Non-Sterile Neutrinos and the Dark MSW Effect

PRD94 (2016) 11, 113015 (1607.04161) & 1702.08464 (with F. Capozzi and I. Shoemaker)

Luca Vecchi

MPIK, Heidelberg June 12th, 2017

Flowchart

Luca Vecchi

The Dark MSW effect

MPIK

Light sterile neutrinos?

Luca Vecchi

The Dark MSW effect

Wednesday, June 14, 17

Experimental reason: eV steriles behind SBL, reactor, Gallium anomalies?

3+1 model $\sin^2 2\theta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2$

Best fit:

 $(\Delta m_{41}^2, |U_{e4}|^2, |U_{\mu4}|^2)_{\rm bf} = (1.7 \ {\rm eV}^2, 0.019, 0.015)$ Giunti et al. (2017)

Luca Vecchi

The Dark MSW effect

MPIK

Theoretical reason:

What new phenomena can be DISCOVERED in neutrino oscillations?

steriles can lead to sizable effects in oscillations and none elsewhere (not a theorem, but hard to beat)

Luca Vecchi

The Dark MSW effect

Why CMB & BBN data cannot robustly rule them out

Luca Vecchi

The Dark MSW effect

MPIK

The minimal model: **a gauge-singlet N**

$$\delta \mathcal{L} = N^{\dagger} i \bar{\sigma}^{\mu} \partial_{\mu} N + \left(y_a N H L + \frac{m_N}{2} N N + hc \right)$$

Radiation at BBN & CMB and structure formation

 $\Delta N_{\rm eff,BBN} = 0.66 \pm 0.45 \\ \Delta N_{\rm eff,CMB} = 0.10 \pm 0.23 \\ \sum m_{\nu} < 0.3 \text{ eV} \text{ Planck (2015)}$

MPIK

Suppression of production via large lepton asymmetry: Foot Volkas (95), Chu Cirelli (06), Krauss et al. (10), Hannestad et al. (12), Mirizzi et al. (12), ... Dilution of the sterile population:

Gelmini Palomares-Ruiz Pascoli (04), Fuller et al. (11), Ho Scherrer (12), ...

Luca Vecchi

The Dark MSW effect

A chiral sterile via the Dirac neutrino portal:

$$\mathcal{L} \supset y_a NHL + y_s N\phi\nu_s + hc$$

$$\bigcap_{\text{Dirac}}$$

1) N very weakly coupled to SM \iff the exotic sector is decoupled

2) Oscillations after symmetry breaking \implies standard Cosmology for small < ϕ >

mixing:
$$\theta \sim \min\left(\frac{y\langle H\rangle}{y_s\langle\phi\rangle}, \frac{y_s\langle\phi\rangle}{y\langle H\rangle}\right)$$
 KEY!

Luca Vecchi

The Dark MSW effect

Wednesday, June 14, 17

Luca Vecchi

Tho	Dark	MSW	offort
	Dark		CIICUL

Wednesday, June 14, 17

Luca Vecchi

This motivates steriles with exotic interactions...

Luca Vecchi

The Dark MSW effect

MPIK

Signatures of Sterile neutrinos-Dark Matter interactions

Luca Vecchi

The Dark MSW effect

Wednesday, June 14, 17

Benchmark model:

$$\mathcal{L} \supset \nu_s^{\dagger} \bar{\sigma}^{\mu} i(\partial_{\mu} + iq_s g_A A_{\mu}) \nu_s + y_a N H L + y_s N \phi \nu_s + hc + X^{\dagger} \bar{\sigma}^{\mu} i(\partial_{\mu} + iq_X g_A A_{\mu}) X + \cdots$$

Luca Vecchi

The Dark MSW effect

MPIK

Steriles-Dark Matter interactions

Benchmark values

 $m_{\rm DM} = 5 \ {\rm GeV} \quad m_4 = 1 \ {\rm eV} \quad s_{i4} = 0.1$

DM Halo: Agrawal et al. (2016) -- most recent

Luca Vecchi

The Dark MSW effect

MPIK

Steriles-Dark Matter interactions

Benchmark values

 $m_{\rm DM} = 5 \ {\rm GeV} \quad m_4 = 1 \ {\rm eV} \quad s_{i4} = 0.1$

IceCube (PeV): Cherry et al. (2014), etc. DM Halo: Agrawal et al. (2016) -- most recent

Luca Vecchi

The Dark MSW effect

MPIK

Steriles-Dark Matter interactions

Benchmark values

 $m_{\rm DM} = 5 \ {\rm GeV} \quad m_4 = 1 \ {\rm eV} \quad s_{i4} = 0.1$

IceCube (PeV): Cherry et al. (2014), etc. DM Halo: Agrawal et al. (2016) -- most recent

Luca Vecchi

The Dark MSW effect

MPIK

Dark MSW effect: <u>Steriles-mediated potentials</u>

with (asymmetric) cosmic neutrinos, Dark Matter, ordinary matter (not easy).

Ordinary matter: Pospelov (2011) Kopp et al. (2014)

Dark matter: Capozzi et al. (2017)

 $V_s = \sqrt{2}G_F \frac{1}{2}n_n + V_{s,\text{new}}$ Non-sterile effect

Luca Vecchi

The Dark MSW effect

MPIK

....

D.B. Kaplan (1992) D.E. Kaplan et al. (2009), etc.

Luca Vecchi

The Dark MSW effect

MPIK

Luca Vecchi

The Dark MSW effect

MPIK

Benchmark values $m_{\rm DM} = 5 \text{ GeV}$ $m_4 = 1 \text{ eV}$ $s_{i4} = 0.1$

Luca Vecchi

The Dark MSW effect

MPIK

Solar Dark MSW

Luca Vecchi

The Dark MSW effect

MPIK

Asymmetric Dark Matter in the sun (generic consequence of asymmetry)

$$n_X(r) = \frac{N_X}{r_X^3 \pi^{3/2}} e^{-r^2/r_X^2}$$
$$r_X \simeq 0.05 \ \sqrt{\frac{5 \text{ GeV}}{m_X}} \ R_{\odot}$$

Also studied to address the Metallicity "problem": Sarkar et al (2010) Taoso et al (2010) Silk et al. (2014) Scott et al (2015) Vagnozzi et al (2016)

MPIK

Luca Vecchi

The Dark MSW effect

Solar Dark MSW

B8 (CNO) neutrinos are affected pp neutrinos only mildly

From John Bahcall et al. (BS2005)

Luca Vecchi

Wednesday, June 14, 17

The Dark MSW effect

Weighted survival probability $\overline{P}_{ee}(E) = \int dr P_{ee,day}(r,E) \frac{\sum_i \Phi_i(E)\rho_i(r)}{\sum_i \Phi_i(E)}$

$$V_{s,\text{new}} = \sqrt{2}\xi G_F n_e(0) e^{-r^2/r_{\text{DM}}^2}$$

$$\xi \equiv \frac{G_{\rm DM} n_{\rm DM}(0)}{\sqrt{2}G_F n_e(0)}$$

Luca Vecchi

The Dark MSW effect

Wednesday, June 14, 17

Scan of ξ , θ 14 with θ 34=0 and standard θ 12, Δ 21, Δ 31

Scan of ξ , θ 34 with θ 14, θ 24 at SBL anom. and standard θ 12, Δ 21, Δ 31

Off resonance:

$$\frac{\delta V_{\rm SM}}{V_{\rm SM}} \sim s_{i4}^2 \xi \\ \leq \mathcal{O}(10)$$

Luca Vecchi

The Dark MSW effect

MPIK

-- V>0: generically relaxes solar-Kamland tension -- V<0: "dark LMA" solution

Luca Vecchi

The Dark MSW effect

Main messages

Sterile neutrinos:

- Most plausible extension of standard 3-neutrino paradigm (hide in all other channels)
- CMB & BBN data cannot (and will not) robustly exclude steriles with exotic interactions

Sterile-mediated exotic interactions:

- Smoking gun of non-sterile neutrinos: exotic matter potentials (Dark MSW)
- Oscillation experiments can probe very tiny couplings and mediator masses
- Solar Dark MSW: mostly impact B8 and CNO, truly-steriles in all other neutrino experiments
- Differences between sterile-mediated potentials & NSI:
 - 1) large $\delta V_{\rm SM}/V_{\rm SM}$ is in principle possible here
 - 2) potential involves exotic matter: only propagation, no production/detection
 - 3) sterile neutrinos are essential, but may decouple \rightarrow NSI-like interactions

$$\frac{\delta V_{\rm SM}}{V_{\rm SM}} \sim s_{i4}^2 \xi$$

Luca Vecchi

Thank You

Luca Vecchi

The Dark MSW effect

MPIK

Away from resonance:

$$H'_{2\times 2} = \begin{pmatrix} -\Delta\cos 2\theta_{12} + V_x & \Delta\sin 2\theta_{12} + V_y \\ \Delta\sin 2\theta_{12} + V_y^* & \Delta\cos 2\theta_{12} - V_x \end{pmatrix}$$
$$P_{ee,day} = c_{13}^4 c_{14}^4 \frac{1}{2} (1 + \cos 2\theta_{12} \cos 2\theta_m) + s_{13}^4 c_{14}^4 + s_{14}^4$$

In the decoupling limit $\Delta m_{41}^2 \gg EV_{CC}, EV_s$ $s_{i4}^2 \to 0$ $s_{i4}^2 V_s = \text{finite}$ Standard 3x3 problem plus $(V_{\text{eff}})_{ij} = V_s (U_{34}R_{24}U_{14})^*_{4i} (U_{34}R_{24}U_{14})_{4j}$

Formally like NSI (controlled by exotic matter! Off-diagonel IFF >1 exotic angles) **Potential = vacuum of a vector** (looks like a class of CPT-violation!)

Luca Vecchi

The Dark MSW effect