Quantum Tunneling in the Early Universe: Inflation and the Hubble Tension

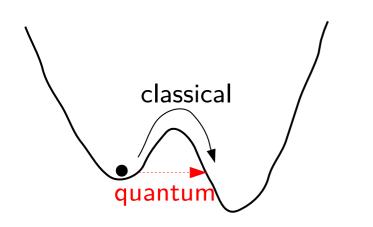
Martin W. Winkler

in collaboration with K. Freese based on Phys. Rev. D103 (2021) and arXiv:2102.13655

MPIK Heidelberg June 28, 2021

- Quantum Tunneling
- Old and New Inflation
- Chain Inflation
- Hubble Tension
- Chain Early Dark Energy

Quantum Tunneling



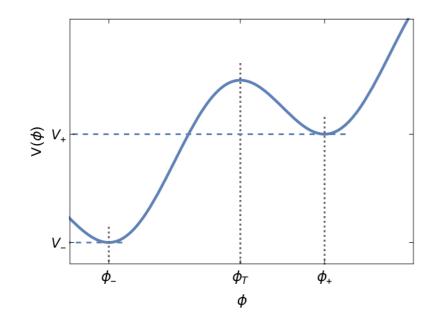
probability of vacuum decay per volume and time: $\Gamma = Ae^{-S/\hbar}$ "tunneling rate" sea of false vacuum bubble of true vacuum

Voloshin, Kobzarev, Okun 1974, Coleman 1977

S: action of the bounce (path of least residence)

$$\frac{d^2\phi}{d\rho^2} + \frac{3}{\rho}\frac{d\phi}{d\rho} = V'(\phi)$$
$$S \propto \int_{0}^{\infty} d\rho\rho^3 \left[\frac{1}{2}\left(\frac{d\phi}{d\rho}\right)^2 + V\right]$$

Bounce Action



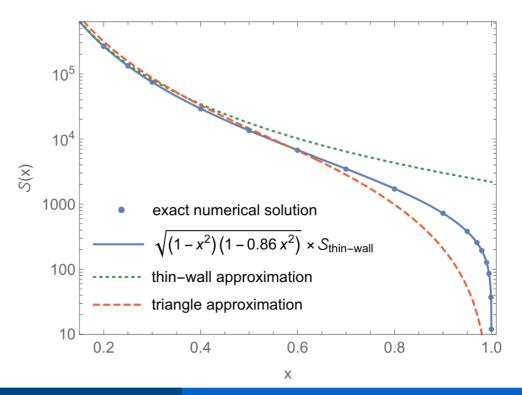
thin-wall approximation:

$$S_{thin-wall} = rac{4}{\pi} rac{f^4}{\Lambda^4} \left(rac{12}{x}
ight)^3$$

improved approximation:

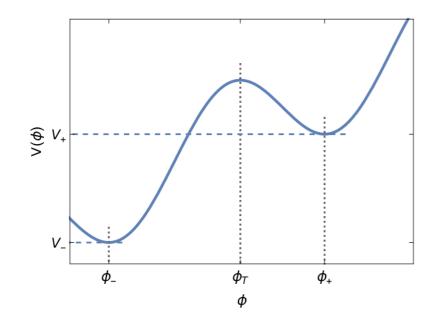
$$\begin{split} \mathsf{S}_{\mathsf{improved}} &= \mathsf{S}_{\mathsf{thin-wall}} \\ & \times \sqrt{(1-\mathsf{x}^2)(1-0.86\mathsf{x}^2)} \end{split}$$

example potential: $V = \mu^{3}\phi + \Lambda^{4}\cos\frac{\phi}{f}$ we define: $x = \frac{f\mu^{3}}{\Lambda^{4}}$



Quantum Tunneling in the Early Universe

Bounce Action



thin-wall approximation:

$${\sf S}_{\sf thin-wall} = rac{4}{\pi} rac{{\sf f}^4}{{\sf \Lambda}^4} \left(rac{12}{{\sf x}}
ight)^3$$

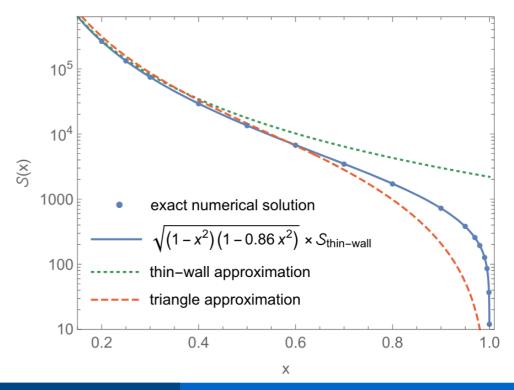
improved approximation:

 $egin{aligned} \mathsf{S}_{\mathsf{improved}} &= \mathsf{S}_{\mathsf{thin-wall}} \ & imes \sqrt{(1-\mathsf{x}^2)(1-0.86\mathsf{x}^2)} \end{aligned}$

example potential:

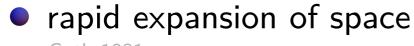
$$V = \mu^{3}\phi + \Lambda^{4}\cos\frac{\phi}{f}$$
we define:
$$x = \frac{f\mu^{3}}{\Lambda^{4}}$$

$$x=1$$

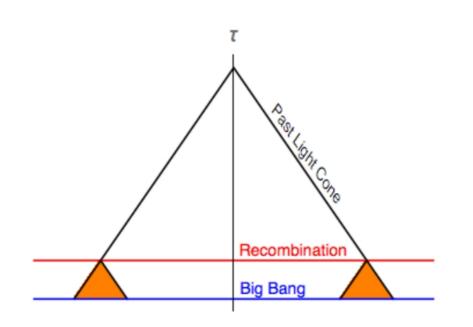


Quantum Tunneling in the Early Universe

Inflation

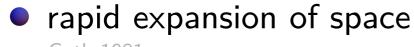


Guth 1981

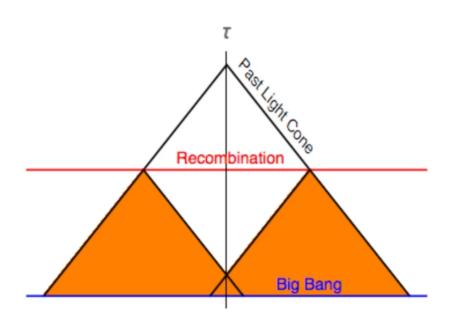


- solves horizon problem
- solves flatness problem
- dilutes dangerous relics

Inflation



Guth 1981

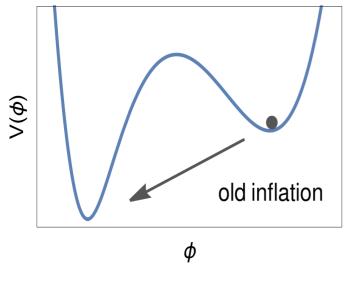


- solves horizon problem
- solves flatness problem
- dilutes dangerous relics

Old Inflation

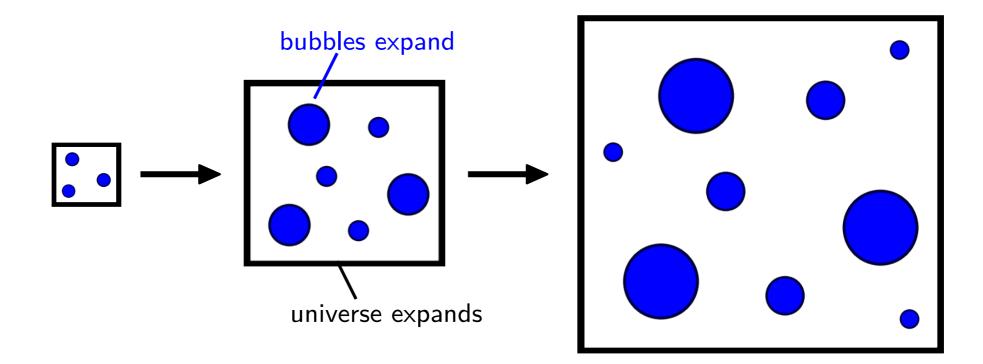
inflation driven by potential energy of the inflaton field

Inflation models



Guth 1981

 bubble formation rate = tunneling rate must be low enough to get 60 e-folds of inflation



bubbles don't percolate, no reheating, no particles

• volume of a single bubble created at time t_0

$$V_b\simeq \frac{4\pi}{9}e^{H(t-t_0)} \qquad (\text{for }t\gg t_0)$$

volume of all bubbles vs. volume of the universe

$$\frac{\sum V_{\rm b}}{V_{\rm tot}} = \frac{4\pi}{9} \frac{\Gamma}{{\rm H}^4}$$

• bubble percolation hence requires $\Gamma/H^4 \gtrsim 1$

• inflation can only last for ~ 1 e-fold, but need 60 e-folds

Slow Roll Inflation

inflation driven by potential energy of the inflaton field

inflation models

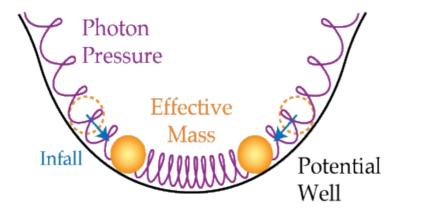


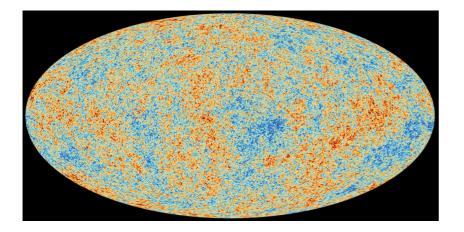
Guth 1981

Linde 1982 Albrecht, Steinhardt 1982

Slow Roll Inflation

 quantum fluctuations of the inflaton are stretched, reheating converts them into density fluctuations



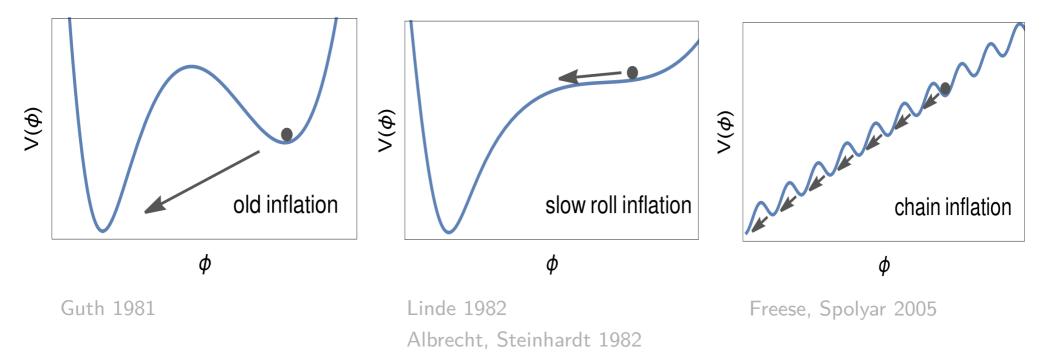


- create potential wells for baryon photon plasma
- acoustic oscillations due to radiation pressure
- CMB provides snaphot at last scattering

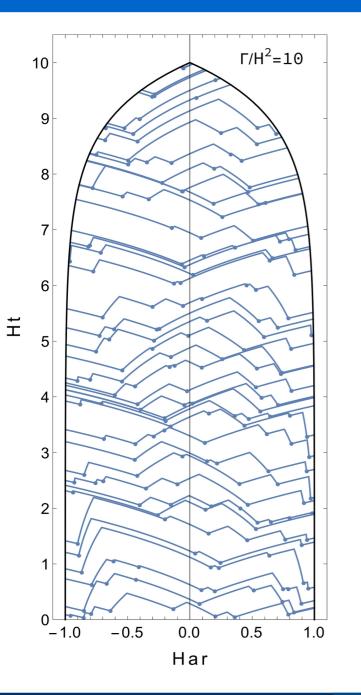
Chain Inflation

inflation driven by potential energy of the inflaton field

inflation models



Chain Inflation

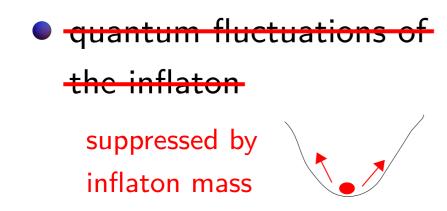


- inflaton tunnels along a series of false vacua of ever lower energy
- large Γ, bubbles are formed close to each other and percolate quickly
- bubble collisions create radiation
 which is quickly redshifted away
- what about the CMB?

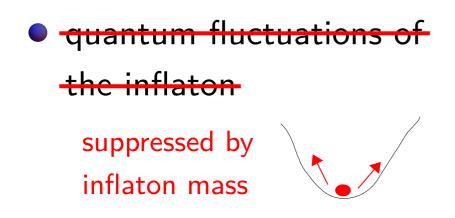
origin of fluctuations:

 quantum fluctuations of the inflaton

origin of fluctuations:

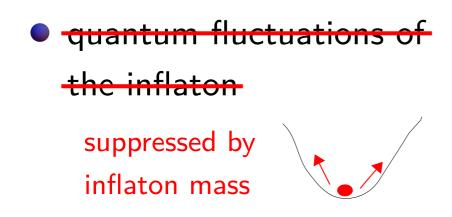


origin of fluctuations:



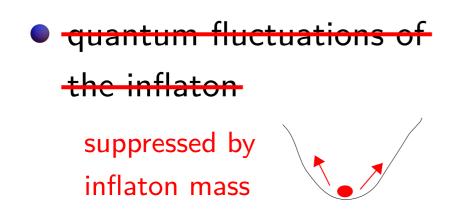
bubble wall collisions

origin of fluctuations:



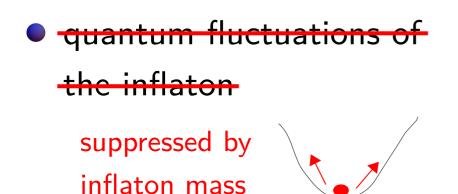
(bubble wall collisions)
 maybe, but complicated

origin of fluctuations:



- (bubble wall collisions) maybe, but complicated
- probabilistic nature of tunneling

origin of fluctuations:



- (bubble wall collisions) maybe, but complicated
- probabilistic nature of tunneling

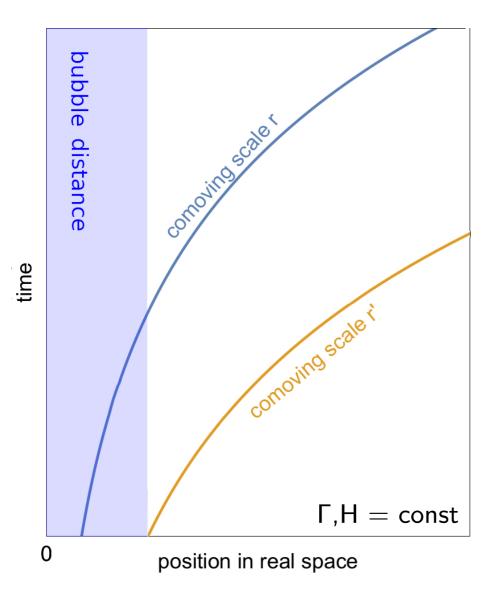
scalar power spectrum:

$$\Delta_{\mathcal{R}}^2 = \frac{H^2}{4\pi^2 c_s \epsilon} (-kc_s \eta)^{-2\epsilon}$$
$$\Delta_{\mathcal{R}}^2 = (0.04 \pm 0.02) \left(\frac{\Gamma}{H^4}\right)^{-0.42 \pm 0.03}$$
$$\Delta_{\mathcal{R}}^2 = \frac{H^2}{8\pi^2 \epsilon}$$
$$\Delta_{\mathcal{R}}^2 = \frac{H^2}{8\pi^2 \epsilon/\sqrt{3}}$$
$$\Delta_{\mathcal{R}}^2 = \frac{3}{4\pi} \frac{H^4}{\Gamma}$$

Watson et al. 2007, Feldstein, Tweedie 2007, Huang 2007, Chialva, Danielsson 2008 & 2009, Cline, Moore, Wang 2011

> literature in vast disagreement

Scalar Power Spectrum



two-point correlation:

 $\langle \delta \phi(\mathbf{r}) \delta \phi(\mathbf{0}) \rangle = \mathsf{var} \phi(\Delta t) + \mathsf{const}$

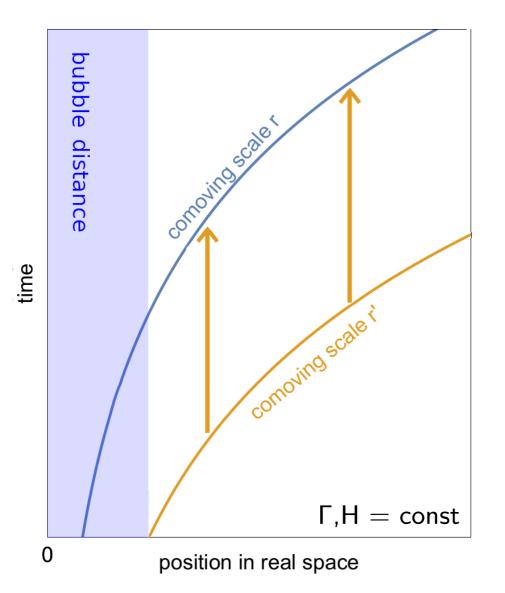
curvature perturbation

$$\mathcal{R} = \mathsf{H}\left(\frac{\mathsf{d}\langle\phi\rangle}{\mathsf{d}\mathsf{t}}\right)^{-1}\delta\phi$$

scalar power spectrum

$$\Delta_{\mathcal{R}}^2 = \left(\frac{\mathsf{d}\langle\phi\rangle}{\mathsf{H}\mathsf{d}\mathsf{t}}\right)^{-2} \frac{\mathsf{d}\mathsf{var}\phi}{\mathsf{H}\mathsf{d}\mathsf{t}}$$

Scalar Power Spectrum



two-point correlation:

 $\langle \delta \phi(\mathbf{r}) \delta \phi(\mathbf{0}) \rangle = \mathsf{var} \phi(\Delta \mathbf{t}) + \mathsf{const}$

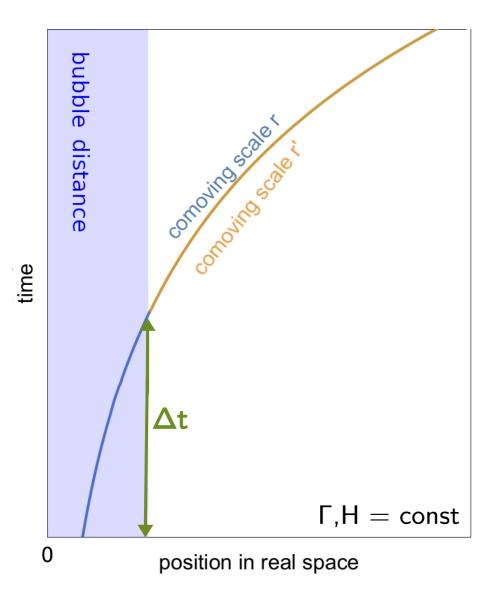
curvature perturbation

$$\mathcal{R} = \mathsf{H}\left(\frac{\mathsf{d}\langle\phi\rangle}{\mathsf{d}\mathsf{t}}\right)^{-1}\delta\phi$$

scalar power spectrum

$$\Delta_{\mathcal{R}}^{2} = \left(\frac{\mathsf{d}\langle\phi\rangle}{\mathsf{H}\mathsf{d}\mathsf{t}}\right)^{-2} \frac{\mathsf{d}\mathsf{var}\phi}{\mathsf{H}\mathsf{d}\mathsf{t}}$$

Scalar Power Spectrum



two-point correlation:

 $\langle \delta \phi(\mathbf{r}) \delta \phi(\mathbf{0}) \rangle = \mathrm{var} \phi(\Delta t) + \mathrm{const}$

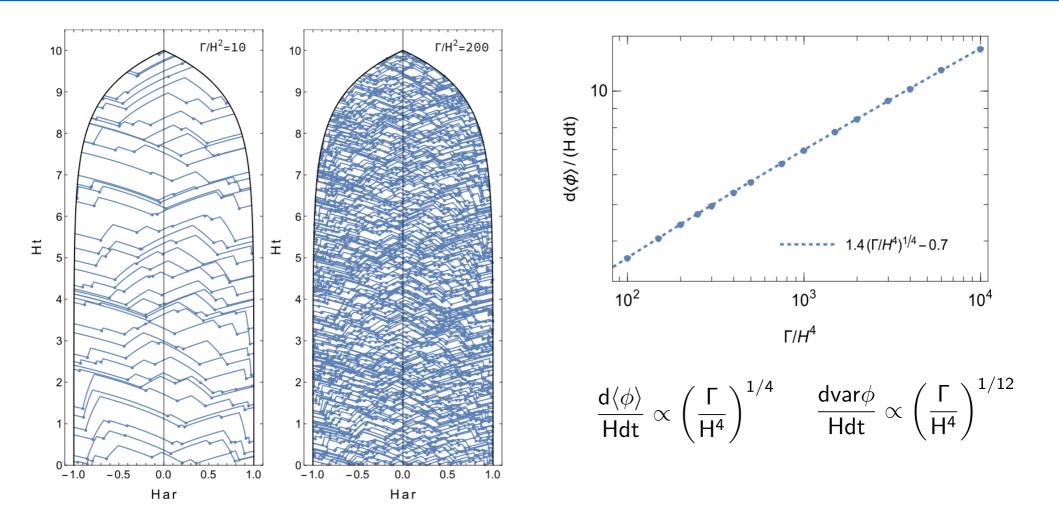
curvature perturbation

$$\mathcal{R} = \mathsf{H}\left(\frac{\mathsf{d}\langle\phi\rangle}{\mathsf{d}\mathsf{t}}\right)^{-1}\delta\phi$$

scalar power spectrum

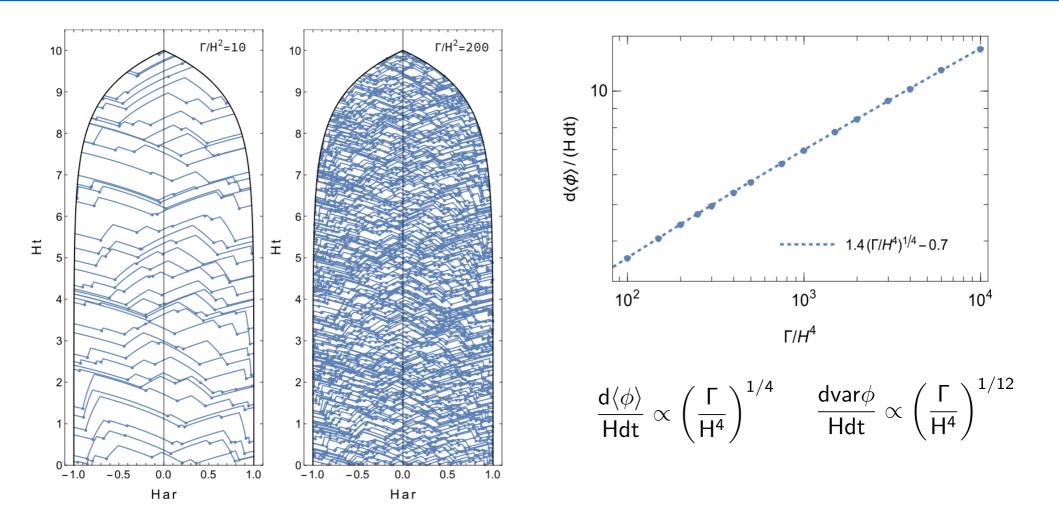
$$\Delta_{\mathcal{R}}^{2} = \left(\frac{\mathsf{d}\langle\phi\rangle}{\mathsf{H}\mathsf{d}\mathsf{t}}\right)^{-2} \frac{\mathsf{d}\mathsf{var}\phi}{\mathsf{H}\mathsf{d}\mathsf{t}}$$

Simulations



$$\Delta_{\mathcal{R}}^2 \simeq 0.06 \left(\frac{\Gamma}{H^4}\right)^{-5/12}$$

Simulations



$$\Delta_{\mathcal{R}}^2 \simeq 0.06 \left(\frac{\Gamma}{H^4}\right)^{-5/12}$$

$$\Delta_{\mathcal{R}}^2 = \left(0.04 \pm 0.02\right) \left(\frac{\Gamma}{\mathsf{H}^4}\right)^{-0.42 \pm 0.03}$$

Feldstein, Tweedie 2007

Quantum Tunneling in the Early Universe

Comparison with CMB

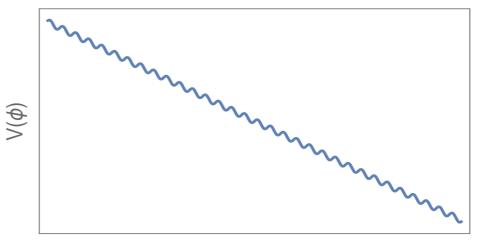
• COBE normalization $\Delta_{\mathcal{R}}^2 = 2 \times 10^{-9}$ implies

$$rac{\Gamma}{H^4} = 10^{18} \implies rac{vacuum transitions}{e-fold of inflation} \simeq \left(rac{\Gamma}{H^4}
ight)^{1/4} \simeq 4 imes 10^4$$

• scale-invariance of power spectrum broken by \dot{H} , $\dot{\Gamma}$

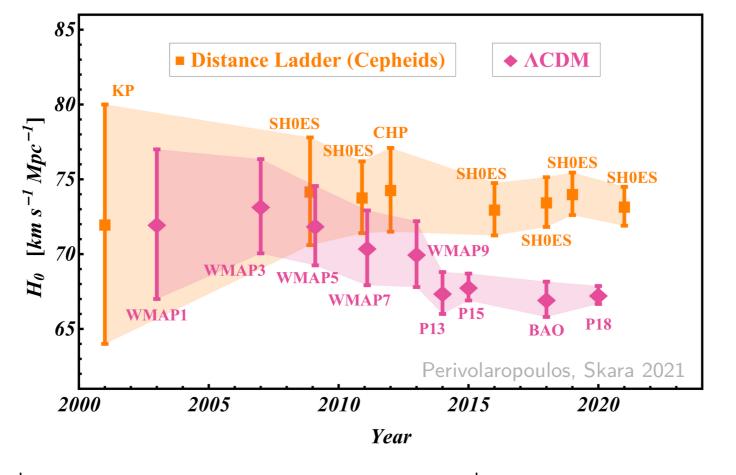
$$\mathsf{n_s} = 1 + \frac{5}{12} \left(\frac{4 \dot{\mathsf{H}}}{\mathsf{H}^2} - \frac{\dot{\Gamma}}{\mathsf{H}\Gamma} \right)$$

$$n_s \simeq 1 - 0.03 \left(\frac{\Delta V}{10^{-6}\,V}\right)$$



Hubble Crisis

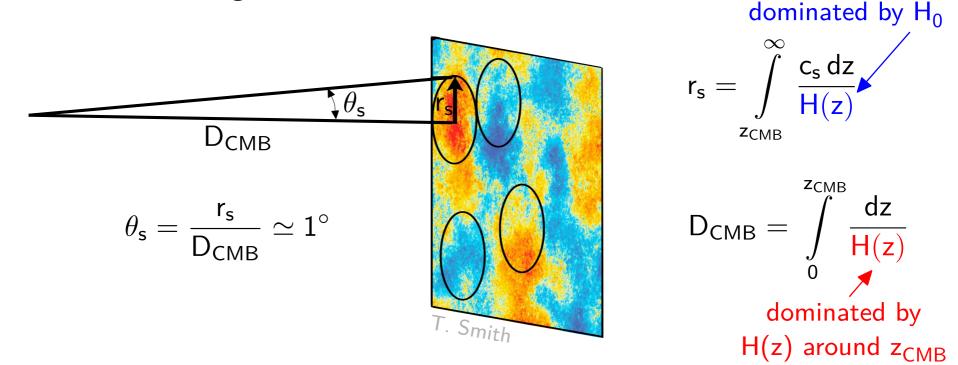
• H₀ disagrees between CMB and local measurements



$$\begin{split} H_0[\frac{km}{s\,Mpc}] &= 73.2 \pm 1.3 \ (\text{SH0ES}) \qquad H_0[\frac{km}{s\,Mpc}] = 67.3 \pm 0.6 \ (\text{Planck 2018}) \\ \text{Riess et al. 2021} \end{split}$$

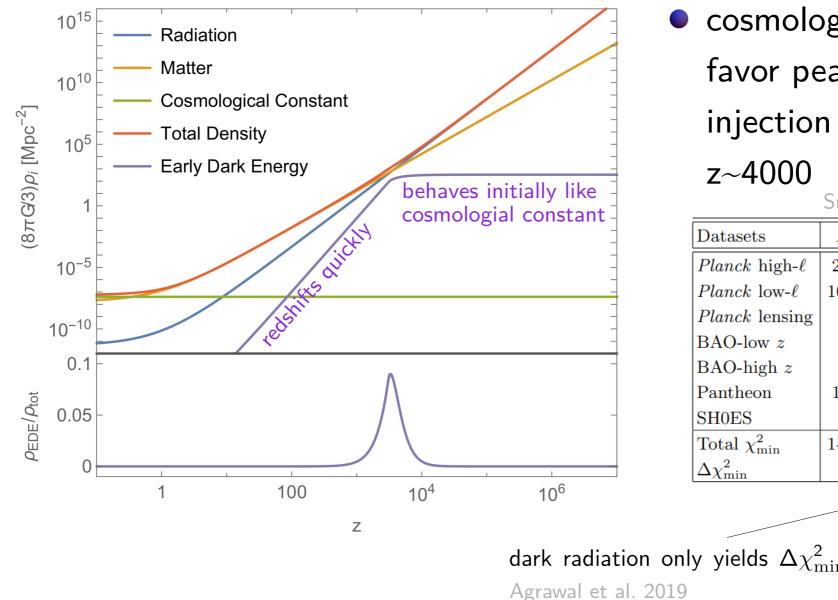
Early Time Solution

• CMB fixes angular size of sound horizon



- additional energy density before recombination reduces sound horizon
- fixed θ_s then requires larger $D_{CMB} \longrightarrow H_0$ increases

Early Dark Energy



Karwal, Kamionkowski 2016, Poulin et al. 2018 & 2019

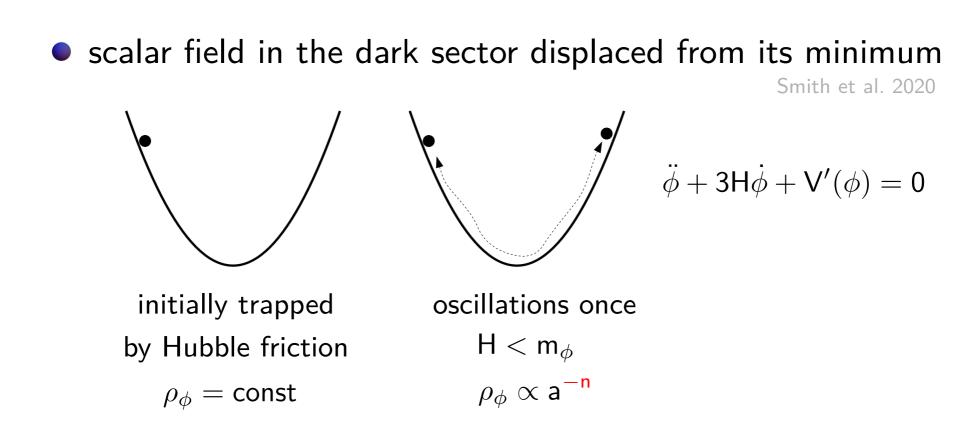
cosmological data favor peaked energy injection around

Smith et al. 2020

Datasets	ΛCDM	EDE
$Planck$ high- ℓ	2446.66	2444
$Planck$ low- ℓ	10496.65	10493.25
<i>Planck</i> lensing	10.37	10.24
BAO-low z	1.86	2.53
BAO-high z	1.84	2.1
Pantheon	1027.04	1027.11
SH0ES	16.80	1.68
Total $\chi^2_{\rm min}$	14001.23	13980.94
$\Delta \chi^2_{ m min}$	0	-20.29

dark radiation only yields $\Delta \chi^2_{
m min} \simeq -4$

Oscillating Scalar Field Models

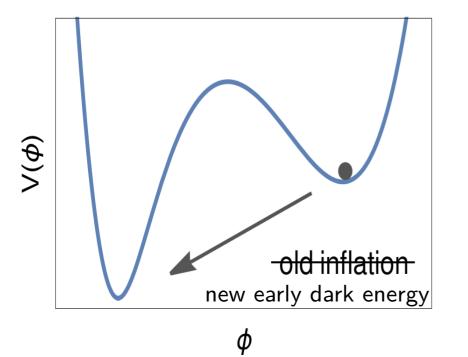


 <u>problem</u>: standard potentials yield too slow redshift (n~3), 'weird' potential required

 $V \sim \left(1 - \cos \frac{\phi}{f}\right)^3$

like non-relativistic matter

Early Dark Energy via Phase Transition



• dark sector scalar field trapped in false vacuum $\rho = \text{const}$

- bubbles of true vacuum, energy stored in bubble walls
- upon collision wall energy is transferred to

(1) anisotropic stress
$$\rho \propto a^{-6}$$
 (?)
(2) gravity waves $\rho \propto a^{-4}$ consistent with EDE
(3) dark radiation $\rho \propto a^{-4}$

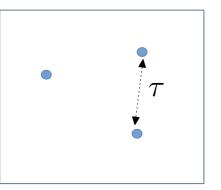
Niedermann, Sloth 2020 & 2021

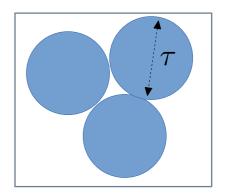
The Anisotropy Problem

required lifetime of the universe in the false vacuum

 $au \sim 2.5 imes 10^4 \, \text{yr} imes \left(rac{5000}{z}
ight)^2$ EDE solution $z_* \lesssim 5000$

• anisotropies of size $\Gamma^{-1/4} \sim au$ are formed





angular size of fluctuations at last scattering

 $\theta \simeq 0.1^{\circ} imes rac{5000}{z_{*}}$ CMB observations: $heta \gtrsim 0.05$ Large Scale Structure: $heta \simeq 0.002 - 0.2$

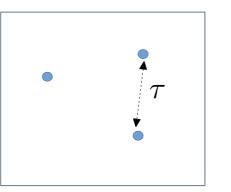
► CMB, LSS spoiled

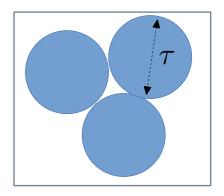
The Anisotropy Problem

required lifetime of the universe in the false vacuum

 $au \sim 2.5 imes 10^4 \ \text{yr} imes \left(\frac{5000}{z} \right)^2$ EDE solution $z_* \lesssim 5000$

• anisotropies of size $\Gamma^{-1/4} \sim au$ are formed





angular size of fluctuations at last scattering

 $\theta \simeq 0.1^{\circ} imes rac{5000}{z_{*}}$ CMB observations: $heta \gtrsim 0.05$ Large Scale Structure: $heta \simeq 0.002 - 0.2$

► CMB, LSS spoiled

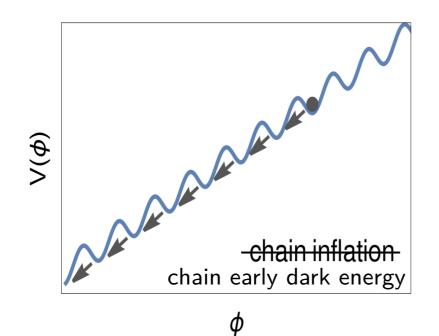
<u>caveat</u>: make Γ time-dependent in two-field system

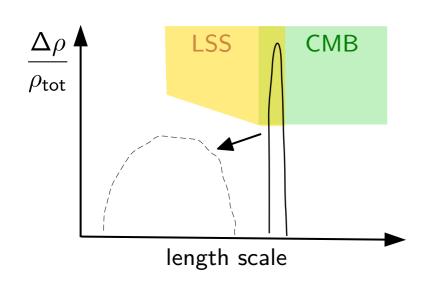
Adams, Freese 1991, Niedermann, Sloth 2020 & 2021

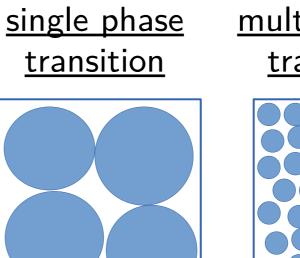
Martin W. Winkler

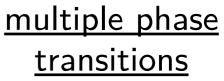
Quantum Tunneling in the Early Universe

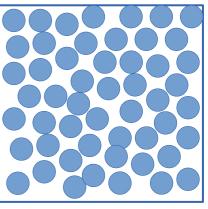
Chain Early Dark Energy











- multiple phase transitions reduce size and amplitude of anisotropies
- constraints evaded for
 N > 600 transitions

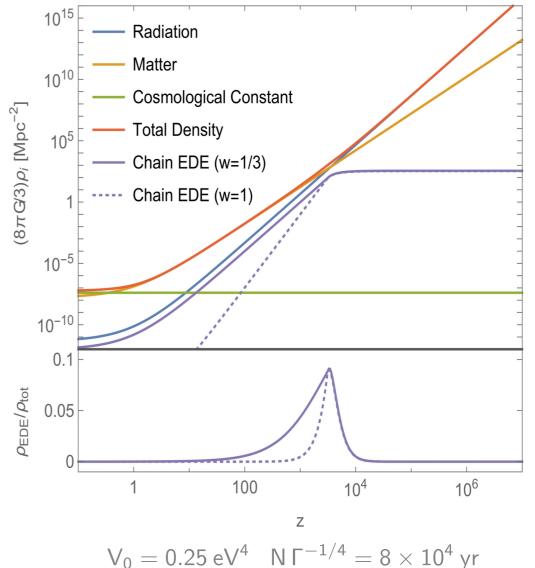
including energy from bubble collisions:

$$\begin{aligned} &z \, \frac{\mathrm{d}\rho_{\phi}}{\mathrm{d}z} \ \simeq \ \frac{1.4 \, \Delta V \, \Gamma^{1/4}}{\mathrm{H}(z)} \\ &z \, \frac{\mathrm{d}\rho_{\mathrm{DS}}}{\mathrm{d}z} \ \simeq \ -\frac{1.4 \, \Delta V \, \Gamma^{1/4}}{\mathrm{H}(z)} + 3(1+\mathsf{w}) \, \rho_{\mathrm{DS}} \end{aligned}$$

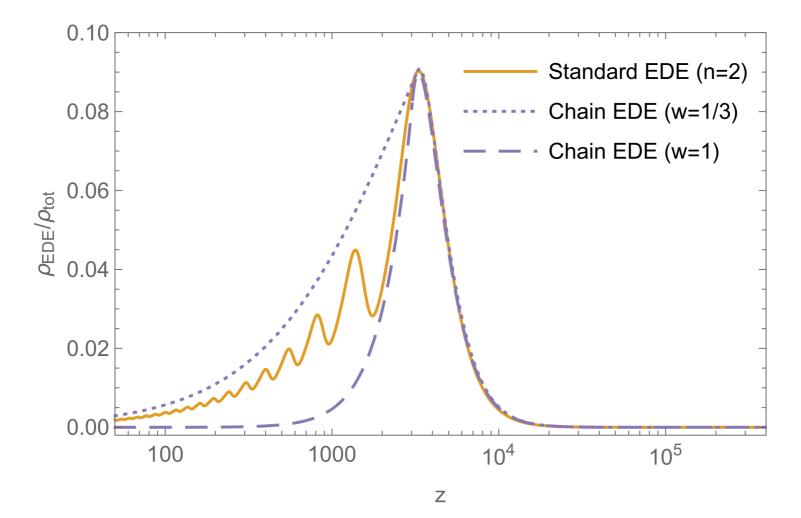
w = 1/3 (dark radiation) w = 1 (anisotropic stress)

 $\Gamma^{-1/4} \sim$ lifetime in single vacuum

 ΔV = energy difference between vacua



Comparison with Standard EDE

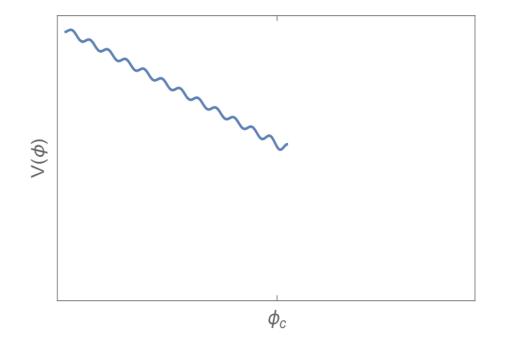


evolution of *P*EDE very similar to best-fit oscillating
 scalar field models
 solution to Hubble tension

Model Realization via Axions

• tilted cosine

$$\mathsf{V} = -\mathsf{g}\mathsf{M}^{3}\phi + \Lambda_{0}^{4}\cos\frac{\phi}{\mathsf{f}}$$



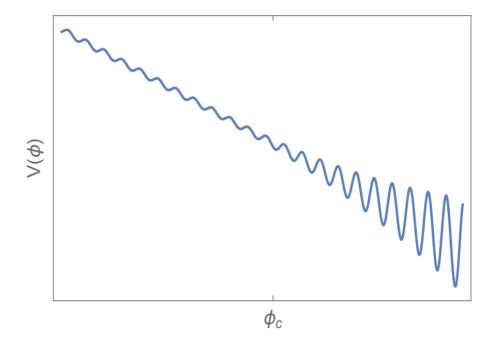
Model Realization via Axions

• tilted cosine + stopping

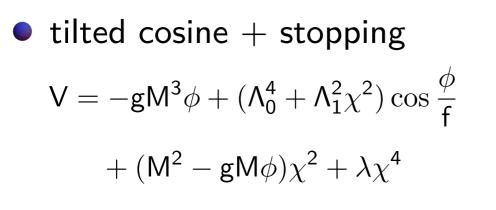
$$V = -gM^{3}\phi + (\Lambda_{0}^{4} + \Lambda_{1}^{2}\chi^{2})\cos\frac{\phi}{f}$$

$$+ (M^{2} - gM\phi)\chi^{2} + \lambda\chi^{4}$$

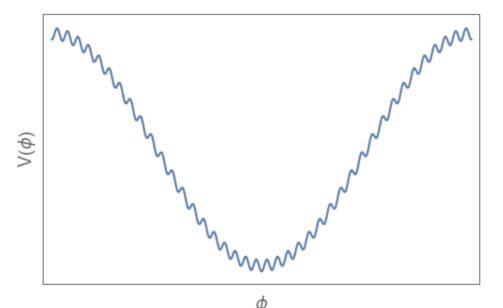
Graham, Kaplan, Rajendran 2015

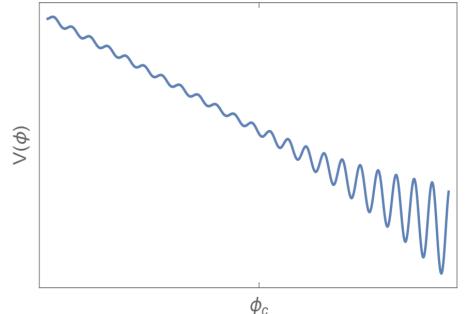


Model Realization via Axions



Graham, Kaplan, Rajendran 2015



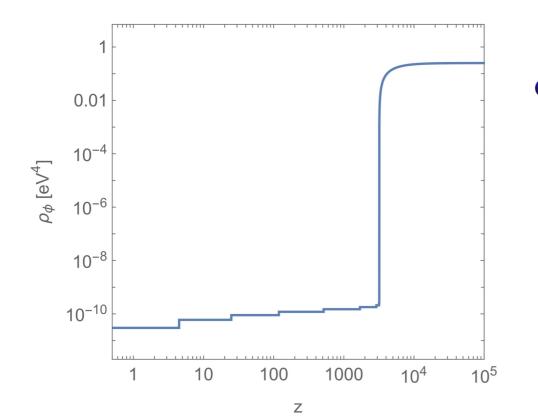


double-periodic potentials,
 e.g. axion with leading
 and subleading instanton

energy difference between minima in chain EDE

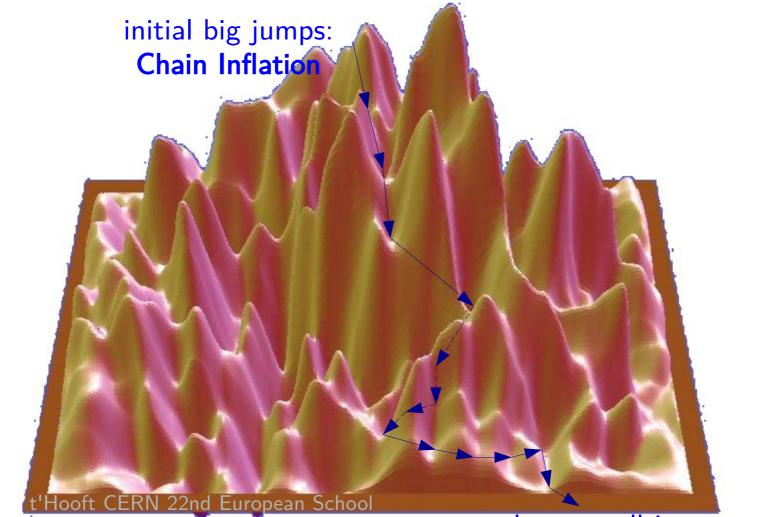
$$(\Delta V)^{1/4} \sim 2 \text{ meV} imes rac{300}{N^{1/4}}$$

scale of today's Dark Energy



 EDE field may get trapped in the lowest minimum with positive energy and account for today's Dark Energy

Recurrent Chain Dark Energy



later small jumps: Chain Early Dark Energy

see also: Freese, Liu, Spolyar 2006

June 28, 2021

- vacuum transitions can have played a major role in the history of the universe
- chain inflation is a serious competitor for slow roll inflation
- chain early dark energy provides a solution to the H₀ tension