GERDA Phase II: First Results

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Victoria Wagner for the GERDA collaboration

Max-Planck-Institut für Kernphysik

MPIK Heidelberg, 29.06.2016

The GERDA Collaboration: searching for neutrinoless double beta decay

Victoria Wagner (MPIK)

GERDA Phase II: First Results

2

Double Beta Decay

Double beta decay $(2\nu\beta\beta)$

- single β decay energetically forbidden
- (A,Z) \rightarrow (A,Z+2) + 2e⁻ + 2 $\overline{\nu}$
- e.g. ⁷⁶Ge, ¹³⁶Xe, ¹³⁰Te, ¹¹⁶Cd
- half-life of 2vββ decay of ⁷⁶Ge measured by GERDA (most recent and precise measurement):

$$T_{1/2}^{2\nu}$$
 = (1.926 ± 0.095) × 10²¹ yr

arXiv:1501.02345v1

Neutrinoless double beta decay ($0\nu\beta\beta$)

- (A,Z) \rightarrow (A,Z+2) + 2e⁻
- lepton number violated by $\Delta L = 2$

→ physics beyond SM

 proof of Majorana mass component of neutrinos

Victoria Wagner (MPIK)

Effective Majorana Neutrino Mass

Assuming light Majorana neutrino exchange

•
$$(T_{1/2}^{0\nu})^{-1} \propto |m_{ee}|^2$$

observable

• effective Majorana mass:

$$\left|m_{ee}\right| \equiv \left|\sum_{i} U_{ei}^{2} m_{i}\right|$$

Access to

- absolute neutrino mass scale
- mass hierarchy

Signature & Experimental Challenges

• Measure sum energy of electrons

Germanium Detectors

• Measure sum energy of electrons

High Purity Germanium (HPGe) Detectors

- excellent energy resolution (0.1% FWHM)
- low intrinsic background
- high detection efficiency of $\beta\beta$: source = detector
- HPGe detectors isotopically enriched in ⁷⁶Ge (~87%)
- discrimination of signal- from background like events using pulse shape analysis

GERDA @ LNGS

The Germanium Detector Array

GERDA Phase I Background

more details in EPJ C74 (2014) 2764

GERDA Phase I reached an

unprecedented signal-to-background ratio:

- 3:1 in 570-2039 keV
- 4:1 in 600-1800 keV

Victoria Wagner (MPIK)

GERDA Phase II: First Results

Results from GERDA Phase I

- 21.6 kg · y exposure
- blind analysis: events in ROI not available for analysis
- background index (BI) after pulse shape discrimination

 $BI = 1.0(1) \cdot 10^{-2} \frac{counts}{keV kg yr}$

• 10 times better BI than previous experiments

number of events in $Q_{\beta\beta} \pm 2\sigma_{E}$ after cuts (gray): • 2.0 ± 0.3 expected from background

3 observed

no signal observed at $Q_{\beta\beta}$ profile likelihood: best fit for $N_{0\nu\beta\beta} = 0$ \rightarrow limit on the half-life $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr}$ (90% C.L.)

→ claim rejected with 99% probability

GERDA: 90% lower limit $(T_{1/2}^{0v})$ [Phys. Rev. Lett. 111 (2013) 122503]

Claim: $T_{1/2}^{00} = 1.19 \times 10^{25} \text{ yr}$ [Phys. Lett. B 586 198(2004)]

Victoria Wagner (MPIK)

GERDA Phase II: First Results

GERDA Phase II Goal

• zero background regime

 $T_{1/2}^{0\nu} \propto M \cdot t$

 background, i.e. statistical fluctuation limited scenario

$$T_{1/2}^{0\nu} \propto \sqrt{\frac{M \cdot t}{\Delta E \cdot BI}}$$

M·t: exposure [kg yr], ΔE : energy resolution, BI: background index [counts/(keV kg yr)]

Phase II Goal: $T_{1/2}^{0\nu}$ in range of 10²⁶ yr

- increase of exposure \rightarrow increase detector mass
- improvements in energy resolution (but limited to given technology)
- significant reduction of background to re-enter background free regime
 - \rightarrow BI of 10⁻³ counts/(keV kg yr)

GERDA Phase II Array

Victoria Wagner (MPIK)

GERDA Phase II: First Results

Discriminating Signal from Background Events

ββ event

 local energy deposition (SSE) in single detector

background event

- energy deposition in multiple locations (MSE) in single detector
 - → pulse shape analysis
- coincident energy deposition in more than one detector
 - → detector anti-coincindence
- additional energy deposition in LAr
 - → LAr veto

Victoria Wagner (MPIK)

GERDA Phase II: First Results

14

⁴²K Background

field of Ge detectors

⁰⁺ 20^{Ca}

- tested in LArGe
- solution: transparent nylon cylinder coated with wave length shifter

designed, built and tested by A. Lubashevskiy, A. Smolnikov, et. al

GERDA Phase II: First Results

GERDA Phase II Commissioning

April '15: Pilot String

- integration of full string with 8 BEGe
- test new components, e.g. BEGe's, read-out electronics, contacting, etc
- commissioning of LAr veto

Victoria Wagner (MPIK)

GERDA Phase II: First Results

MPIK, 29.06.2016

16

²²⁸Th Suppression

Victoria Wagner (MPIK)

GERDA Phase II: First Results

MPIK, 29.06.2016

17

²²⁸Th Suppression

In case of discovery PSD will show if γ or $0\nu\beta\beta$ line

Victoria Wagner (MPIK)

GERDA Phase II: First Results

MPIK, 29.06.2016

Start of GERDA Phase II

- 30 enr BEGe's
- 9 semi-coaxial HP^{enr}Ge
- 3 semi-coaxial HP^{nat}Ge

The Phase II Array

Integration of Phase II Array

in December 2015

- 30 enr BEGe's
- 9 semi-coaxial HP^{enr}Ge
- 3 semi-coaxial HPnatGe

First data release in June 2016

- blinded region: 2014 2064 keV
- quality cuts ($\epsilon > 99.9\%$)
- events in coincidence with muon veto ($\epsilon \sim 99.9$ %)
- detector-detector coincidence

Energy Resolution

	BEGe		Coax	
FWHM at	keV		keV	
$Q_{\beta\beta} = 2039 \text{ keV}$	3.0 ± 0.2	0.15 %	4.0 ± 0.2	0.20 %
⁴⁰ K/ ⁴² K lines	2.7 ± 0.1	0.13 %	3.8 ± 0.1	0.19 %

Background Composition at Q_{BB}

Victoria Wagner (MPIK)

GERDA Phase II: First Results

MPIK, 29.06.2016

22

LAr Veto

- events in coincidence with LAr veto
- fraction of random coincidences 2.3% •

analysis of PMT traces by A. Wegmann

LAr Veto

- events in coincidence with LAr veto
- fraction of random coincidences 2.3%
- ⁴⁰K FEP at 1460 keV fully accepted
- ⁴²K FEP at 1525 keV suppressed by factor ~5

analysis of PMT traces by A. Wegmann

LAr Veto

- events in coincidence with LAr veto
- fraction of random coincidences 2.3%
- 40K FEP at 1460 keV fully accepted
- ⁴²K FEP at 1525 keV suppressed by factor ~5
- survival fraction in 1839-2239 keV:
 - 1/3 BEGe
 - 1/2 Coax

analysis of PMT traces by A. Wegmann

GERDA Phase II: First Results

A/E Analysis for BEGe's

A/E analysis

A/E Analysis for BEGe's

A/E analysis

BEGe PSD

- DEP events used as proxy for $0\nu\beta\beta$
- signal efficiency: 87.3 ± 0.9 %
- $2\nu\beta\beta$ acceptance: 85.4 +1.9 _0.8 %

BEGe PSD

- DEP events used as proxy for $0\nu\beta\beta$
- signal efficiency: 87.3 ± 0.9 %
- $2\nu\beta\beta$ acceptance: 85.4 +1.9 _0.8 %
- 80 % of background in ROI rejected

29

• TMIpAnn Algorithm:

50 input variables with

• TMIpAnn Algorithm:

50 input variables with

- MSE/ SSE discrimination:
 - SSE sample: DEP of ²⁰⁸Tl peak at 1593 keV
 - MSE sample: FEP of ²¹²Bi at 1621 keV

• TMIpAnn Algorithm:

50 input variables with

- MSE/ SSE discrimination:
 - cut set to 90 % acceptance of DEP events
 - preliminary signal efficiency 80 ± 9 %

• TMIpAnn Algorithm:

50 input variables with

- MSE/ SSE discrimination:
 - cut set to 90 % acceptance of DEP events
 - preliminary signal efficiency 80 ± 9 %
- α / SSE discrimination :
 - SSE sample: phy events in 1.-1.3 MeV
 - α sample: phy events 3.5 5.5 MeV

• TMIpAnn Algorithm:

50 input variables with

- MSE/ SSE discrimination:
 - cut set to 90 % acceptance of DEP events
 - preliminary signal efficiency 80 ± 9 %
- α / SSE discrimination :
 - cut set to 10 % acceptance α events
 - signal efficiency 96 ± 1 %

• TMIpAnn Algorithm:

50 input variables with

t(A=0.01), t(A=0.02), ..., t(A=0.99)

- MSE/ SSE discrimination:
 - cut set to 90 % acceptance of DEP events
 - preliminary signal efficiency 80 ± 9 %
- α / SSE discrimination :
 - cut set to 10 % acceptance α events
 - signal efficiency 96 \pm 1 %
- total signal efficiency 76 ± 10 %
- 65 % of background in ROI rejected

counts/ (2 keV)

data set	exposure [kg yr]	ϵ_{LAr}	€ _{PSD}	Energy resolution (keV, FWHM)	Background index 0.001 cnts/(keV kg yr)
Phase I gold	17.9	1	0.83	4.3 ± 0.2	11 ± 2
Phase I silver	1.3	1	0.83	4.3 ± 0.2	30 ± 10
Phase I BEGe	2.4	1	0.92	2.7 ± 0.2	5 ⁺⁴ -3

Phase I:

• PSD efficiency reduced from 90% to 83% and found bug in ROOFIT

• new energy reconstruction to improve energy resolution from

4.8 (3.2) keV to 4.3 (2.7) keV for coax (BEGe)

data set	exposure [kg yr]	٤ _{LAr}	$\epsilon_{_{PSD}}$	Energy resolution (keV, FWHM)	Background index 0.001 cnts/(keV kg yr)
Phase I gold	17.9	1	0.83	4.3 ± 0.2	11 ± 2
Phase I silver	1.3	1	0.83	4.3 ± 0.2	30 ± 10
Phase I BEGe	2.4	1	0.92	2.7 ± 0.2	5 ⁺⁴ -3
Phase I extra	1.9	1	0.83	4.2 ± 0.2	4.6 ^{+4.3} -2.5

Runs 47 + 49 from Phase I:

- unpublished, blinded
- May 31st Sept 30th 2013

data set	exposure [kg yr]	٤ _{LAr}	€ _{PSD}	Energy resolution (keV, FWHM)	Background index 0.001 cnts/(keV kg yr)
Phase I gold	17.9	1	0.83	4.3 ± 0.2	11 ± 2
Phase I silver	1.3	1	0.83	4.3 ± 0.2	30 ± 10
Phase I BEGe	2.4	1	0.92	2.7 ± 0.2	5 ⁺⁴ -3
Phase I extra	1.9	1	0.83	4.2 ± 0.2	4.6 ^{+4.3} -2.5
Phase II coax	5.0	0.98	0.76	4.0 ± 0.2	
Phase II BEGe	5.8	0.98	0.87	3.0 ± 0.2	

Phase II Coax:

PSD efficiency still preliminary

Unblinding at Ringberg Castle

GERDA Collaboration Meeting at Ringberg castle **17**th **June 2016**: opening 50 keV blinded window around Q_{BB}

	iTerm2 Shell Edit View Profiles Toolt	oelt Window H	elp	1, ash	🕑 🛆 🌠 🗔 🛜 92% 🖦 Fri 12-13 Q 😑	
	Load PhaseII data Time stamp of first en Time stamp of last ev Non-Blinded data: 990 Blinded data: 980	vent: UTC Fr ent: UTC We 316 events 979 events	i Dec 25 0 d Jun 1 0	0:45:09 2015 7:43:10 2016		210.000
	****** -> 337 events were bli	nded.				
	Search		•••••	•••••	th	
		•••••	•••••	•••••	et all	
	Searching for blinded	events				
		EnrBEGe	EnrCoax	Runs47-49		
	blinded events:	337	337			
	IN SUI in surviving QC cuts:	13	10	0		
	in energy range:	13	10	0		
	in ene surviving Mu veto:	6	4	0		
	SURVI surviving det. AC:	4	3	0		
	SURVIN surviving PSD:	0		õ		l'anniers
	survi					
	Survi\PhaseII data - 990300 Timestomp: Wed Jun 1	of 990316 07:40:22 201	6			
	Time Creating output		•••••••			
	(class TEventList *) @	x5fe09f0				
	root [2]					
	51 ST	00		M VO N Z		
				VC		
					and a second sec	-
					S R	
					14 A	
						-
						4
1000 -					A CONTRACTOR	
101 15				0	S Chill Market S	
41/3	The second second second		-	2		Sec.
The second se		1				
					A Commence of the second se	
L man		and the second se				
1						

GERDA Phase II: First Results

BEGe: Unblinded Spectrum

Victoria Wagner (MPIK)

GERDA Phase II: First Results

MPIK, 29.06.2016

Coax: Unblinded Spectrum

Victoria Wagner (MPIK)

GERDA Phase II: First Results

MPIK, 29.06.2016

41

First Phase II Results

data set	sensitivity [10 ²⁵ yr]	lower limit @ 90% C.L. [10 ²⁵ yr]
Phase I (PRL)	2.2	2.18
Phase I (PRL) + new E	2.3	2.79
Phase I (PRL) + Run 47/49 + new E	2.5	

Phase I:

• PSD efficiency reduced from 90% to 83% and found bug in ROOFIT

.

- new energy reconstruction to improve energy resolution
 - \rightarrow events shift within σ
- Run 47/49 unpublished Phase I data set

First Phase II Results

data set	sensitivity [10 ²⁵ yr]	lower limit @ 90% C.L. [10 ²⁵ yr]
Phase I (PRL)	2.2	2.18
Phase I (PRL) + new E	2.3	2.79
Phase I (PRL) + Run 47/49 + new E	2.5	
Phase II	2.2	

Phase II Coax:

PSD efficiency still preliminary

Spectrum at $Q_{\beta\beta}$

- 7 parameters: 6 BI + common $1/T_{1/2}$
- flat background + Gaussian in 1930-2190 keV range with mean at $Q_{\beta\beta}$ and standard deviation σ_{E}
- best for for $N_{0v} = 0$

$$T_{1/2}^{0\nu} \propto \frac{M \cdot t \cdot \epsilon}{N^{0\nu}}$$

 $M{\cdot}t{:}$ exposure, $N^{\text{ov}}{:}$ observed signal strength, $\epsilon_{_{\text{FEP}}}{:}$ detection efficiency

First Phase II Results

data set	sensitivity [10 ²⁵ yr]	lower limit @ 90% C.L. [10 ²⁵ yr]	
Phase I (PRL)	2.2	2.18	
Phase I (PRL) + new E	2.3	2.79	
Phase I (PRL) + Run 47/49 + new E	2.5		
Phase II	2.2		
Phase II + Phase I (PRL) + Run 47/49 + new E	3.1	3.5 (90 cre	% dibility)
preliminary PSD efficiency flat	ase II results: E prior on 1/T be	Bayesian fit wit etween 0 and 1	h .0 ²⁴ 1/yr

First Phase II Results

	data set	sensitivity [10 ²⁵ yr]	lower limit @ 90% C.L. [10 ²⁵ yr]	
	Phase I (PRL)	2.2	2.18	
	Phase I (PRL) + new E	2.3	2.79	
	Phase I (PRL) + Run 47/49 + new E	2.5		
preliminary F	PSD efficiency Phase II	2.2		
	Phase II + Phase I (PRL) + Run 47/49 + new E	4.0	5.3	
Phase II results: profile likelihood fit for 2-sided test (optimized for signal search). 1-sided analysis is in preparation.				

Victoria Wagner (MPIK)

Summary

- GERDA Phase II started successfully in
 December 2015
- all Ge detectors and LAr channels working
- 38 out of 40 Ge detectors used for analysis
- reached goal of background level of 0.001 counts/(keV kg yr)

• lowest background in ROI of all competing experiments

	median sensitivity (10 ²⁵ yr)	lower limit T _{1/2} (10 ²⁵ yr)
Bayesian	3.1	3.5 (90% credibility)
Frequentist	4.0	5.3 (90% C.L.)