σ (?)	LENA+C2PY >5σ JUNO >3.5σ	LBNO > 5σ LBNE > 3σ (?)	PINGU > 6σ
CP phase	T2HK, ESSvSB, C2FR → 5σ	LENA+beam →? +DAEδALUS→3σ	LBNO → 3σ upgrade → 5σ LBNE → 3σ	
2 nd gen. sterile v's	no	source exp., iso/piDAR >5σ	?	
NSI etc., e.g. solar v's	⁸ B-v's: day-night +Gd: v _e →v _e conv.	⁷ Be day-night ν _e →ν̄ _e conv. P _{ee} (MSW) >5σ	no	
Ονββ-decay	no	¹³⁶ Xe-doping (200 tons+)	no	many ideas, but hardly as large in mass

Neutrino observation

ltem	500 kt – Water Cherenkov	Gd-doped Water	50 kt – Liquid Scintillator	20 kt – Liquid Argon
Solar neutrinos	⁸ B-v only	⁸ B-v only	CNO v flux, metallicity, ⁷ Be modulation	⁸ B-v (?)
Supernova neutrinos	10 ⁵ events (⊽ _e) no flavor separation (?)	+ separation v _e vs. \overline{v}_{e}	$2x10^4$ events separation of $v_e^{}$, $\overline{v}_e^{}$ and $v_{\mu,\tau}^{}$	10 ⁴ events (?) mostly v _e /NC
Diffuse SN v background	~30 /yr S/B 1:7	~80 /yr S/B 2:1 (?)	~5 /yr S/B 1:1	no?
Geoneutrinos	no	no	v flux → 1% U/Th ratio 5%	no
Indirect dark matter search	no	annihilation \overline{v}_{e} 10-100 MeV	annihilation \overline{v}_{e} 10-100 MeV	no?

Michael Wurm (Universität Tübingen)

Channel (after 10 yrs)	25 kt water – Super-K	500 kt – Water Cherenkov	50 kt – Liquid Scintillator	20 kt – Liquid Argon
p→π⁰e⁺	8x10 ³³ yrs (SK-I-II)	>1x10 ³⁵ yrs	yes?	1x10 ³⁴ yrs
p→K⁺v	2x10 ³³ yrs (SK-I)	4x10 ³⁴ yrs	4x10 ³⁴ yrs	2x10 ³⁴ yrs
p→others	~10 ³³ yrs (SK-I-II-III)	~10 ³⁴ yrs	?	~10 ³⁴ yrs
n→n	2x10 ³² yrs (SK-I)	>2x10 ³³ yrs (?)	?	yes?

proton life time limits at 90% C.L.

Mass hierarchy

Experimental approaches

- Large matter effects at high neutrino energies/long baselines
 - → very long baseline beams (>1000 km), atmospheric neutrinos
- Interference terms of Δ_{13} and Δ_{23} -driven oscillations
 - \rightarrow medium-distance reactor experiments (60 km)

Sensitivities

GLACIER, LENA and C2PY	>5σ	long time scale, beam (?)
GLACIER, LENA and P2PY	3-5σ	
LBNE	→3σ (?)	
T2HK, C2FR, ESS		no sensitivity
PINGU, ORCA (?)	>5σ	5 yrs, atmospheric v's
Hyper-Kamiokande, INO	→3σ (?)	10 yrs
■ JUNO	>3.5σ	fast, reactor v's

Michael Wurm (Universität Tübingen)

CP violation

Experimental approaches

- Difference in $v_e \rightarrow v_\mu$ and $v_e \rightarrow v_\mu$ probabilities
 - \rightarrow long-baseline superbeam (at short baselines @ 2nd maximum)
- Dependence of $v_e \rightarrow v_{\mu}$ probability on baseline
 - $\rightarrow \pi^+$ decay-at-rest neutrino sources at two (3) different baselines
 - \rightarrow allows superbeams to run only in v-mode to increase sensitivity

Sensitivities

GLACIER & P/C2PY:	20kt, 0.7MW, 10yrs	3σ	40% coverage
	70kt, 2MW, 10yrs	5σ	54% coverage
LBNE (full)		3σ	40% coverage
MeMPhys & ESS			5σ 45% coverage
T2HK or MeMPhys	& C2FR	5σ	15% coverage
LENA & DAEδALUS		3σ	45% coverage
LENA & P/C2PY: nov	w ~2σ, might increase v	with reco	capabilities

Michael Wurm (Universität Tübingen)