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How can we search for dark
matter at the LHC?



LHC and Dark Matter

» experimentally very challenging environment with huge
backgrounds
» dark matter does not interact with detector
» only one observable directly connected to dark matter: missing
transverse energy E ..
» only SM source of E]...: neutrinos
» two options:
» dark matter part of new sector, look for signs of mediators
» more model independent look for E/ ., and something (jet, photon,
Z, ..
— Ie)t’s try to follow this line of thought for now
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Monojets

q DM

plot stolen from CMS
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High energy tail of monojet events
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What does an excess (the absence of an excess) of
events tell us?

average physicist: not much

We need:

framework for interpretation of LHC searches

» framework for interpretation of different experiments

» provide guide to relevant regions of the parameter space
| 4

v

— models for dark matter at the LHC
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General BSM models

» many models for BSM physics at the weak scale can easily
accommodate dark matter
» Supersymmetry: many different potential dark matter candidates
(neutralino, gravitino, ...)
» extra dimensions: Kaluza-Klein dark matter ...
» these models offer well motivated candidates, everything is
calculable, many experimental signatures

» BUT: most of the experimental signatures and/or theoretical
constraints are not related to DM properties
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Model independent interpretation: EFT

new physics is heavy — Fermi-like theory for DM?
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Model independent interpretation:EFT
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Not quite as model independent interpretation:
Simplified models

» if new physics is not very heavy we have to keep those particles
to capture the phenomenology
= keep dark matter particle and the mediator(s) between dark
matter and the Standard Model
» possible ways to think about this:
» simplification of more complex UV model
» could be a viable model in itself (dark matter connected to SM by
U(1 )B-L etc)
» substantial number of possibilities:
scalar dark matter, fermionic dark matter, vector dark matter,
scalar mediators, fermionic mediators ...

see "Report of the ATLAS/CMS Dark Matter Forum", 1507.00966 [160 pp.]
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S-channel vector mediator

» fermionic dark matter interacts with SM fermions via a Z’ boson

L=— > Z"Fg/ v+ 9/l f = 2" [gow + Ghumn®] v -

f=q,l,v
DM>WZ’N<’0
DM f
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LHC benchmark models
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» ATLAS and CMS report limits on this benchmark model
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Simplified phenomenology: vector interactions
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Simplified phenomenology: axial interactions

» spin-dependent direct
detection

» LHC monojet search
complementary

» substantial parameter
space for thermal dark
matter
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Z' mediators: more questions

fermionic dark matter interactions with SM fermions are mediated by
a Z' boson

L== " Z"F[g/ v+ 9"l f = 2% [gBurn + Gowra®] ¢ -
f=q,l,v

Are results obtained in simplified model reliable?
Where does this model come from?
Are there relations between different couplings/parameters?

which parts of parameter space are favored for thermal dark
matter

vV v v v
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Let’'s get out the toolbox
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Perturbative Unitarity

» we know from SM that massive vector boson lead to issues with
unitarity

» partial wave analysis of the amplitude
J 1 1 J
Mi(s) = ?’27[3,-, /_1 dcos6d;,, (0) Mi(s,cosd)

with B : kinematical factor and d;ju,(a) : Wigner d-function

» perturbative unitarity requires

1

0<Im(My) <1, [Re(M;)| <.

» check validity of model
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DM side: self scattering

v

longitudinal component of vector couples proportional to
ghme/mz

leads to a constant matrix element independent of s
perturbative unitarity is violated unless

™ Mz
me < \/>
2 gi
DM can not be arbitrary heavy compared to mediator (or is
arbitrarily weakly coupled )

v

v

v
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DM side: DM DM — Z'Z’

» even worse: matrix element diverges in high energy limit
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A dark Higgs

» need to restore perturbative unitarity = Higgs mechanism
» break U(1)’ with scalar singlet S
» Lagrangian is given by (Majorana dark matter)

i- 1 - 1 -
Lpwm :EUNW - §QSMZ/“7/)75’YM¢ - EYDMw(PLS + PrS")y,
Ls=[(0" +igsZ™)8] (8, +1952Z.)S) + 15 S'S — X (STS)Z

side remark: vector interaction don’t generate these problems (mz
from Stueckelberg mechanism) but phenomenology boring (excluded)
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A look at the SM side: gauge invariance

» fermionic dark matter interactions with SM fermions mediated by
Z' boson

L== " Z"F g/ v+ 9] = 2" [g8mn + omrun®] ¥ -
f=q,l,v

» looks fine but:

L 1.
9 =59 +a), 97 =59 —a)

» general Z’ couplings break SM gauge invariance (SM Yukawa
terms)
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SM side: gauge invariance

» need a consistent picture for SU(2) x U(1) x U(1)’ breaking

af :%g'(qu — gy,) breaks gauge invariance
gH =g, — Qus = Qds — Qq, = Ger — Gy, restores it

» leads to following Lagrangian:

Low=— > dZ" [ay fvufe + G, fayufa]
f=q,¢,v

+[(D"H) (~ig'au Z, H) + h.c] + g2 g4 Z"Z, H'H

This is a simple solution, not a unique solution!
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Anomalies

v

we do not specify additional particles which cancel anomalies
there is no color anomaly

v

Aggzr = 3(2Qq, — Qus — Gar) = 0 fOor gn =Qq, — Qus = Qdr — Ja.

no new colored states
expect that new states do not modify phenomenology

v

v
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Implications for Phenomenology

9H =Qq. — Qusg = Qds — dq, = Qeg — qt,

» Z' interacts with all generations of quarks and with leptons
= stringent constraints from searches for dilepton resonances

» off-diagonal mass term §m?Z+Z;, with

2_199/QHV2

om- =
2 Sw Cw

= constraints from electroweak precision tests

» notall gy = 0 at the same time
in the following we assume couplings just to right handed fields
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Spot the difference: axial(DM)-axial(SM)
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» stringent constraints from EWPTs and dilepton resonance
» substantial part of parameter space inconsistent
» modified thermal expectation
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What about vector
couplings to the SM?



Kinetic mixing

» kinetic mixing —} sin eF’#* B,,,, allowed at tree level

» quarks charged under U(1)y and U(1)’ generate kinetic mixing
at 1-loop

> expect:

%
egq

e(p) = o2

A v A
mlog; ~0.02g, Iog;
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Limit on loop induced kinetic mixing

ghu=1.gy =025

DM overproduction

» relevant limits from loop
induced couplingto | AL 70
leptons '

» di-jet resonance

» different searches
complementary

Eleefroweak precision tests
- 1
10? 10° 10*
mpw [GeV]
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Coupling structure

» Vector(DM)—Vector(SM)

» UV-complete, no new degrees of freedom necessary
» stringent constraints from spin-independent direct detection

Axial(SM/DM) couplings require new physics

» Vector(DM)—Axial(SM)
» simple gauge invariant models: Axial(SM) =
Axial(SM)+Vector(SM)
» new stringent constraints from spin-independent direct detection
» Axial(DM)—Axial(SM)+Vector(SM)
» mass mixing between Z and Z’ (EWPT)
» universal axial coupling = stringent constraints from dilepton
searches
» Axial(DM)—Vector(SM)
» least constrained scenario
» kinetic mixing at loop level expected
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Coupling structure wrap up

» Vector(DM)—Vector(SM)

» UV-complete, no new degrees of freedom necessary
» stringent constraints from spin-independent direct detection

Axial(SM/DM) couplings require new physics

» Vector(DM)—Axial(SM)
» simple gauge invariant models: Axial(SM) =
Axial(SM)+Vector(SM)
» new stringent constraints from spin-independent direct detection
» Axial(DM)—Axial(SM)+Vector(SM)
» mass mixing between Z and Z’ (EWPT)
» universal axial coupling = stringent constraints from dilepton
searches
» Axial(DM)—Vector(SM)
» least constrained scenario
» kinetic mixing at loop level expected
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Let’s take a look under this rock

Where is thermal dark matter?
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The two mediator model

» 3 particles = 3 masses: m,,, mz and mg

» one dark sector coupling g, or y, (one fixed U(1)" breaking)
» vector coupling of quarks to Z’ gq

» mixing between SM and dark Higgs: 6

= 6 parameters

v

just two new parameters
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Possible cases

» one mediator heavy and weakly coupled: reduces to standard
simplified model

» mass and interaction strength comparable: true two mediator
model

» one mediator light: relic density potentially set by new final states

DM _- S

-~

DM

~

DM >~ S
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Slicing the parameter space
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Global scan

scan gy and 6 — determine
thermal value for gpuy

» all values of g4 and 6 —
are excluded by at least
one experiment or
perturbative unitarity

» there is at least one
unstrained combination

» there is at least one
unexcluded combination
for which the applicability
of LHC constraints can not
be guaranteed (broad
resonance)
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Benchmark 3: "classic" WIMP

Warning: g, is allowed to change

Benchmark point 3

Dileptons

Monojets
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Benchmark 2: resonant annihilations

Benchmark point 2
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Benchmark 5: heavy mediators

Benchmark point 5
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Benchmark 4: broad resonances

Benchmark point 4
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Benchmark 1: light mediators

Benchmark point 1

my =100 GeV
mz =75 GeV
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"secluded" dark matter from annihilations into Z’s final states
small couplings allowed
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Global picture

» light DM very
constrained:
resonant
annihilation or
at least one
light mediator
» heavy DM:
slightly more
space and
regions with
broad

resonances
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Outlook

» heavy mediators already very constrained

» annihilation to light mediators/ resonant annihilations are hard to
probe

» potential ways forward

» non standard Higgs decays H — ssor H — Z2'Z’
» mono-dark-Higgs production from dark Higgs Strahlung

Qg —~ 2" —-2Z's
or final state radiation
qq — Z' — xx — xx$

» indirect detection with next generation instruments (CTA)
side remark: Galactic center excess can be accommodated
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Conclusion

» simplified models are a useful tool for DM/collider
phenomenology

» "naive" simplified models can violate gauge invariance and
perturbative unitarity

» interpretation needs care
» realistic models lead to powerful new signatures

» LHC, direct and indirect detection constrain thermal dark matter
severely

» two mediator model opens new parameter space for thermal
dark matter
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Backup material
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104

Kinetic mixing and axial couplings
Couplings which can not account for thermal dark matter
» tree level kinetic mixing

» axial coupling for SM fermions (EWPT and dilepton resonance!)

my [GeV]
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Velocity suppressed direct detection

» L = x7"v°x§v,q leads to velocity dependent interactions in
non-relativistic limit

Lay =~ Lyy X V-8

» current direct detection limits are strong enough to constrain
operator despite suppression
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