

Cosmological Neutrinos

Matteo Viel - INAF/OATs Max-Planck-Institute fuer Kernphysik - Heidelberg

11th May 2016

FRAMEWORK

What can the Universe Large Scale Structure (LSS) tell us about cosmological neutrinos?

QUESTIONS TO BE ADDRESSED

- 1) Can they be probed by looking at their energy density contribution?
- 2) Can they be probed by looking at their perturbations?
- 3) Have we detected departures from the standard/expected Cosmic Neutrino Background (CNB)?
- 4) Are these findings robust?
- 5) Are there perspectives of discoveries in the next few years?

CNB in the relativistic regime

CNB predicted in 1953 by Alpher et al.

PHYSICAL REVIEW

VOLUME 92, NUMBER 6 DECEMBER 15, 1953

Physical Conditions in the Initial Stages of the Expanding Universe*,†

RALPH A. ALPHER, JAMES W. FOLLIN, JR., AND ROBERT C. HERMAN Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland (Received September 10, 1953)

$$\omega_{\rm R} = \omega_{\gamma} (1 + N_{\rm eff} \times 7/8 (4/11)^{4/3})$$
 with $N_{\rm eff} = 3.046$

in the relativistic regime

Planck (CMB) + several other combinations yield evidence of $N_{eff} > 0$ at a level between 10-17 σ

$$\bullet$$
 $\omega_{M} = \omega_{b} + \omega_{CDM} + (\Sigma m_{v}) / 93.14 \text{ eV}$

→

Impact on the matter clustering through neutrino free streaming, impact on CMB statistics (angular diameter distance, Late ISW effect)

No convincing evidence for this effect, i.e. a non zero total mass

(although be aware that claims have been made)

Measuring N_{eff} - CNB average density

Key issue: exploiting different evolution of the matter and radiation energy densities

There is an obvious degeneracy: can preserve all redshifts by increasing N_{eff}, H0 and keeping energy densities fixed – However this will cause more damping in the CMB power spectrum.

Measuring N_{eff} - CNB average density - II

In this relativistic regime, perturbations have been tested and support the view that this contribution to Neff is really made by neutrinos (and not by other particles).

95%, *Planck* TT+lowP+lensing+BAO.

 $m_{\nu, \text{ sterile}}^{\text{eff}} < 0.38 \text{ eV}$

Models with Δ Neff=0.4 mildly Disfavoured but require higher σ_8 and H_0

Total neutrino mass from the CMB

3 key parameters: power spectrum amplitude, neutrino masses and H0

Departing from LCDM using neutrinos is difficult

Claims of non zero neutrino mass 0.3 \pm 0.1 eV appear to be a compromise to reconcile low σ_8 values suggested by weak lensing and/or cluster number counts – some is true for the sterile sector.

Tension with CMB data H_0 value between 2 and 3σ

A 2.4% Determination of the Local Value of the Hubble Constant¹

Adam G. Riess^{2,3}, Lucas M. Macri⁴, Samantha L. Hoffmann⁴, Dan Scolnic^{2,5}, Stefano Casertano³, Alexei V. Filippenko⁶, Brad E. Tucker^{6,7}, Mark J. Reid⁸, David O. Jones², Jeffrey M. Silverman⁹, Ryan Chornock¹⁰, Peter Challis⁸, Wenlong Yuan⁴, and Ryan J. Foley^{11,12}

km s⁻¹ Mpc⁻¹, respectively. Our best estimate of $H_0 = 73.02 \pm 1.79$ km s⁻¹ Mpc⁻¹ combines the anchors NGC 4258, MW, and LMC, and includes systematic errors for a final uncertainty of 2.4%. This value is 3.0σ higher than 67.3 ± 0.7 km s⁻¹ Mpc⁻¹ predicted by Λ CDM with 3 neutrino flavors having a mass of 0.06 eV and the *Planck* data, but the discrepancy reduces to 2.0σ relative to the prediction of 69.3 ± 0.7 km s⁻¹ Mpc⁻¹ based on the comparably precise combination of WMAP+ACT+SPT+BAO observations, suggesting that systematic uncertainties in cosmic microwave background radiation measurements may play a role in the tension.

If we take the conflict between *Planck* high-redshift measurements and our local determination of H₀ at face value, one plausible explanation could involve an additional source of dark radiation in the early Universe in the range of $\Delta N_{eff} \approx 0.4 - 1$. We

Impact on structure formation

i.e. neutrino perturbations

$$0.056 \,(0.095) \,\,{
m eV} \lesssim \, \sum_i m_i \lesssim 6 \,\,{
m eV}$$

COSMOLOGICAL NEUTRINOS - II: FREE-STREAMING SCALE

Neutrino thermal
velocity
$$v_{\rm th} \equiv \frac{\langle p \rangle}{m} \simeq \frac{3T_{\nu}}{m} = \frac{3T_{\nu}^0}{m} \left(\frac{a_0}{a}\right) \simeq 150(1+z) \left(\frac{1\,{\rm eV}}{m}\right) \,{\rm km\,s^{-1}}$$

Neutrino free-streaming scale Scale of non-relativistic transition
 $k_{FS}(t) = \left(\frac{4\pi G\bar{\rho}(t)a^2(t)}{v_{\rm th}^2(t)}\right)^{1/2} \quad k_{\rm nr} \simeq 0.018 \,\Omega_{\rm m}^{1/2} \left(\frac{m}{1\,{\rm eV}}\right)^{1/2} h \,{\rm Mpc^{-1}}$

Below k_{nr} there is suppression in power at scales that are cosmologically important

COSMOLOGICAL NEUTRINOS - III: LINEAR MATTER POWER

COSMOLOGICAL NEUTRINOS : NON-LINEAR MATTER POWER

Neutrino clustering

THE NEUTRINO HALO?

Villaescusa-Navarro, Bird, Garay, Viel, 2013, JCAP, 03, 019 Marulli, Carbone, Viel+ 2011, MNRAS, 418, 346

Halo mass function

Castorina, Sefussati, Sheth, FVN, Viel 2013

ΤΟΡΙϹ	DATA	THEORY	RESULTS		
<u>BAOs</u>	QSO Lya flux and coss correlation with QSOs 3D analysis - low res	Mocks	Clear detection, small tension with Planck		
<u>Cosmic neutrinos</u>	IGM QSO Spectra low res 1D flux power	N-body/hydro sims	Σ m _v < 0.12 eV		
<u>Cold dark matter</u> <u>Coldness</u>	IGM QSO Spectra high res 1D flux Power	N-body/hydro sims	m _{WDM} > 3.3 keV (thermal cross. sect.)		

The data sets

Key aspects

• High redshift (and small scales): possibly closer to linear behaviour

• 1D power:
$$P_{1D}(k) = \frac{1}{2\pi} \int_{k}^{\infty} P_{3D}(x) x dx$$

• Matter probed at around the mean density

RESULTS FROM BOSS/SDSS-III

NEUTRINOS

NEUTRINOS IN THE IGM

N-body + hydro sims

Neutrino induced non-linear suppression understood and reproduced also with simple halo modelling (Massara+ 15)

Degeneracies with s8 are present

Neutrino induced effects on RSD (Marulli+11), BAOs (Peloso+15), mass functions and bias (Castorina+14) investigated

FROM IGM ONLY:

$$\Sigma m_{\nu} < 0.9 \text{ eV}(2\sigma)$$

DATA: thousands of low-res. Spectra for neutrino constraints. Few tens for cold dark matter coldness

SIMULATIONS: Gadget-III runs: 20 and 60 Mpc/h and (512³,786³,896³)

Cosmology parameters: σ_8 , n_s , Ω_m , H_0 , m_{WDM} , + neutrino mass Astrophysical parameters: z_{reio} , UV fluctuations, T_0 , γ , <F> Nuisance: resolution, S/N, metals

METHOD: Monte Carlo Markov Chains likelihood estimator + very conservative assumptions for the continuum fitting and error bars on the data

Parameter space: second order Taylor expansion of the flux power

$$P_F(k, z; \mathbf{p}) = P_F(k, z; \mathbf{p}^0) + \sum_{i}^{N} \frac{\partial P_F(k, z; p_i)}{\partial p_i} \bigg|_{\mathbf{p}=\mathbf{p}^0} (p_i - p_i^0) + \text{second order}$$

NEUTRINO IMPACT - I

NEUTRINO IMPACT - II

GROWTH OF STRUCTURES AT HIGH REDSHIFT

Constraint on neutrino masses from SDSS-III/BOSS $Ly\alpha$ forest and other cosmological probes

BAYESIAN ANALYSIS

FINAL NUMBERS

Parameter	$Ly\alpha + H_0^{tophat}$	$Ly\alpha + CMB$	$Ly\alpha + CMB(A_L)$	
	$(62.5 \le H_0 < 72.5)$		+ BAO	
$10^{9}A_{s}$	$3.2^{+0.5}_{-0.7}$	$2.20\substack{+0.05 \\ -0.06}$	$2.20\substack{+0.05 \\ -0.06}$	$2.18\substack{+0.05 \\ -0.06}$
$10^2 \omega_{ m b}$	(fixed to 2.22)	2.20 ± 0.02	2.20 ± 0.02	2.22 ± 0.03
$\omega_{ m cdm}$	$0.110\substack{+0.008\\-0.013}$	$0.1200\substack{+0.0019\\-0.0018}$	$0.1196\substack{+0.0015\\-0.0014}$	0.1191 ± 0.002
$ au_{ m reio}$	(irrelevant)	$0.091\substack{+0.012\\-0.013}$	$0.091\substack{+0.011\\-0.013}$	$0.0871\substack{+0.012\\-0.013}$
n_s	0.931 ± 0.012	0.953 ± 0.005	0.953 ± 0.005	$0.955^{+0.005}_{-0.006}$
H_0	< 70.9 (95%)	$67.2^{+0.8}_{-0.9}$	67.4 ± 0.7	$67.5^{+1.0}_{-1.1}$
$\sum m_{\nu}$ (eV)	< 0.98 (95%)	< 0.16 (95%)	< 0.14 (95%)	< 0.21 (95%)
A_L	(fixed to 1)	(fixed to 1)	(fixed to 1)	1.12 ± 0.10
σ_8	0.84 ± 0.03	$0.830\substack{+0.017\\-0.013}$	$0.830\substack{+0.016\\-0.012}$	$0.818\substack{+0.021\\-0.014}$
Ω_{m}	$0.316^{+0.018}_{-0.021}$	0.316 ± 0.012	0.313 ± 0.009	0.312 ± 0.013

	(1) Lya	(2) Lyα	(3) Lya	(4) Lyα
Parameter	$+ H_0^{Gaussian}$	+ Planck TT+towP	+ Planck TT+towP	+ Planck TT+TE+EE+towP
	$(H_0 = 67.3 \pm 1.0)$		+ BAO	+ BAO
σ_8	0.831 ± 0.031	0.833 ± 0.011	0.845 ± 0.010	0.842 ± 0.014
ns	0.938 ± 0.010	0.960 ± 0.005	0.959 ± 0.004	0.960 ± 0.004
Ω_m	0.293 ± 0.014	0.302 ± 0.014	0.311 ± 0.014	0.311 ± 0.007
H_0 (km s ⁻¹ Mpc ⁻¹)	67.3 ± 1.0	68.1 ± 0.9	67.7 ± 1.1	67.7 ± 0.6
$\sum m_{\nu}$ (eV)	< 1.1 (95% CL)	< 0.12 (95% CL)	< 0.13 (95% CL)	< 0.12 (95% CL)
Reduced χ^2	0.99	1.04	1.05	1.05

Constraints from galaxy clustering

• Galaxy clustering offers independent constraints that mainly exploit the shape

•Notice: galaxy bias Pgal=b² x Pmatter marginalized over but some assumptions on the bias b(k,z) model must be made

Parameter	CMB15+LRG+BAO
$100 \omega_b$	$2.236^{+0.014}_{-0.014}$
$\omega_{ m cdm}$	$0.1183^{+0.0012}_{-0.0011}$
n_s	$0.9677^{+0.0042}_{-0.0045}$
$ au_{ m reio}$	$0.083^{+0.016}_{-0.017}$
$ln(10^{10}A_s)$	$3.097\substack{+0.031\\-0.034}$
H_0	$68.06^{+0.55}_{-0.55}$
σ_8	$0.831^{+0.016}_{-0.015}$
M_{ν} [eV]	< 0.13

Implications for neutrinoless double beta decay - I

Dell'Oro, Marcocci, Viel, Vissani 15,16

Implications for Tritium beta decay

$$m_{\beta} = \left(\sum_{i} |U_{ei}|^2 m_i^2\right)^{\frac{1}{2}} = \left(c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right)^{\frac{1}{2}}$$

What if ... large non-zero neutrino mass found?

Baldi, Villaescusa-Navarro, Viel, Puchwein, Springel, Moscardini, 2014

General Relativity + massive neutrinos

Modified gravity + massive neutrinos

FORECASTS

MASSIVE NEUTRINO FORECASTS for Euclid

$k_{ m max}$	un.	co.	104	104	$10^{3}m$	1011 4	10 ³ h	~ .	$3m_{ u}=M_{ u}$
$(h/{ m Mpc})$	err.	err.	10 005	10 ω_c	$10 \ n_s$	$10 A_s$	10 1	~reio	(meV)
0.1	_	_	1.2	6.2	2.8	3.0	4.1	0.38	18
0.1	1/10	_	1.2	6.9	2.8	3.1	4.5	0.39	18
0.1	1/2	-	1.3	9.5	3.2	3.5	6.1	0.39	23
0.1	•	-	1.3	11	3.4	3.6	6.7	0.40	25
0.1	•	•	1.3	11	3.4	3.6	6.7	0.40	25
0.6	_	_	0.86	2.1	0.37	1.2	0.40	0.23	5.9
0.6	1/10	-	1.1	4.8	2.5	2.7	3.0	0.37	14
0.6	1/2	-	1.2	8.6	3.2	3.4	5.7	0.39	22
0.6	•	-	1.3	10	3.4	3.6	6.7	0.39	25
0.6	•	•	1.3	10	3.4	3.6	6.7	0.39	25

FROM ABSORPTION TO EMISSION - I

HI halo model					
Linear matter power spectrum	$P_m(k,z)$				
Halo mass function	n(M,z)				
Halo bias	b(M,z)				
HI mass in halos	$M_{HI}(M,z)$				
HI density profile in halos	$\rho_{\scriptscriptstyle HI}(r M, z)$				

FROM ABSORPTION TO EMISSION: NEUTRINOS in 21cm INTENSITY MAPPING with SKA

CONCLUSIONS

- From CMB data Δ N eff constrained to be < 0.2
- Limits on total neutrino mass 0.17-0.2 eV (2s C.L.)
- Adding Large Scale Structure data could provide hints for detection or tighten limits further depending on the data set used. Some recent WL and Cluster analysis are however in agreement with Planck
- Lyman-alpha forest data + CMB or galaxy clustering +CMB are the most constraining combination <0.12-13 eV
- Implications for neutrinoless double beta decay and Tritium beta decay are important
- Non-linear window on neutrino CNB is now open