New effects in dark matter production Sommerfeld, bound states, conversion and all that

Stefan Vogl

based on: Phys.Rev. D96 (2017) no.10, 103521 [arxiv:1705.09292] JHEP 1902 (2019) 016 [arxiv:1811.02581] and work in progress

> in collaboration with: S. Biondini, M. Garny, B. Lülf, J. Heisig

MAY-PLANCK-INS

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

What we know

gravitational evidence for dark matter on all scales: rotation curves, clusters, large scale structure, CMB

 $\Omega \textit{h}^2 \approx 0.12$

S. Vogl (MPIK)

What we don't know

- gravitational signatures do not provide any information about the nature of dark matter as a particle
- interactions with SM are highly uncertain
- will need different experiments and observations to determine properties of dark matter

Where should we look?

- your favorite BSM model
- under the lamp post

► ...

Taking a hint from cosmology

 $\mathrm{d}\textit{n}_{\chi}/\mathrm{d}\textit{t}+3\textit{H}\textit{n}_{\chi}=\textit{C}$

- ingredients:
 - interactions of dark matter
 - evolution of the universe
 - initial conditions
- the production mechanism sets key aspects of DM phenomenology

here: focus on interactions

Thermal freeze-out

- universe starts at a high temperature
- dark matter part of plasma and in thermal equilibrium
- universe expands and cools
- once m_{DM} ≥ T interactions rate becomes suppressed → DM drops out of thermal equilibrium

$$\frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} = \frac{1}{3H}\frac{\mathrm{d}s}{\mathrm{d}x}\left[\left\langle \sigma_{\chi\chi}v\right\rangle\left(Y_{\chi}^{2}-Y_{\chi}^{\mathrm{eq}\,2}\right)\right]$$

 $\sigma v \approx 2 \times 10^{-26} \text{cm}^3/\text{s}$ weak scale cross section

S. Vogl (MPIK)

Teilchentee, Heidelberg, 27th of June 2019 5

Thermal dark matter

Direct detection limits

XENON1T 2018

Thermal dark matter

Direct detection limits very stringent. Models with simple crossing symmetry are getting in trouble.

 \Rightarrow simple crossing symmetry too simple?

Coannihilations

For light mediators ($\Delta m_{med} \leq 1.2 m_{DM}$) coannihilation matters during freeze-out

Griest Seckel 1991

 \blacktriangleright want big cross sections for coannihilation partners \rightarrow colour charge them

Models for coloured coannihilations

Majorana fermion dark matter χ and scalar quark partner η

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \bar{\chi} \left(i \partial \!\!\!/ - M_{\chi} \right) \chi + (D_{\mu} \eta)^{\dagger} D^{\mu} \eta - M_{\eta}^{2} \eta^{\dagger} \eta - \lambda_{2} (\eta^{\dagger} \eta)^{2} - \lambda_{3} \eta^{\dagger} \eta H^{\dagger} H - y \eta^{\dagger} \bar{\chi} P_{R} q - y^{*} \bar{q} P_{L} \chi \eta ,$$

simplified t-channel model with fermionic mediator

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{\rm SM} + \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{M_{S}^{2}}{2} S^{2} - \frac{\lambda_{2}}{4!} S^{4} - \frac{\lambda_{3}}{2} S^{2} H^{\dagger} H \\ &+ \bar{F} \left(i D - M_{\chi} \right) F - y S \bar{F} P_{R} q - y^{*} S \bar{q} P_{L} F \end{aligned}$$

fermionic dark matter with color octet fermion partner

$$\mathcal{L} = \dots$$

► ...

qualitative features model independent

Dark sector annihilations

$$\begin{split} \frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} &= \frac{1}{3H} \frac{\mathrm{d}s}{\mathrm{d}x} \left[\left\langle \sigma_{\chi\chi\nu} \right\rangle \left(Y_{\chi}^2 - Y_{\chi}^{\mathrm{eq}2} \right) + \left\langle \sigma_{\chi\bar{q}} \nu \right\rangle \left(Y_{\chi}Y_{\bar{q}} - Y_{\chi}^{\mathrm{eq}}Y_{\bar{q}}^{\mathrm{eq}} \right) \right. \\ &+ \frac{\Gamma_{\chi \to \bar{q}}}{s} \left(Y_{\chi} - Y_{\bar{q}} \frac{Y_{\chi}^{\mathrm{eq}}}{Y_{\bar{q}}^{\mathrm{eq}}} \right) - \frac{\Gamma_{\bar{q}}}{s} \left(Y_{\bar{q}} - Y_{\chi} \frac{Y_{\bar{q}}^{\mathrm{eq}}}{Y_{\chi}^{\mathrm{eq}}} \right) + \left\langle \sigma_{\chi\chi \to \bar{q}\bar{q}\bar{q}^{\dagger}} \nu \right\rangle \left(Y_{\chi}^2 - Y_{\bar{q}}^2 \frac{Y_{\chi}^{\mathrm{eq}2}}{Y_{\bar{q}}^{\mathrm{eq}2}} \right) \right] \\ \frac{\mathrm{d}Y_{\bar{q}}}{\mathrm{d}x} &= \frac{1}{3H} \frac{\mathrm{d}s}{\mathrm{d}x} \left[\frac{1}{2} \left\langle \sigma_{\bar{q}\bar{q}^{\dagger}} \nu \right\rangle \left(Y_{\bar{q}}^2 - Y_{\bar{q}}^{\mathrm{eq}2} \right) + \left\langle \sigma_{\chi\bar{q}} \nu \right\rangle \left(Y_{\chi}Y_{\bar{q}} - Y_{\chi}^{\mathrm{eq}}Y_{\bar{q}}^{\mathrm{eq}} \right) \\ &- \frac{\Gamma_{\chi \to \bar{q}}}{s} \left(Y_{\chi} - Y_{\bar{q}} \frac{Y_{\chi}^{\mathrm{eq}}}{Y_{\bar{q}}^{\mathrm{eq}}} \right) + \frac{\Gamma_{\bar{q}}}{s} \left(Y_{\bar{q}} - Y_{\chi} \frac{Y_{q}^{\mathrm{eq}}}{Y_{\chi}^{\mathrm{eq}}} \right) - \left\langle \sigma_{\chi\chi \to \bar{q}\bar{q}\bar{q}^{\dagger}} \nu \right\rangle \left(Y_{\chi}^2 - Y_{\bar{q}}^2 \frac{Y_{\chi}^{\mathrm{eq}2}}{Y_{\bar{q}}^{\mathrm{eq}2}} \right) \right] \end{split}$$

coupled Boltzmann equations with annihilation, co-annihilation and conversion terms

Effective cross section

for sufficiently fast conversion rate system simplifies

$$\frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} = \frac{1}{3H} \frac{\mathrm{d}s}{\mathrm{d}x} \left[\left\langle \sigma_{\chi\chi} v \right\rangle_{eff} \left(Y_{\chi}^2 - Y_{\chi}^{\mathrm{eq}\,2} \right) \right]$$

where

$$\sigma \mathbf{V}_{\text{eff}} \approx \sigma_{\chi\chi} \mathbf{V} + \sigma_{\chi\eta} \mathbf{V} \, \mathbf{e}^{-\Delta m/T} + \sigma_{\eta\eta} \mathbf{V} \, \mathbf{e}^{-2\Delta m/T}$$

Sommerfeld effect

- exchange of long-range mediator leads to non-perturbative modification of annihilation rates Hisano at al '05
- intuitive description: distortion of the wave-function due to potential
- extract wave function from non-relativistic Schrödinger equation with Coulomb potential

$$V(r) = \frac{\alpha}{r} \Rightarrow S = \frac{-\pi \alpha/\beta}{1 - \exp^{\pi \alpha/\beta}}$$
 with $\beta = v/2$

De Simone et al '14, Ibarra, Pierce, Shah, SV '15

• effect large for large α and small β (i.e. long time)

S. Vogl (MPIK)

Relic density with Sommerfeld

Ibarra, Pierce, Shah, SV '15

more non-perturbative effects

need to treat long range interactions in thermal background

- Sommerfeld enhancement Hisano et al '05
- bound state formation von Harling, Petraki '14
- thermal background

complicated problem but similarities with heavy quarkonium in medium

 \rightarrow re-purpose tools for quarkonium at finite temperature use non-relativistic effective field theories (NREFT)

NREFT for coannihilations in a nutshell I

non-relativistic EFT

- factorize hard process from initial state effects (non-relativistic EFT, essentially 1/M_η expansion)
- $\sigma v = \sum_{i} c_i \langle O_i \rangle_T$ (thermal expectation value of NREFT operators)
- $\langle O_i \rangle_T$ can expressed in terms of spectral functions ρ

Kim, Laine '16, Biondini, Laine '18

$$\langle \mathcal{O}_i \rangle_T = e^{-2M_\chi/T} \left(\frac{M_\chi T}{\pi}\right)^{\frac{3}{2}} \int_{-\Lambda}^{\infty} \frac{dE'}{\pi} e^{-E'/T} \rho_i(E')$$

NREFT for coannihilations in a nutshell II

spectral functions

 spectral function can be extracted from solution of plasma modified Schrödinger equation

$$\left[H_{\mathcal{T}}-i\Gamma_{\mathcal{T}}(\mathbf{r})-E'\right]G_{i}(E';\mathbf{r},\mathbf{r}')=N_{i}\,\delta^{(3)}(\mathbf{r}-\mathbf{r}')\,,\quad(1)$$

$$\lim_{\boldsymbol{r},\boldsymbol{r}'\to\boldsymbol{0}} \operatorname{Im} G_i(\boldsymbol{E}';\boldsymbol{r},\boldsymbol{r}') = \rho_i(\boldsymbol{E}'), \qquad (2)$$

- thermal potentials V_T for static charges and interaction rates with plasma constituents Γ_T
- derive potentials in pNREFT (i.e. EFT with degrees of freedom M_ην integrated out)
- most relevant effects: Debye screening (thermal gluon mass), Landau damping and gluo-dissociation

After the dust settles

effective thermally averaged annihilation cross section

$$\langle \sigma_{\rm eff} v \rangle = \frac{2c_1 + 4c_2 N_c e^{-\Delta M_T/T} + N_c \left[c_3 \bar{S}_3 + c_4 \bar{S}_4 C_F + 2c_5 \bar{S}_5 (N_c + 1) \right] e^{-2\Delta M_T/T}}{\left(1 + N_c e^{-\Delta M_T/T} \right)^2}$$

c_i are coefficients of NREFT

generalized Sommerfeld factors

$$\bar{S}_{i} = \left(\frac{4\pi}{M_{\chi}T}\right)^{\frac{3}{2}} e^{\frac{2\Delta M_{T}}{T}} \int_{-\Lambda}^{\infty} \frac{dE'}{\pi} e^{-E'/T} \frac{\rho_{i}}{N_{i}}$$

Relic density

significant shifts in relic density

S. Vogl (MPIK)

NREFT meets pheno

use precise prediction for thermal production to predict experimental signatures

Test it with

- ID: suppressed σv X
- ► LHC searches: X (√)
- DD: guaranteed for colored mediators

NREFT meets pheno

use precise prediction for thermal production to predict experimental signatures

Scattering of DM off nucleons: light flavor

- tree-level interactions with light quarks
- SD scattering at lowest order
- contribution to SI scattering cancels at lowest order for Majorana DM with chiral interaction; expansion to higher order necessary

Drees, Nojiri 93

resonant enhancement of interactions for small mass difference

Hisano, Ishiwata, Nagata 2011

$$\sigma_{SD(SI)} \sim \left[rac{1}{m_\eta^2-(m_\chi+m_q)^2}
ight]^{2(4)}$$

Impact on parameter space: up-quark

Scattering of DM off nucleons: heavy flavor

- no top-quarks in the nucleus \rightarrow no tree level coupling
- loop induced dark matter nucleus coupling
 - gluon box Drees, Nojiri 93
 - Higgs triangle Ibarra, Pierce, Shah, SV '15
- Higgs typically dominates
- Gluons lead to cancellation close to top mass

Impact on parameter space: top-quark

Current limitation

- ► long decoupling time → potential become unreliable for low masses (lattice?)
- generalized thermal potentials (different hierarchy of scales)
- ► systems without mass gap need improvements → formalism assumes equilibrium between bound states and ionized stated

Binder, Covi, Mukaida '18

What happens in the lower left corner?

Inaccessible region?

- For smaller y smaller ∆M needed
- $\sigma v_{\chi\chi} \propto y^4$ and $\sigma v_{\chi\eta} \propto y^2$
- $\blacktriangleright \sigma V_{\eta\eta} \propto \alpha_S$
- eventually $\sigma v_{eff} = \sigma v_{\eta\eta}$

make y arbitrarily small?

Conversion driven freeze-out

revisit coupled Boltzmann equations

$$\begin{aligned} \frac{\mathrm{d}Y_{\eta}}{\mathrm{d}x} &= \frac{1}{3H} \frac{\mathrm{d}s}{\mathrm{d}x} \Bigg[\frac{1}{2} \langle \sigma_{\eta\eta^{\dagger}} \mathbf{v} \rangle \left(Y_{\eta}^{2} - Y_{\eta}^{\mathrm{eq}\,2} \right) \\ &- \frac{\Gamma_{\chi \to \eta}}{s} \left(Y_{\chi} - Y_{\eta} \frac{Y_{\chi}^{\mathrm{eq}}}{Y_{\eta}^{\mathrm{eq}}} \right) + \frac{\Gamma_{\eta}}{s} \left(Y_{\eta} - Y_{\chi} \frac{Y_{\eta}^{\mathrm{eq}}}{Y_{\chi}^{\mathrm{eq}}} \right) \Bigg] \end{aligned}$$

$$\frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} = \frac{1}{3H}\frac{\mathrm{d}s}{\mathrm{d}x}\left[-\frac{\Gamma_{\eta}}{s}\left(Y_{\eta} - Y_{\chi}\frac{Y_{\eta}^{\mathrm{eq}}}{Y_{\chi}^{\mathrm{eq}}}\right) + \frac{\Gamma_{\chi \to \eta}}{s}\left(Y_{\chi} - Y_{\eta}\frac{Y_{\chi}^{\mathrm{eq}}}{Y_{\eta}^{\mathrm{eq}}}\right)\right]$$

- ηη annihilations, conversion from scattering and conversion for decay important
- ▶ interesting things will happen for $\Gamma_{\chi \to \eta} + \Gamma_{\eta} \approx H$

Relic density

representative parameter point: $m\chi = 500$ GeV and $m_{\eta} = 510$ GeV

Quantitative analysis

▶ point with correct relic density:: $m\chi = 500$ GeV, $m_\eta = 510$ GeV and $y = 2.6 \times 10^{-7}$

• conversion driven freeze-out effective for $\Gamma \approx H$

Conversion driven equilibration

- $\Gamma \approx H$ is sufficient to allow equilibration
- no dependence on initial condition

Pheno estimates

small coupling of $\mathcal{O}(10^{-7})$

- ID: suppressed σv X
- DD: suppressed σv X

but: interaction rate has to be about the Hubble rate

$$\Gamma_\eta \approx H$$

this is the decay rate of a heavy particle ϕ in a plasma

$$y pprox 20 \sqrt{rac{T_{max}^2}{m_\eta M_{Pl}}} pprox 10^{-8} rac{m_\eta}{100 \ {
m GeV}}$$
 $c_{ au} pprox rac{1}{H} pprox rac{M_{Pl}}{\sqrt{g_*} m_\eta^2} pprox 100 \left(rac{{
m GeV}^2}{m_\eta^2}
ight) {
m m}$

- non-thermal dark matter indicates long-lived particles
- LHC production controlled by gauge interactions of η \checkmark

S. Vogl (MPIK)

Parameter space

- monojet search ATLAS 1604.07773
- search for detector stable R-hadrons CMS 1305.0491 and CMS-PAS-EXO-16-036

S. Vogl (MPIK)

Conclusion

- dark matter production is excellent guide to dark matter phenomenology
- need to explore full range of possibilities
- new effects can have profound impact on dark matter production, for example
 - bound state formation
 - conversion-driven freeze-out
 - dark sector self-thermalization
- ▶ new effects in production ⇒ new effects in phenomenology