CP violation as a consequence of another Symmetry

Andreas Trautner

based on:

NPB883 (2014) 267-305	1402.0507	w/ MC. Chen, M. Fallbacher, K.T. Mahanthappa and M. Ratz.
NPB894 (2015) 136-160	1502.01829	w/ M. Fallbacher.
JHEP 1702 (2017) 103	1612.08984	w/ M. Ratz.
PLB 786 (2018) 283-287	1808.07060	w/ H.P. Nilles, M. Ratz., P. Vaudrevange

Teilchentee Heidelberg

25.10.18

Motivation

Standard Model flavor puzzle. Observed patterns:

Motivation

- Standard Model flavor puzzle.
 4x 3 masses, 2x 3 angles, 2x 1 CP violating phases(+2).
- Origin of CP violation?
 - CP violation established in quark sector, consistent with SM (CKM).
 - open question: CP violation in lepton sector ?
 - open question: Why $\overline{\theta} = (\theta + \arg \det y_u y_d) < 10^{-10}$? Why CPV *only* in FV processes?

Goal: Understand origin of CPV \Rightarrow hints for origin of flavor.

Outline

- CP(V) in the Standard Model
- What is an outer automorphism?
- CP as a special outer automorphism
- Fun with outer automorphisms
 - CPV as a consequence of other symmetries
 - Outer automorphisms beyond CP
- Example (toy-)models:
 - 3HDM with $\Delta(54)$ symmetry
 - $SU(3) \rightarrow T_7$ with CPV and $\overline{\theta} = 0$

Dirac theory:

- $$\begin{split} \Psi(t,\vec{x}) & \stackrel{\mathcal{CP}}{\longmapsto} \mathbf{i}\gamma_2\gamma_0 \ \Psi^*(t,-\vec{x}) \\ A_\mu(t,\vec{x}) & \stackrel{\mathcal{CP}}{\longmapsto} \mathcal{P}_\mu^{\ \nu} \ A_\nu(t,-\vec{x}) \end{split}$$
 - $\begin{array}{ll} \widehat{\boldsymbol{a}}_{s}(\vec{p}) & \stackrel{\boldsymbol{\mathcal{CP}}}{\longmapsto} & \mathrm{e}^{\mathrm{i}\,\varphi}\, \widehat{\boldsymbol{b}}_{s}(-\vec{p}) \\ \\ \widehat{\boldsymbol{b}}_{s}^{\dagger}(\vec{p}) & \stackrel{\boldsymbol{\mathcal{CP}}}{\longmapsto} & \mathrm{e}^{\mathrm{i}\,\varphi}\, \widehat{\boldsymbol{a}}_{s}^{\dagger}(-\vec{p}) \; . \end{array}$

A

Dirac the
$$\stackrel{\mathcal{P} = \operatorname{diag}(1, -1, -1, -1)}{\stackrel{\mathcal{U}}{=}}$$

 $\Psi(t, \vec{x}) \xrightarrow{\mathcal{CP}} i\gamma_2\gamma_0 \Psi(t, -\vec{x})$
 $_{\mu}(t, \vec{x}) \xrightarrow{\mathcal{CP}} -\mathcal{P}_{\mu}^{\nu} A_{\nu}(t, -\vec{x})$
 $\widehat{a}_s(\vec{p}) \xrightarrow{\mathcal{CP}} e^{i\varphi} \widehat{b}_s(-\vec{p})$
 $\widehat{b}_s^{\dagger}(\vec{p}) \xrightarrow{\mathcal{CP}} e^{i\varphi} \widehat{a}_s^{\dagger}(-\vec{p})$.

Andreas Trautner

CP as a special outer automorphism

One generation of (chiral) fermion fields with gauge symmetry $[T_a, T_b] = i f_{abc} T_c$

$$\mathscr{L} = \mathrm{i}\,\overline{\Psi}\,\gamma^{\mu}\left(\partial_{\mu} - \mathrm{i}\,g\,T_{a}\,W^{a}_{\mu}\right)\Psi - \frac{1}{4}\,G^{a}_{\mu\nu}\,G^{\mu\nu,a}$$

The most general possible CP transformation:

$$\begin{split} W^a_\mu(x) \; \mapsto \; R^{ab} \, \mathcal{P}^{\,\nu}_\mu \, W^b_\nu(\mathcal{P} x) \; , \\ \Psi^i_\alpha(x) \; \mapsto \; \eta_{\mathsf{CP}} \, U^{ij} \, \mathcal{C}_{\alpha\beta} \, \Psi^{*j}_{\ \beta}(\mathcal{P} x) \; . \end{split}$$

[Grimus, Rebelo,'95]

CP as a special outer automorphism

One generation of (chiral) fermion fields with gauge symmetry $[T_a, T_b] = i f_{abc} T_c$

$$\mathscr{L} = \mathrm{i}\,\overline{\Psi}\,\gamma^{\mu}\left(\partial_{\mu} - \mathrm{i}\,g\,T_{a}\,W^{a}_{\mu}\right)\Psi - \frac{1}{4}\,G^{a}_{\mu\nu}\,G^{\mu\nu,a}$$

The most general possible CP transformation:

$$\begin{split} W^a_\mu(x) &\mapsto R^{ab} \, \mathcal{P}^{\,\nu}_\mu \, W^b_\nu(\mathcal{P} x) \,, \\ \Psi^i_\alpha(x) &\mapsto \eta_{\mathsf{CP}} \, U^{ij} \, \mathcal{C}_{\alpha\beta} \, \Psi^{*j}_{\ \beta}(\mathcal{P} x) \end{split}$$

[Grimus, Rebelo,'95]

This is (can be) a conserved symmetry of the action iff

(i) $R_{aa'} R_{bb'} f_{a'b'c} = f_{abc'} R_{c'c}$, (ii) $U (-T_a^{T}) U^{-1} = R_{ab} T_b$, (iii) $C (-\gamma^{\mu T}) C^{-1} = \gamma^{\mu}$.

This implies:

- ${\rm (i)}~~{\rm CP}$ is an automorphism of the gauge group.
- (ii) CP maps representations to their complex conjugate representations. $(T_a \mapsto -T_a^T)$
- (iii) CP is an automorphism of the Lorentz group which maps representations to their complex conjugate representation. $(\chi_L \mapsto (\chi_L)^{\dagger})$

CP as a special outer automorphism

One generation of (chiral) fermion fields with gauge symmetry $[T_a, T_b] = i f_{abc} T_c$

$$\mathscr{L} = \mathrm{i}\,\overline{\Psi}\,\gamma^{\mu}\left(\partial_{\mu} - \mathrm{i}\,g\,T_{a}\,W^{a}_{\mu}\right)\Psi - \frac{1}{4}\,G^{a}_{\mu\nu}\,G^{\mu\nu,a}$$

The most general possible CP transformation:

$$\begin{split} W^a_\mu(x) \; \mapsto \; R^{ab} \, \mathcal{P}^{\,\nu}_\mu \, W^b_\nu(\mathcal{P} x) \; , \\ \Psi^i_\alpha(x) \; \mapsto \; \eta_{\mathsf{CP}} \, U^{ij} \, \mathcal{C}_{\alpha\beta} \, \Psi^{*j}_{\ \beta}(\mathcal{P} x) \; . \end{split}$$

[Grimus, Rebelo,'95]

This is (can be) a conserved symmetry of the action iff

(i)
$$R_{aa'} R_{bb'} f_{a'b'c} = f_{abc'} R_{c'c} ,$$

i)
$$U(-T_a^1)U^{-1} = R_{ab}T_b$$

(iii)
$$\mathcal{C}(-\gamma^{\mu T})\mathcal{C}^{-1} = \gamma^{\mu}$$

This implies:

- ${\rm (i)}~~{\mbox{CP}}$ is an automorphism of the gauge group.
- (ii) CP maps representations to their complex conjugate representations. $(T_a \mapsto -T_a^T)$
- (iii) CP is an automorphism of the Lorentz group which maps representations to their complex conjugate representation. $(\chi_L \mapsto (\chi_L)^{\dagger})$

 $\Rightarrow \mathcal{C} = e^{i\eta} \gamma_2 \gamma_0$

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, a²}.
- Outer automorphism group ("Out") of ℤ₃: generated by

 $u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$ (think: $\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2$)

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, $a^{\diamond}_7 a^2$ }.
- Outer automorphism group ("Out") of ℤ₃: generated by

$$u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$$
 (think: $\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2$)

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a $\stackrel{\leftrightarrow}{,}$ a²}.
- Outer automorphism group ("Out") of ℤ₃: generated by

$$u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$$
 (think: $\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2$)

Abstract: Out is a reshuffling of symmetry elements. In words: Out is a "symmetry of the symmetry".

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, $a^{\diamond}_{7}a^2$ }.
- Outer automorphism group ("Out") of ℤ₃: generated by

$$u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$$
 (think: u a u⁻¹ = a²)

Abstract: Out is a reshuffling of symmetry elements.

In words: Out is a "symmetry of the symmetry".

Concrete: Out is a 1:1 mapping of representations $r \mapsto r'$. Comes with a transformation matrix U, which is given by

$$U\rho_{\boldsymbol{r'}}(\mathbf{g})U^{-1} = \rho_{\boldsymbol{r}}(u(\mathbf{g})) , \qquad \forall \mathbf{g} \in G .$$

(consistency condition)

[Holthausen, Lindner, Schmidt, '13] [Fallbacher, AT, '15]

-
$$\rho_{\mathbf{r}}(g)$$
: representation matrix for group element $g \in G$

 \mathbb{Z}_3

id

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a $\stackrel{\bullet}{\rightarrow}a^2$ }.
- Outer automorphism group ("Out") of \mathbb{Z}_3 : generated by

$$u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$$
 (think: u a u⁻¹ = a²)

Abstract: Out is a reshuffling of symmetry elements.

In words: Out is a "symmetry of the symmetry".

Concrete: Out is a 1:1 mapping of representations $r \mapsto r'$. Comes with a transformation matrix U, which is given by

$$U\rho_{r'}(g)U^{-1} = \rho_r(u(g)), \quad \forall g \in G.$$
(consistency) Recognize eq. (i)-(iii) conditional consistency as special case of this!
$$\rho_r(g): \text{ representation matrix for group element } g \in G.$$
Note: Physical CP trafo $r' = r^*$ is a special case of this.
Andreas Trautner
$$CP \text{ violation as a consequence of another symmetry, 25.10.18} \quad V_{r'}(g) = 0$$

CP transformation in Standard Model In the Standard Model

 $SU(3) \otimes SU(2) \otimes U(1)$ and SO(3,1),

physical CP is described by a *simultaneous* outer automorphism transformation of all symmetries that maps

$$oldsymbol{r} \ \longleftrightarrow \ oldsymbol{r}^* \ ,$$

(e.g. $(\mathbf{3},\mathbf{2})_{1/6}^{\mathrm{L}} \ \longleftrightarrow \ ig(\overline{\mathbf{3}},\overline{\mathbf{2}}ig)_{-1/6}^{\mathrm{R}}ig)$,

for the representations of all symmetries.

Conservation of such a transformation warrants $\overline{\theta}$, $\delta_{QP} = 0$. Violation of such a transformation is implied by experiment, and necessary requirement for baryogenesis. [Sakharov '67]

$$J = \det \left[M_u M_u^{\dagger}, M_d M_d^{\dagger} \right] \neq 0 \iff \varepsilon_{i \to f} = \frac{\left| \Gamma_{i \to f} \right|^2 - \left| \Gamma_{\overline{i} \to \overline{f}} \right|^2}{\left| \Gamma_{i \to f} \right|^2 + \left| \Gamma_{\overline{i} \to \overline{f}} \right|^2} \neq 0$$

see also [Bernabéu, Branco, Gronau '86], [Botella, Silva '94]

Physical CP transformation

We extrapolate from the SM to possible symmetries in BSM.

 \Rightarrow "Definition" of CP in words:

CP is **a** special outer automorphism transformation which maps *all present* symmetry representations (global, local, space-time) to their complex conjugates.

[AT '16] This definition is consistent with the definitions in [Buchbinder et al. '01] & [Grimus, Rebelo '95]

Physical CP transformation

We extrapolate from the SM to possible symmetries in BSM.

 \Rightarrow "Definition" of CP in words:

CP is **a** special outer automorphism transformation which maps *all present* symmetry representations (global, local, space-time) to their complex conjugates.

[AT '16] This definition is consistent with the definitions in [Buchbinder et al. '01] & [Grimus, Rebelo '95]

Any such transformation:

- warrants physical CP conservation (if conserved),
- \Rightarrow must be broken (by observation).

Note that a physical CP transformation:

- does not have to be unique,
- does not have to be of order 2, e.g. [Grimus et al. '87], [Weinberg '05], [Ivanov, Silva '15]
 [Chen, Fallbacher, Mahanthappa, Ratz, AT '14]
- is, in general, not guaranteed to exist for a given symmetry group. (It *does* exist for $G_{\rm SM}$!)

Outer automorphisms of groups

Outer automorphisms exist for continuous & discrete groups. There are easy ways to depict this:

Continuous groups:

Outer automorphisms of a simple Lie algebra are the symmetries of the corresponding Dynkin diagram.

Outer automorphisms of groups **Discrete groups:**

Outer automorphisms of a discrete group are symmetries of the character table (not 1:1).

			Q	Q			
	T_7	C_{1a}	C_{3a}	C_{3b}	C_{7a}	C_{7b}	
	1_0	1	1	1	1	1	
C	1 1	1	ω	ω^2	1	1	
C	$\overline{1}_1$	1	ω^2	ω	1	1	
2	3 1	3	0	0	η	η^*	
5	• 3 1	3	0	0	η^*	η	

						8		8		
$\Delta(54)$	C_{1a}	C_{3a}	C_{3b}	C_{3c}	C_{3d}	C_{2a}	C_{6a}	C_{6b}	C_{3e}	C_{3f}
10	1	1	1	1	1	1	1	1	1	1
1_1	1	1	1	1	1	$^{-1}$	$^{-1}$	$^{-1}$	1	1
2₁	2	2	-1	$^{-1}$	$^{-1}$	0	0	0	2	2
2 ₂	2	$^{-1}$	2	$^{-1}$	$^{-1}$	0	0	0	2	2
^s 2 ₃	2	$^{-1}$	-1	2	$^{-1}$	0	0	0	2	2
2_4	2	$^{-1}$	$^{-1}$	$^{-1}$	2	0	0	0	2	2
3 1	3	0	0	0	0	1	ω^2	ω	3ω	$-3\omega^2$
° 4 3 ₁	3	0	0	0	0	1	ω	ω^2	$3\omega^2$	3ω
3 2	3	0	0	0	0	$^{-1}$	$-\omega^2$	$-\omega$	3ω	$-3\omega^2$
$\overline{3}_2$	3	0	0	0	0	$^{-1}$	$-\omega$	$-\omega^2$	$3\omega^2$	-3ω

		Group	Out	Action on reps
	_	\mathbb{Z}_3	\mathbb{Z}_2	$r~ ightarrow~r^{*}$
The outer automorphisms	group of any	$A_{n\neq 6}$	\mathbb{Z}_2	$r~ ightarrow~r^{*}$
("small") discrete group c	an easily be	$S_{n\neq 6}$	/	/
found with GAP	[GAP]	$\Delta(27)$	$\operatorname{GL}(2,3)$	$oldsymbol{r}_i ~ ightarrow~oldsymbol{r}_j$
		$\Delta(54)$	S_4	$m{r}_i ightarrow m{r}_i$

Andreas Trautner

CP violation as a consequence of another symmetry, 25.10.18

Two types of groups (without mathematical rigor)

List of representations: $r_1, r_2, \ldots, r_k, r_k^*, \ldots$

Out in general : $r_i \mapsto r_j \quad \forall \text{ irreps } i, j \ (1:1)$

Criterion:

Is there an (outer) automorphism transformation that maps

$$r_i \mapsto r_i^*$$
 for all irreps i ?
No Yes
 \Rightarrow Group of "type I" \Rightarrow Group of "type II"

This tells us whether a CP transformation is possible, or not!

Andreas Trautner

CP violation as a consequence of another symmetry, 25.10.18

Do CP transformations exist for all symmetries?

Andreas Trautner

Do CP transformations exist for all symmetries? General answer: No.

Do CP transformations exist for all symmetries? General answer: No.

For example: Discrete groups of type I:

Do CP transformations exist for all symmetries? General answer: No.

For example: Discrete groups of type I:

• These are **inconsistent** with the trafo $r_i \mapsto r_i^* \forall i$.

⇒ CP transformation is inconsistent with a type I symmetry. (assuming sufficient # of irreps are in the model)

There are models in which CP is violated *as a consequence* of another symmetry.

[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]

The corresponding CPV phases are calculable and quantized (e.g. $\delta_{CP} = 2\pi/3, ...)$ stemming from the necessarily complex Clebsch-Gordan coefficients of the "type I" group. This has been termed "explicit geometrical" CP violation.

[Chen, Fallbacher, Mahanthappa, Ratz, AT '14] [Branco, '15], [de Medeiros Varzielas, '15]

Andreas Trautner

Do CP transformations exist for all symmetries?

On the contrary

Semi-simple Lie groups: they are all of type II !

- There always exists an (outer) automorphism transformation that maps all $r \mapsto r^*$ simultaneously.
- ⇒ CP can only be violated (explicitly) if the number of rephasing degrees of freedom is less than the number of complex parameters.
 cf. e.g. [Haber, Surujon '12]

This is the case in the Standard Model.

 $\stackrel{{}_{\scriptstyle \ensuremath{{\scriptsize ar{arsigma}}}}}{\rightarrow}$ This just parametrizes CPV, there is no way to predict $\delta_{_{\!CP}}$.

Aside: There are models with higher-order CP transformations which allow for complex couplings, yet conserve CP (groups of type II B).

[Chen, Fallbacher, Mahanthappa, Ratz, AT '14], [Ivanov, Silva '15]

Andreas Trautner

CP violation as a consequence of another symmetry, 25.10.18

Do type I groups occur in Nature?

• Discrete groups? \rightarrow Crystals?

Do type I groups occur in Nature?

- Discrete groups? \rightarrow Crystals?
 - \checkmark in d = 2,3 no type I point groups (no type I subgroups of SO(2),SO(3)).
 - \checkmark no type I subgroups of SU(2).
 - No type I subgroups of the Lorentz group. (Open question: Type I "spacetime crystals"? [Wilczek '12]).
 - ✓ In $d \ge 4$: crystals with type I point groups

[Fischer, Ratz, Torrado and Vaudrevange '12]

Do type I groups occur in Nature?

- Discrete groups? \rightarrow Crystals?
 - \checkmark in d = 2,3 no type I point groups (no type I subgroups of SO(2),SO(3)).
 - \checkmark no type I subgroups of SU(2).
 - X no type I subgroups of the Lorentz group. (Open question: Type I "spacetime crystals"? [Wilczek '12]).
 - ✓ In $d \ge 4$: crystals with type I point groups

- Discrete flavor symmetries?
 - Many models with type I groups:

 $T_7, \Delta(27), \Delta(54), \mathcal{PSL}_2(7), \dots$

e.g. [Björkeroth, Branco, Ding, de Anda, Ishimori, King, Medeiros Varzielas, Neder, Stuart et al. '15-'18] [Chen, Pérez, Ramond '14], [Krishnan, Harrison, Scott '18]

- These can originate from extra dimensions, e.g. in string theory. [Kobayashi et al. '06], [Nilles, Ratz, Vaudrevange '12]
- Semi-realistic heterotic orbifold model with $\Delta(54)$ flavor symmetry and geometrical CP violation.

[Nilles, Ratz, AT, Vaudrevange '18]

[[]Fischer, Ratz, Torrado and Vaudrevange '12]

Outer automorphisms beyond C,P

Andreas Trautner

CP violation as a consequence of another symmetry, 25.10.18

Outs map representations to other representations, $r_i \mapsto r_j$. In general **two logical possibilities**:

- (A) Both, r_i and r_j , are included in model.
- (B) r_j is not part of the model.

This is more general than C and/or P transformations.

Outs map representations to other representations, $r_i \mapsto r_j$. In general **two logical possibilities**:

- (A) Both, r_i and r_j , are included in model.
- (B) r_j is not part of the model.

This is more general than C and/or P transformations.

Physical consequences:

(A) Maps operators to other operators.

$$\mathscr{L} \supset c_1 \mathcal{O}_1(x) + c_2 \mathcal{O}_2(x) + \dots$$

Only possible effect: Transformation of the couplings

$$S\left[\mathcal{L}\left(\phi,c
ight)
ight] \longrightarrow S\left[\mathcal{L}\left(U\phi,c
ight)
ight] = S\left[\mathcal{L}\left(\phi,\tilde{U}c
ight)
ight].$$

 $c \neq \tilde{U}c \Rightarrow \text{looks like an explicitly broken symmetry.}_{(\text{Actually, this points to redundancies in the parameter-space of a theory).}$

(B) Transformation is simply not possible with the given field content. \frown **Explicitly** and **maximally** broken transformation.

Andreas Trautner

CP violation as a consequence of another symmetry, 25.10.18

Outs map representations to other representations, $r_i \mapsto r_j$. In general **two logical possibilities**:

- (A) Both, r_i and r_j , are included in model.
- (B) r_j is not part of the model.

Outs map representations to other representations, $r_i \mapsto r_j$. In general **two logical possibilities**:

- (A) Both, r_i and r_j , are included in model.
- (B) r_j is not part of the model.

Examples:

(A) CP transformation in the SM: $r
ightarrow r^*$ for *all* representations

$$\text{e.g.} \ \mathrm{Q}_{\mathrm{L}}: \ \left(\mathbf{3},\mathbf{2}\right)_{1/6}^{\mathrm{L}} \ \longrightarrow \ \left(\overline{\mathbf{3}},\overline{\mathbf{2}}\right)_{-1/6}^{\mathrm{R}}$$

Maps $V_{\rm CKM} \rightarrow (V_{\rm CKM})^*$. Symmetry? No, since $e^{i\delta_{\rm CKM}} \neq \left[e^{i\delta_{\rm CKM}}\right]^*$. Transformation is broken **explicitly** (by couplings).

Outs map representations to other representations, $r_i \mapsto r_j$. In general **two logical possibilities**:

- (A) Both, r_i and r_j , are included in model.
- (B) r_j is not part of the model.

Examples:

(A) CP transformation in the SM: $r
ightarrow r^*$ for *all* representations

$$\text{e.g. } \mathrm{Q}_{\mathrm{L}}: \ \left(\mathbf{3},\mathbf{2}\right)_{1/6}^{\mathrm{L}} \ \longrightarrow \ \left(\overline{\mathbf{3}},\overline{\mathbf{2}}\right)_{-1/6}^{\mathrm{R}}$$

Maps $V_{\rm CKM} \rightarrow (V_{\rm CKM})^*$. Symmetry? No, since $e^{i\delta_{\rm CKM}} \neq \left[e^{i\delta_{\rm CKM}}\right]^*$. Transformation is broken **explicitly** (by couplings).

(B) P transformation in the Standard Model: $r_{
m L}
ightarrow r_{
m R}.$

e.g.
$$\mathrm{Q}_{\mathrm{L}}:~(\boldsymbol{3},\boldsymbol{2})_{1/6}^{\mathrm{L}}~\longrightarrow~(\boldsymbol{3},\boldsymbol{2})_{1/6}^{\mathrm{R}}$$
 .

 $\rm Q_R$ is not part of the model \Rightarrow this transformation is **not** possible. Transformation is broken **explicitly** and **maximally** (=by representation content).

Note:

Since \mathcal{L} is real it always contains r and r^* . Therefore, CP **cannot** be broken maximally!

CP violation as a consequence of another symmetry, 25.10.18
Fun with outer automorphisms I

Andreas Trautner

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.)

[Fallbacher, AT, '15] [Branco, Gerard, Grimus, '83]

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.)

[Fallbacher, AT, '15] [Branco, Gerard, Grimus, '83]

Model:

• $H_{1,2,3} = (\mathbf{1}, \mathbf{2})_{1/2}$ of G_{SM} , $H := (H_1, H_2, H_3)$ is 3 of $\Delta(54)$.

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.)

Model:

- $H_{1,2,3} = (\mathbf{1}, \mathbf{2})_{1/2}$ of G_{SM} , $H := (H_1, H_2, H_3)$ is 3 of $\Delta(54)$.
- Higgs potential: $(m, a_i \in \mathbb{R})$

$$\begin{array}{rcl} & & +a_1 & I_1(H^{\dagger},H) & +a_2 & I_2(H^{\dagger},H) \\ V(H,\vec{a}) &= & -m^2 H_i^{\dagger} H_i + a_0 & I_0(H^{\dagger},H) \\ & & +a_3 & I_3(H^{\dagger},H) & +a_4 & I_4(H^{\dagger},H) \end{array} ,$$

[Fallbacher, AT, '15]

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.)

Model:

- $H_{1,2,3} = (\mathbf{1}, \mathbf{2})_{1/2}$ of G_{SM} , $H := (H_1, H_2, H_3)$ is 3 of $\Delta(54)$.
- Higgs potential: $(m, a_i \in \mathbb{R})$

$$V(H,\vec{a}) = -m^2 H_i^{\dagger} H_i + a_0 I_0(H^{\dagger},H) + a_3 I_3(H^{\dagger},H) + a_4 I_4(H^{\dagger},H) ,$$

• Four classes of VEVs: $\omega := e^{2\pi i/3}, v_i = \frac{m}{\sqrt{2(a_0 + a_i)}},$

$$\langle H \rangle_{\mathrm{I}} = v_1(1,1,1), \qquad \langle H \rangle_{\mathrm{II}} = v_2(\omega,1,1),$$

$$\langle H \rangle_{\rm III} = v_3(\omega^2, 1, 1), \qquad \langle H \rangle_{\rm IV} = v_4(\sqrt{3}, 0, 0).$$

Andreas Trautner

CP violation as a consequence of another symmetry, 25.10.18

[Fallbacher, AT, '15]

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.)

Model:

- $H_{1,2,3} = (\mathbf{1}, \mathbf{2})_{1/2}$ of G_{SM} , $H := (H_1, H_2, H_3)$ is 3 of $\Delta(54)$.
- Higgs potential: $(m, a_i \in \mathbb{R})$

$$V(H,\vec{a}) = -m^2 H_i^{\dagger} H_i + a_0 I_0(H^{\dagger},H) + a_3 I_3(H^{\dagger},H) + a_4 I_4(H^{\dagger},H) ,$$

• Four classes of VEVs: $\omega := e^{2\pi i/3}, v_i = \frac{m}{\sqrt{2(a_0 + a_i)}},$

$$\langle H \rangle_{\mathrm{I}} = v_1(1,1,1), \qquad \langle H \rangle_{\mathrm{II}} = v_2(\boldsymbol{\omega},1,1),$$

$$\langle H \rangle_{\rm III} = v_3(\omega^2, 1, 1), \quad \langle H \rangle_{\rm IV} = v_4(\sqrt{3}, 0, 0).$$

Andreas Trautner

CP violation as a consequence of another symmetry, 25.10.18

[Fallbacher, AT, '15]

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.)

Model:

- $H_{1,2,3} = (\mathbf{1}, \mathbf{2})_{1/2}$ of G_{SM} , $H := (H_1, H_2, H_3)$ is 3 of $\Delta(54)$.
- Higgs potential: $(m, a_i \in \mathbb{R})$

$$\begin{array}{rcl} & & +a_1 & I_1(H^{\dagger},H) & +a_2 & I_2(H^{\dagger},H) \\ V(H,\vec{a}) &= & -m^2 \, H_i^{\dagger} H_i + a_0 \, I_0(H^{\dagger},H) & \\ & & +a_3 & I_3(H^{\dagger},H) & +a_4 & I_4(H^{\dagger},H) \end{array} ,$$

• Four classes of VEVs: $\omega := e^{2\pi i/3}, v_i = \frac{m}{\sqrt{2(a_0 + a_i)}},$

$$\langle H \rangle_{\rm I} = v_1(1,1,1), \qquad \langle H \rangle_{\rm II} = v_2(\omega,1,1),$$

$$\langle H \rangle_{\rm III} = v_3(\omega^2, 1, 1), \qquad \langle H \rangle_{\rm IV} = v_4(\sqrt{3}, 0, 0).$$

• Large outer automorphism group: $Out(\Delta(54)) = S_4$.

Andreas Trautner

CP violation as a consequence of another symmetry, 25.10.18

[Fallbacher, AT, '15]

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.)

Model:

- $H_{1,2,3} = (\mathbf{1}, \mathbf{2})_{1/2}$ of G_{SM} , $H := (H_1, H_2, H_3)$ is 3 of $\Delta(54)$.
- Higgs potential:

$$V(H,\vec{a}) = -m^2 H_i^{\dagger} H_i + a_0 I_0(H^{\dagger},H) + a_1 I_1(H^{\dagger},H) + a_2 I_2(H^{\dagger},H)$$

$$+ a_3 I_3(H^{\dagger},H) + a_4 I_4(H^{\dagger},H) ,$$

• Four classes of VEVs: $\omega := e^{2\pi i/3}, v_i = \frac{m}{\sqrt{2(a_0 + a_i)}},$

[Fallbacher, AT, '15]

 $(m, a_i \in \mathbb{R})$

[Branco, Gerard, Grimus, '83]

Large outer automorphism group: Out(Δ(54)) = S₄.

Andreas Trautner

This 3HDM model is an example for some very general statements on outer automorphisms: [Fallbacher, AT, '15], [AT '16]

Outs allow to identify physical redundancies in the parameter space.
 here: (a₁, a₂, a₃, a₄) → a₁ ≤ a₂ ≤ a₃ ≤ a₄.

This 3HDM model is an example for some very general statements on outer automorphisms: [Fallbacher, AT, '15], [AT '16]

- Outs allow to identify physical redundancies in the parameter space. *here:* (a₁, a₂, a₃, a₄) → a₁ ≤ a₂ ≤ a₃ ≤ a₄.
- In the "Out-eigenbasis": CP and symmetry enhancement very transparent. *here:* The CP–odd basis invariant of this model:

$$J = -9\sqrt{3}(a_1 - a_2)(a_1 - a_3)(a_1 - a_4)(a_2 - a_3)(a_2 - a_4)(a_3 - a_4)$$
 . [Nishi]

This 3HDM model is an example for some very general statements on outer automorphisms: [Fallbacher, AT, '15], [AT '16]

- Outs allow to identify physical redundancies in the parameter space. *here:* (a₁, a₂, a₃, a₄) → a₁ ≤ a₂ ≤ a₃ ≤ a₄.
- In the "Out-eigenbasis": CP and symmetry enhancement very transparent. *here:* The CP–odd basis invariant of this model:

$$J = -9\sqrt{3}(a_1-a_2)(a_1-a_3)(a_1-a_4)(a_2-a_3)(a_2-a_4)(a_3-a_4)$$
 . [Nishi]

• Stationary points appear in multiplets of the Out group.

here: $\Phi := (\langle H \rangle_{I}, \langle H \rangle_{II}, \langle H \rangle_{III}, \langle H \rangle_{IV})$ is 4-plet of S_4

- \Rightarrow Each VEV encodes the same physics! (they break to isomorphic subgroups)
- \Rightarrow direction of the VEVs are calculable from a homogeneous linear equation $M\Phi = 0$.

This 3HDM model is an example for some very general statements on outer automorphisms: [Fallbacher, AT, '15], [AT '16]

- Outs allow to identify physical redundancies in the parameter space. *here:* (a₁, a₂, a₃, a₄) → a₁ ≤ a₂ ≤ a₃ ≤ a₄.
- In the "Out-eigenbasis": CP and symmetry enhancement very transparent. *here:* The CP–odd basis invariant of this model:

$$J = -9\sqrt{3}(a_1-a_2)(a_1-a_3)(a_1-a_4)(a_2-a_3)(a_2-a_4)(a_3-a_4)$$
 . [Nishi]

• Stationary points appear in multiplets of the Out group.

here: $\Phi := (\langle H \rangle_{I}, \langle H \rangle_{II}, \langle H \rangle_{IV})$ is 4-plet of S_4

- \Rightarrow Each VEV encodes the same physics! (they break to isomorphic subgroups)
- \Rightarrow direction of the VEVs are calculable from a homogeneous linear equation $M\Phi = 0$.
- Outs can give rise to emergent symmetries.

here: $U \langle H \rangle_{I} = \langle H \rangle_{I}$, where $U \in Out(G)$.

 \Rightarrow VEV has higher symmetry than potential.

In this particular 3HDM, this explains the origin of spontaneous ("geometrical") CP violation with calculable phases. [Fallbacher, AT, '15]

Fun with outer automorphisms II

Andreas Trautner

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Structure of outer automorphisms:

 $\operatorname{Out}(\mathfrak{su}(3)) \cong \mathbb{Z}_2$

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Structure of outer automorphisms:

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Structure of outer automorphisms:

Note: ${\rm Out}(\,\mathfrak{su}(3)\,)$ acts on the ${\rm T}_7 \subset {\rm SU}(3)$ subgroup as ${\rm Out}(\,{\rm T}_7\,)!$

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Toy model: gauged ${
m SU}(3)$ + complex scalar ${
m SU}(3)$ 15-plet ϕ . [Ratz, AT '16]

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu} \phi) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - V(\phi) ,$$

$$V(\phi) = -\mu^{2} \phi^{\dagger} \phi + \sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . \qquad \text{with } \lambda_{i} \in \mathbb{R}$$

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Toy model: gauged ${
m SU}(3)$ + complex scalar ${
m SU}(3)$ 15-plet ϕ . [Ratz, AT '16]

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - V(\phi) ,$$

$$V(\phi) = -\mu^{2}\phi^{\dagger}\phi + \sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . \qquad \text{with } \lambda_{i} \in \mathbb{R}$$

calculation enabled by SUSYNO [Fonseca '11]

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Toy model: gauged ${
m SU}(3)$ + complex scalar ${
m SU}(3)$ 15-plet ϕ . [Ratz, AT '16]

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu} \phi) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - V(\phi) ,$$

$$V(\phi) = -\mu^{2} \phi^{\dagger} \phi + \sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . \qquad \text{with } \lambda_{i} \in \mathbb{R}$$

calculation enabled by SUSYNO [Fonseca '11]

- VEV of the 15-plet $\langle \phi \rangle$ breaks ${
 m SU}(3) o {
 m T}_7$. [Luhn, '11], [Merle, Zwicky '11]
- $Out(\mathfrak{su}(3)) \cong \mathbb{Z}_2 \to Out(T_7) \cong \mathbb{Z}_2$; Out unbroken by VEV.

$$\operatorname{SU}(3) \rtimes \mathbb{Z}_2 \xrightarrow{\langle \phi \rangle} \operatorname{T}_7 \rtimes \mathbb{Z}_2;$$

Andreas Trautner

CP violation in $\mathrm{SU}(3) ightarrow \mathrm{T}_7$ toy model [Ratz, AT '16]

Name	SU(3)	$\xrightarrow{\langle \phi \rangle}$ Name	T_7	mass
A_{μ}	8	Z_{μ}	1_1	$m_Z^2 = 7/3 g^2 v^2$
		$\bot = W_{\mu}$	3	$m_W^2 = g^2 v^2$
	15	$\operatorname{Re}\sigma_0$	$\mathbf{1_0}$	$m_{\operatorname{Re}\sigma_0}^2 = 2\mu^2$
		$\lim \sigma_0$	$\mathbf{1_0}$	$m_{\mathrm{Im}\sigma_0}^2 = 0$
d		σ_1	1_1	$m_{\sigma_1}^2 = -\mu^2 + \sqrt{15}\lambda_5v^2$
φ		τ_1	3	$m_{\tau_1}^2 = m_{\tau_1}^2(\mu, \lambda_i)$
		au	3	$m_{\tau_2}^2 = m_{\tau_2}^2(\mu, \lambda_i)$
		$ au_3$	3	$m_{\tau_3}^2 = m_{\tau_3}^2(\mu, \lambda_i)$

[Ratz, AT '16]

Name	SU(3)	$\xrightarrow{\langle \phi \rangle}$ Name	T_7	mass
A_{μ}	8	Z_{μ}	1_1	$m_Z^2 = 7/3 g^2 v^2$
		$\bot = W_{\mu}$	3	$m_W^2 = g^2 v^2$
	15	$\operatorname{Re}\sigma_0$	$\mathbf{1_0}$	$m_{\mathrm{Re}\sigma_0}^2 = 2\mu^2$
		Im σ_0	$\mathbf{1_0}$	$m_{\mathrm{Im}\sigma_0}^2 = 0$
d		σ_1	$\mathbf{1_1}$	$m_{\sigma_1}^2 = -\mu^2 + \sqrt{15}\lambda_5v^2$
φ		τ_1	3	$m_{\tau_1}^2 = m_{\tau_1}^2(\mu, \lambda_i)$
		$ au_2$	3	$m_{\tau_2}^2 = m_{\tau_2}^2(\mu, \lambda_i)$
		$ au_3$	3	$m_{\tau_3}^2 = m_{\tau_3}^2(\mu, \lambda_i)$

The action is invariant under the $\mathbb{Z}_2 - Out$ transformation:

SU(3)	T_7
	$W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathfrak{P}x) ,$
$A^{a}(x) \rightarrow B^{ab} \oplus \nu A^{b}(\oplus x)$	$\sigma_0(x) \mapsto \sigma_0(\mathcal{P}x) ,$
$A_{\mu}(x) \rightarrow H J_{\mu} A_{\nu}(J x),$	$\tau_i(x) \mapsto \tau_i^*(\mathfrak{P} x) ,$
$\varphi_i(x) \mapsto U_{ij} \varphi_j(\mathcal{F} x)$.	$Z_{\mu}(x) \mapsto -\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x) ,$
	$\sigma_1(x) \mapsto \sigma_1(\mathfrak{P} x)$
physical CP 🗸	physical CP X

Andreas Trautner

- The VEV does **not** break the CP transformation, $U\langle \phi \rangle^* = \langle \phi \rangle$.
- However, at the level of T_7 , the SU(3)-CP transformation merges to $Out(T_7)$:

- The VEV does **not** break the CP transformation, $U\langle \phi \rangle^* = \langle \phi \rangle$.
- However, at the level of T_7 , the SU(3)-CP transformation merges to $Out(T_7)$:

- The VEV does **not** break the CP transformation, $U\langle \phi \rangle^* = \langle \phi \rangle$.
- However, at the level of T_7 , the SU(3)-CP transformation merges to $Out(T_7)$:

 $\Rightarrow~$ The $\mathbb{Z}_2\text{-}Out$ is conserved at the level of $\mathrm{T}_7,$ but it is not interpreted as a physical CP trafo,

$$\mathrm{SU}(3) \rtimes \mathbb{Z}_2^{(\mathrm{CP})} \xrightarrow{\langle \phi \rangle} \mathrm{T}_7 \rtimes \mathbb{Z}_2^{(\mathrm{CP})}$$

- There is no other possible allowed CP transformation at the level of T_7 (type I).
- Imposing a transformation r_{T₇,i} ↔ r_{T₇,i}* enforces decoupling, g = λ_i = 0.

$\begin{array}{c} \mathsf{CP} \text{ violation in } \mathrm{SU}(3) \to \mathrm{T}_7 \text{ toy model} \\ {}_{\mathsf{Explicit crosscheck: compute decay asymmetry.} \end{array}$

$$\varepsilon_{\sigma_1 \to W W^*} := \frac{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 - \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 + \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}.$$

Explicit crosscheck: compute decay asymmetry.

$$\varepsilon_{\sigma_1 \to W W^*} := \frac{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 - \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 + \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}.$$

Contribution to $\varepsilon_{\sigma_1 \to W W^*}$ from interference terms, e.g.

corresponding to non-vanishing CP-odd basis invariants

$$\begin{split} \mathcal{I}_1 \;&=\; \left[Y_{\sigma_1 W W^*}^{\dagger}\right]_{k\ell} \left[Y_{\sigma_1 \tau_2 \tau_2^*}\right]_{ij} \left[Y_{\tau_2^* W W^*}\right]_{imk} \left[\left(Y_{\tau_2^* W W^*}\right)^*\right]_{jm\ell} \;, \\ \mathcal{I}_2 \;&=\; \left[Y_{\sigma_1 W W^*}^{\dagger}\right]_{k\ell} \left[Y_{\sigma_1 \tau_2 \tau_2^*}\right]_{ij} \left[Y_{\tau_2^* W W^*}\right]_{i\ell m} \left[\left(Y_{\tau_2^* W W^*}\right)^*\right]_{jkm} \;. \end{split}$$

- ✓ Contribution to $\varepsilon_{\sigma_1 \to W W^*}$ is proportional to Im $\mathcal{I}_{1,2} \neq 0$.
- ✓ All CP odd phases are geometrical, $I_1 = e^{2 \pi i/3} I_2$.
- ✓ $(\varepsilon_{\sigma_1 \to W W^*}) \to 0$ for $v \to 0$, i.e. CP is restored in limit of vanishing VEV.

Andreas Trautner

Natural protection of $\theta = 0$

Topological vacuum term of the gauge group

$$\mathscr{L}_{\theta} = \theta \, \frac{g^2}{32\pi^2} \, G^a_{\mu\nu} \, \widetilde{G}^{\mu\nu,a} \; ,$$

is forbidden by $\mathbb{Z}_2 - \text{Out}$ (the SU(3)-CP transformation).

The unbroken Out

$$\mathbb{Z}_2 - \operatorname{Out} : W_{\mu}(x) \mapsto \mathbb{P}_{\mu}^{\nu} W_{\nu}^*(\mathbb{P}x) , \quad Z_{\mu}(x) \mapsto -\mathbb{P}_{\mu}^{\nu} Z_{\nu}(\mathbb{P}x) ,$$

still enforces $\theta = 0$ even though CP is violated for the physical T_7 states.

Natural protection of $\theta = 0$

Topological vacuum term of the gauge group

$$\mathscr{L}_{\theta} = \theta \, \frac{g^2}{32\pi^2} \, G^a_{\mu\nu} \, \widetilde{G}^{\mu\nu,a} \; ,$$

is forbidden by $\mathbb{Z}_2 - \text{Out}$ (the SU(3)-CP transformation).

The unbroken Out

$$\mathbb{Z}_2 - \operatorname{Out} : W_{\mu}(x) \mapsto \mathbb{P}_{\mu}^{\nu} W_{\nu}^*(\mathbb{P}x) , \quad Z_{\mu}(x) \mapsto -\mathbb{P}_{\mu}^{\nu} Z_{\nu}(\mathbb{P}x) ,$$

still enforces $\theta = 0$ even though CP is violated for the physical T_7 states. Physical scalars (T_7 singlets and triplets):

$$\operatorname{Re} \sigma_{0} = \frac{1}{\sqrt{2}} (\phi_{1} + \phi_{1}^{*}) , \qquad \operatorname{Im} \sigma_{0} = -\frac{\mathrm{i}}{\sqrt{2}} (\phi_{1} - \phi_{1}^{*}) ,$$

$$\sigma_{1} = \phi_{2} ,$$

$$\begin{pmatrix} \tau_{1} \\ \tau_{2} \\ \tau_{3} \end{pmatrix} = \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix} \begin{pmatrix} T_{2} \\ T_{3}^{*} \\ T_{1} \end{pmatrix} .$$

Andreas Trautner

Natural protection of $\theta = 0$

Topological vacuum term of the gauge group

$$\mathscr{L}_{\theta} = \theta \, \frac{g^2}{32\pi^2} \, G^a_{\mu\nu} \, \widetilde{G}^{\mu\nu,a} \; ,$$

is forbidden by $\mathbb{Z}_2 - \text{Out}$ (the SU(3)-CP transformation).

The unbroken Out

 $\mathbb{Z}_2 - \operatorname{Out} : W_{\mu}(x) \mapsto \mathbb{P}_{\mu}^{\nu} W_{\nu}^*(\mathbb{P}x) , \quad Z_{\mu}(x) \mapsto -\mathbb{P}_{\mu}^{\nu} Z_{\nu}(\mathbb{P}x) ,$

still enforces $\theta = 0$ even though CP is violated for the physical T_7 states.

Possible application to strong CP problem?

· Starting point: CP conserving theory based on

 $[G_{\rm SM} \times G_{\rm F}] \rtimes {\rm CP}$.

- break $G_{\rm F} \rtimes {\rm CP} \longrightarrow {\rm Type \, I} \rtimes {\rm Out.}$
- - Main problem: finding realistic model based on Type I group allowing for outer automorphism.

Andreas Trautner

Summary

- Outer automorphisms are symmetries of symetries (→ think of them as mappings among the irreps).
- CP is **a** special outer automorphism which maps *all* present representations to their complex conjugate representation.
- There are "type I" groups which do not allow for CP trafos ⇒ CPV (explicit/spontaneous) with quantized phases.
- Concept of Outs is more general than C and/or P; Outs give very profound insights about models (permutation of invariants, calculability of VEVs, emergent symmetries...).
- Physical interpretation of one and the same transformation (namely the Z₂-Out) can change depending on the symmetries of the ground state of a model.
- Explicit toy model example, SU(3) → T₇, in which CP is spontaneously violated for the physical states of the theory (with quantized phases) while an unbroken outer automorphism protects θ = 0.

Thank You

Backup slides

Andreas Trautner

Type II A groups: CP violation completely analogue to well–known case: SU(N)(i.e. it depends on # of rephasing d.o.f.'s vs # complex couplings) Type II B groups: CP violation tied to certain operators

The model

3HDM model with $[\Delta(27) \Rightarrow] \Delta(54)$ symmetry.

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.) [Branco, Gerard, Grimus, '83]
3HDM model with $[\Delta(27) \Rightarrow] \Delta(54)$ symmetry.

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.) [Branco, Gerard, Grimus, '83]

Model:

• Triplet $H := (H_1, H_2, H_3)$ of Higgs doublets H_i , each transforming as $(\mathbf{1}, \mathbf{2})_{1/2}$ under G_{SM} .

3HDM model with $[\Delta(27) \Rightarrow] \Delta(54)$ symmetry.

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.) [Branco, Gerard, Grimus, '83]

Model:

- Triplet $H := (H_1, H_2, H_3)$ of Higgs doublets H_i , each transforming as $(\mathbf{1}, \mathbf{2})_{1/2}$ under G_{SM} .
- Three–Higgs potential invariant under $\Delta(54)$, generated by

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, C = \pm \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

3HDM model with $[\Delta(27) \Rightarrow] \Delta(54)$ symmetry.

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.) [Branco, Gerard, Grimus, '83]

Model:

- Triplet $H := (H_1, H_2, H_3)$ of Higgs doublets H_i , each transforming as $(\mathbf{1}, \mathbf{2})_{1/2}$ under G_{SM} .
- Three–Higgs potential invariant under $\Delta(54)$, generated by

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, C = \pm \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

"Traditional" way to write the potential:

 $(i,j=1,..,3;\;i\neq j)$

$$\begin{split} V &= -m^2 \, H_i^{\dagger} H_i + \lambda_1 \left(H_i^{\dagger} H_i \right)^2 + \lambda_2 \left(H_i^{\dagger} H_i \right) \left(H_j^{\dagger} H_j \right) + \lambda_3 \left(H_i^{\dagger} H_j \right) \left(H_j^{\dagger} H_i \right) \\ &+ \mathrm{e}^{\mathrm{i}\,\Omega} \lambda_4 \left[\left(H_1^{\dagger} H_2 \right) \left(H_1^{\dagger} H_3 \right) + \mathsf{cyclic} \right] + \mathrm{h.c.} \; . \end{split}$$

Andreas Trautner

3HDM model with $[\Delta(27) \Rightarrow] \Delta(54)$ symmetry.

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.) [Branco, Gerard, Grimus, '83]

Model:

- Triplet $H := (H_1, H_2, H_3)$ of Higgs doublets H_i , each transforming as $(\mathbf{1}, \mathbf{2})_{1/2}$ under G_{SM} .
- Three–Higgs potential invariant under $\Delta(54),$ generated by

$$A \;=\; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \, B \;=\; \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \, C \;=\; \pm \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \;.$$

• "Traditional" way to write the potential: $(i, j = 1, ..., 3; i \neq j)$

$$\begin{split} V &= -m^2 \, H_i^{\dagger} H_i + \lambda_1 \left(H_i^{\dagger} H_i \right)^2 + \lambda_2 \left(H_i^{\dagger} H_i \right) \left(H_j^{\dagger} H_j \right) + \lambda_3 \left(H_i^{\dagger} H_j \right) \left(H_j^{\dagger} H_i \right) \\ &+ \mathrm{e}^{\mathrm{i}\,\Omega} \lambda_4 \left[\left(H_1^{\dagger} H_2 \right) \left(H_1^{\dagger} H_3 \right) + \mathrm{cyclic} \right] + \mathrm{h.c.} \; . \end{split}$$

Notation:

$$\begin{split} \langle 0 | \, H_i \, | 0 \rangle &\equiv \langle H_i \rangle \; := \; \begin{pmatrix} 0 \\ \mathbf{v}_i \, \mathrm{e}^{\mathrm{i} \, \varphi_i} \end{pmatrix} & \text{for } i = 1, .., 3 \\ \langle H \rangle \; = \; (\mathbf{v}_1 \, \mathrm{e}^{\mathrm{i} \, \varphi_1}, \mathbf{v}_2 \, \mathrm{e}^{\mathrm{i} \, \varphi_2}, \mathbf{v}_3 \, \mathrm{e}^{\mathrm{i} \, \varphi_3})^{\mathrm{T}} \; . \end{split}$$

Andreas Trautner

3HDM model with $[\Delta(27) \Rightarrow] \Delta(54)$ symmetry.

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.) [Branco, Gerard, Grimus, '83]

Model:

- Triplet $H := (H_1, H_2, H_3)$ of Higgs doublets H_i , each transforming as $(\mathbf{1}, \mathbf{2})_{1/2}$ under G_{SM} .
- Three–Higgs potential invariant under $\Delta(54)$, generated by

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, C = \pm \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

• "Traditional" way to write the potential: $(i, j = 1, ..., 3; i \neq j)$

$$\begin{split} V \; = \; & -m^2 \, H_i^{\dagger} H_i + \lambda_1 \left(H_i^{\dagger} H_i \right)^2 + \lambda_2 \left(H_i^{\dagger} H_i \right) \left(H_j^{\dagger} H_j \right) + \lambda_3 \left(H_i^{\dagger} H_j \right) \left(H_j^{\dagger} H_i \right) \\ & + \mathrm{e}^{\mathrm{i} \,\Omega} \lambda_4 \left[\left(H_1^{\dagger} H_2 \right) \left(H_1^{\dagger} H_3 \right) + \mathrm{cyclic} \right] + \mathrm{h.c.} \; . \end{split}$$

• Potential gives rise to four classes of VEVs: $v_i = rac{m}{\sqrt{2(a_0+a_i)}}, \omega := \mathrm{e}^{2\pi\,\mathrm{i}/3}$

$$\langle H \rangle_{\mathrm{I}} = v_1 \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
, $\langle H \rangle_{\mathrm{II}} = v_2 \begin{pmatrix} \omega\\1\\1 \end{pmatrix}$, $\langle H \rangle_{\mathrm{III}} = v_3 \begin{pmatrix} \omega^2\\1\\1 \end{pmatrix}$, $\langle H \rangle_{\mathrm{IV}} = v_4 \begin{pmatrix} \sqrt{3}\\0\\0 \end{pmatrix}$

Andreas Trautner

3HDM model with $[\Delta(27) \Rightarrow] \Delta(54)$ symmetry.

(This is the original "geometrical T violation" model of Branco, Gerard, and Grimus.) [Branco, Gerard, Grimus, '83]

Model:

- Triplet $H := (H_1, H_2, H_3)$ of Higgs doublets H_i , each transforming as $(\mathbf{1}, \mathbf{2})_{1/2}$ under G_{SM} .
- Three–Higgs potential invariant under $\Delta(54)$, generated by

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, C = \pm \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

• "Traditional" way to write the potential: $(i, j = 1, ..., 3; i \neq j)$

$$\begin{split} V \; = \; & -m^2 \, H_i^{\dagger} H_i + \lambda_1 \left(H_i^{\dagger} H_i \right)^2 + \lambda_2 \left(H_i^{\dagger} H_i \right) \left(H_j^{\dagger} H_j \right) + \lambda_3 \left(H_i^{\dagger} H_j \right) \left(H_j^{\dagger} H_i \right) \\ & + \mathrm{e}^{\mathrm{i} \,\Omega} \lambda_4 \left[\left(H_1^{\dagger} H_2 \right) \left(H_1^{\dagger} H_3 \right) + \mathrm{cyclic} \right] + \mathrm{h.c.} \; . \end{split}$$

• Potential gives rise to four classes of VEVs: $v_i = \frac{m}{\sqrt{2(a_0 + a_i)}}, \omega := e^{2\pi i/3}$

$$\langle H \rangle_{\mathrm{I}} = v_1 \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
, $\langle H \rangle_{\mathrm{II}} = v_2 \begin{pmatrix} \omega\\1\\1 \end{pmatrix}$, $\langle H \rangle_{\mathrm{III}} = v_3 \begin{pmatrix} \omega^2\\1\\1 \end{pmatrix}$, $\langle H \rangle_{\mathrm{IV}} = v_4 \begin{pmatrix} \sqrt{3}\\0\\0 \end{pmatrix}$

Andreas Trautner

Spontaneous geometrical CP violation

If a CP transformation $H \mapsto UH^*$ is a symmetry of the Lagrangian, then

$$\langle H \rangle \neq U \langle H \rangle^*$$

must hold in order for this CP transformation to be spontaneously violated. [Branco et al. '83]

- All possible forms of *U* are given by solutions to the "consistency condition" (for various *u*'s)

$$U \rho_{\mathbf{3}^*}(g) U^{\dagger} = \rho_{\mathbf{3}}(u(g)).$$

[Holthausen, Lindner, Schmidt, '13; Feruglio, Hagedorn, Ziegler, '13]

 \Rightarrow Actually: CP transformations are special outer automorphism transformations of all present symmetries (in particular $\Delta(54)$).

3HDM dictionary

A more "natural" way to write the potential:

$$\begin{split} \left[\left(H_{\mathbf{3}}^{\dagger} \otimes H_{\mathbf{3}} \right) \otimes \left(H_{\mathbf{3}}^{\dagger} \otimes H_{\mathbf{3}} \right) \right]_{\mathbf{1}_{0}} &= a_{0} \left[\left(H^{\dagger} \otimes H \right)_{\mathbf{1}_{0}} \otimes \left(H^{\dagger} \otimes H \right)_{\mathbf{1}_{0}} \right] \\ &+ \frac{a_{1}}{\sqrt{2}} \left[\left(H^{\dagger} \otimes H \right)_{\mathbf{2}_{1}} \otimes \left(H^{\dagger} \otimes H \right)_{\mathbf{2}_{1}} \right]_{\mathbf{1}_{0}} + \frac{a_{2}}{\sqrt{2}} \left[\left(H^{\dagger} \otimes H \right)_{\mathbf{2}_{3}} \otimes \left(H^{\dagger} \otimes H \right)_{\mathbf{2}_{3}} \right]_{\mathbf{1}_{0}} \\ &+ \frac{a_{3}}{\sqrt{2}} \left[\left(H^{\dagger} \otimes H \right)_{\mathbf{2}_{4}} \otimes \left(H^{\dagger} \otimes H \right)_{\mathbf{2}_{4}} \right]_{\mathbf{1}_{0}} + \frac{a_{4}}{\sqrt{2}} \left[\left(H^{\dagger} \otimes H \right)_{\mathbf{2}_{2}} \otimes \left(H^{\dagger} \otimes H \right)_{\mathbf{2}_{2}} \right]_{\mathbf{1}_{0}} \end{split}$$

Relations between the two different bases:

Bounded-below criterions:

$$0 < \lambda_1$$
 and $0 < \lambda_1 + \lambda_{23} + 2\lambda_4 \cos[2\pi/3 + (\Omega \mod 2\pi/3)]$,

VS.

$$0 < a_0 + a_\ell$$
, for $\ell = 1, ..., 4$.

Andreas Trautner

Invariants spelled out:

$$\begin{split} I_{0}(H^{\dagger},H) &= \frac{1}{3} \left(H_{1}^{\dagger}H_{1} + H_{2}^{\dagger}H_{2} + H_{3}^{\dagger}H_{3} \right)^{2} ,\\ I_{1}(H^{\dagger},H) &= \frac{\sqrt{2}}{3} \left[\left(H_{1}^{\dagger}H_{2}H_{1}^{\dagger}H_{3} + H_{2}^{\dagger}H_{1}H_{2}^{\dagger}H_{3} + H_{3}^{\dagger}H_{1}H_{3}^{\dagger}H_{2} + \text{h.c.} \right) + \\ &\quad H_{1}^{\dagger}H_{2}H_{2}^{\dagger}H_{1} + H_{1}^{\dagger}H_{3}H_{3}^{\dagger}H_{1} + H_{2}^{\dagger}H_{3}H_{3}^{\dagger}H_{2} \right] ,\\ I_{2}(H^{\dagger},H) &= \frac{\sqrt{2}}{3} \left[H_{1}^{\dagger}H_{1}H_{1}^{\dagger}H_{1} + H_{2}^{\dagger}H_{2}H_{2}^{\dagger}H_{2} + H_{3}^{\dagger}H_{3}H_{3}^{\dagger}H_{3} \\ &\quad -H_{1}^{\dagger}H_{1}H_{2}^{\dagger}H_{2} + -H_{1}^{\dagger}H_{1}H_{3}^{\dagger}H_{3} + -H_{2}^{\dagger}H_{2}H_{3}^{\dagger}H_{3} \right] ,\\ I_{3}(H^{\dagger},H) &= \frac{\sqrt{2}}{3} \left[\left(\omega^{2}H_{1}^{\dagger}H_{2}H_{1}^{\dagger}H_{3} + \omega^{2}H_{2}^{\dagger}H_{1}H_{2}^{\dagger}H_{3} + \omega^{2}H_{3}^{\dagger}H_{1}H_{3}^{\dagger}H_{2} + \text{h.c.} \right) + \\ &\quad H_{1}^{\dagger}H_{2}H_{2}^{\dagger}H_{1} + H_{1}^{\dagger}H_{3}H_{3}^{\dagger}H_{1} + H_{2}^{\dagger}H_{3}H_{3}^{\dagger}H_{2} \right] ,\\ I_{4}(H^{\dagger},H) &= \frac{\sqrt{2}}{3} \left[\left(\omega H_{1}^{\dagger}H_{2}H_{1}^{\dagger}H_{3} + \omega H_{2}^{\dagger}H_{1}H_{2}^{\dagger}H_{3} + \omega H_{3}^{\dagger}H_{1}H_{3}^{\dagger}H_{2} + \text{h.c.} \right) + \\ &\quad H_{1}^{\dagger}H_{2}H_{2}^{\dagger}H_{1} + H_{1}^{\dagger}H_{3}H_{3}^{\dagger}H_{1} + H_{2}^{\dagger}H_{3}H_{3}^{\dagger}H_{2} \right] . \end{split}$$

Andreas Trautner

"Physical" CP transformation

Recall: e.g. complex scalar field σ , with field operator

$$\widehat{\boldsymbol{\sigma}}(x) = \int \widetilde{\mathrm{d}} p \left\{ \widehat{\boldsymbol{a}}(\vec{p}) \,\mathrm{e}^{-\mathrm{i}\,p\,x} + \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \,\mathrm{e}^{\mathrm{i}\,p\,x} \right\}$$

Physical CP transformation of the complex scalar field

$$CP : \sigma(x) \mapsto e^{i\varphi} \sigma^*(\mathfrak{P}x),$$

corresponds to

$$\operatorname{CP} : \widehat{\boldsymbol{a}}(\vec{p}) \mapsto \operatorname{e}^{\operatorname{i}\varphi} \widehat{\boldsymbol{b}}(-\vec{p}) \quad \text{and} \quad \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mapsto \operatorname{e}^{\operatorname{i}\varphi} \widehat{\boldsymbol{a}}^{\dagger}(-\vec{p}) \,.$$

Note:

"matter":
$$\widehat{a}^{(\dagger)}$$
 "anti-matter": $\widehat{b}^{(\dagger)}$.

Toy model details Complex scalar ϕ in T_7 -diagonal basis of SU(3): (in unitary gauge)

$$\phi = \left(v + \phi_1, \frac{\phi_2}{\sqrt{2}}, \frac{\phi_2^*}{\sqrt{2}}, \phi_4, \phi_5, \phi_6, \frac{\phi_7}{\sqrt{2}}, \frac{\phi_8}{\sqrt{2}}, \frac{\phi_9}{\sqrt{2}}, \phi_{10}, \phi_{11}, \phi_{12}, \frac{\phi_7^*}{\sqrt{2}}, \frac{\phi_8^*}{\sqrt{2}}, \frac{\phi_9^*}{\sqrt{2}}\right)$$

 T_7 representations of the components:

The physical scalars are

$$\operatorname{Re} \sigma_{0} = \frac{1}{\sqrt{2}} (\phi_{1} + \phi_{1}^{*}) , \qquad \operatorname{Im} \sigma_{0} = -\frac{\mathrm{i}}{\sqrt{2}} (\phi_{1} - \phi_{1}^{*}) ,$$

$$\sigma_{1} = \phi_{2} ,$$

$$\begin{pmatrix} \tau_{1} \\ \tau_{2} \\ \tau_{3} \end{pmatrix} = \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix} \begin{pmatrix} T_{2} \\ \overline{T}_{3}^{*} \\ T_{1} \end{pmatrix} .$$

The physical vectors are

$$\begin{split} Z^{\mu} &=\; \frac{1}{\sqrt{2}} \left(A^{\mu}_{7} - \mathrm{i} \, A^{\mu}_{8} \right) \;, \qquad \qquad W^{\mu}_{1} \;=\; \frac{1}{\sqrt{2}} \left(A^{\mu}_{4} - \mathrm{i} \, A^{\mu}_{1} \right) \;, \\ W^{\mu}_{2} \;=\; \frac{1}{\sqrt{2}} \left(A^{\mu}_{5} - \mathrm{i} \, A^{\mu}_{2} \right) \;, \qquad \qquad W^{\mu}_{3} \;=\; \frac{\mathrm{i}}{\sqrt{2}} \left(A^{\mu}_{6} - \mathrm{i} \, A^{\mu}_{3} \right) \;. \end{split}$$

Andreas Trautner

Toy model details

The VEV in this basis is simply

$$\langle \phi \rangle_1 = v$$
 and $\langle \phi \rangle_i = 0$ for $i = 2, \dots, 15$,

where

$$|v| = \mu \times 3\sqrt{\frac{7}{2}} \left(-7\sqrt{15}\,\lambda_1 + 14\sqrt{15}\,\lambda_2 + 20\sqrt{6}\,\lambda_4 + 13\sqrt{15}\,\lambda_5\right)^{-1/2} \,.$$

The masses of the physical states are

$$m_Z^2 = rac{7}{3} \, g^2 \, v^2$$
 and $m_W^2 = g^2 \, v^2$

$$\begin{split} m_{\mathrm{Re}\,\sigma_0}^2 &= 2\,\mu^2\,, \qquad m_{\mathrm{Im}\,\sigma_0}^2 \,=\, 0\,, \\ m_{\sigma_1}^2 &= \,-\,\mu^2 + \sqrt{15}\,\lambda_5\,v^2\,. \end{split}$$

The massless mode is the goldstone boson of an additional ${\rm U}(1)$ symmetry of the potential. It can be avoided by either

- gauging the additional U(1),
- or breaking it softly by a cubic coupling of ϕ .

Andreas Trautner

Toy model details

 T_7 invariant couplings ($\omega := e^{2\pi i/3}$)

$$Y_{\sigma_1 W W^*} \;=\; \frac{v\,g^2}{\sqrt{6}}\,\mathrm{e}^{-\pi\,\mathrm{i}/6}\,\mathrm{diag}(1,\,\omega,\,\omega^2)\;,\quad Y_{\sigma_1\tau_2\tau_2^*}\;=\; v\,y_{\sigma_1\tau_2\tau_2^*}\;\mathrm{diag}(1,\,\omega,\,\omega^2)\;,$$

$$\begin{split} \left[Y_{\tau_2^*WW^*}\right]_{121} &= \left[Y_{\tau_2^*WW^*}\right]_{232} &= \left[Y_{\tau_2^*WW^*}\right]_{313} &= v \, g^2 \, y_{\tau_2^*WW^*} \;, \\ \left[Y_{\tau_2^*WW^*}\right]_{ijk} &= 0 \qquad \text{(else)} \;. \end{split}$$

Toy model details

$$\begin{split} y_{\sigma_{1}\tau_{2}\tau_{2}^{*}} &= \frac{1}{504\sqrt{3}} \left\{ V_{21}^{2} \left[-14\sqrt{10} \left(17 + 5\sqrt{3} i \right) \lambda_{1} + 84\sqrt{30} \left(\sqrt{3} - i \right) \lambda_{2} \right. \right. \\ &\left. - 240 \left(1 + \sqrt{3} i \right) \lambda_{4} - \sqrt{10} \left(197 - 55\sqrt{3} i \right) \lambda_{5} \right] \right. \\ &\left. + 8V_{22}^{2} \left[28\sqrt{10} \left(1 - \sqrt{3} i \right) \lambda_{1} - 14\sqrt{30} i \lambda_{2} + 112\sqrt{3} i \lambda_{3} \right. \\ &\left. - \left(30 - 26\sqrt{3} i \right) \lambda_{4} + \sqrt{10} \left(20 - \sqrt{3} i \right) \lambda_{5} \right] \right. \\ &\left. + 8V_{23}^{2} \left[28\sqrt{10} \left(1 + \sqrt{3} i \right) \lambda_{1} - 14\sqrt{30} i \lambda_{2} - 168\lambda_{3} \right. \\ &\left. + \left(6 + 65\sqrt{3} i \right) \lambda_{4} - 4\sqrt{10} \left(1 - 2\sqrt{3} i \right) \lambda_{5} \right] \right. \\ &\left. + 8V_{21}V_{22} \left[-35\sqrt{10} \left(1 - \sqrt{3} i \right) \lambda_{1} + 21\sqrt{30} \left(\sqrt{3} + i \right) \lambda_{2} \right. \\ &\left. - 56 \left(3 + \sqrt{3} i \right) \lambda_{3} + 6 \left(1 + 17\sqrt{3} i \right) \lambda_{4} - \sqrt{10} \left(67 + 19\sqrt{3} i \right) \lambda_{5} \right] \right. \\ &\left. + 4V_{21}V_{23} \left[-28\sqrt{10} \left(2 + \sqrt{3} i \right) \lambda_{1} - 42\sqrt{30} \left(\sqrt{3} + i \right) \lambda_{2} \right. \\ &\left. + 30 \left(11 + 3\sqrt{3} i \right) \lambda_{4} - \sqrt{10} \left(31 + 11\sqrt{3} i \right) \lambda_{5} \right] \right. \\ &\left. - 8V_{22}V_{23} \left[14\sqrt{10}\lambda_{1} - 14\sqrt{30} i \lambda_{2} \right. \\ &\left. + 10 \left(3 + 5\sqrt{3} i \right) \lambda_{4} + \sqrt{10} \left(1 - 3\sqrt{3} i \right) \lambda_{5} \right] \right\} \end{split}$$

and

$$y_{\tau_2^*WW^*} \;=\; - \; \frac{\sqrt{2}}{3} \; \left(2 \, V_{21} + V_{22} + 2 \, V_{23} \right) \;.$$

Andreas Trautner

CP symmetries in settings with discrete G

(For details see [Chen, Fallbacher, Mahanthappa, Ratz, AT, '14])

Mathematical tool to decide: Twisted Frobenius-Schur indicator FS_u (Backup slides)

Andreas Trautner

Twisted Frobenius–Schur indicator

Criterion to decide: existence of a CP outer automorphism. \curvearrowright can be probed by computing the

"twisted Frobenius–Schur indicator" FS_u

$$\operatorname{FS}_{u}(\boldsymbol{r}_{i}) := \frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_{i}}(g \, u(g))$$

$$(\chi_{\boldsymbol{r}_{i}(g)})$$

[Chen, Fallbacher, Mahanthappa, Ratz, AT, 2014]

: Character)

$$FS_u(\boldsymbol{r}_i) = \begin{cases} +1 \text{ or } -1 \quad \forall i, \Rightarrow u \text{ is good for CP,} \\ \text{different from } \pm 1, \Rightarrow u \text{ is no good for CP.} \end{cases}$$

In analogy to the Frobenius–Schur indicator $\mathrm{FS}_{\bigvee}(\pmb{r}_i)=+1,-1,0 \text{ for real / pseudo-real / complex irrep.}$

Bibliography I

Bernabeu, J., Branco, G., and Gronau, M. (1986).

CP Restrictions on Quark Mass Matrices. *Phys. Lett.*, B169:243–247.

Botella, F. J. and Silva, J. P. (1995).

Jarlskog - like invariants for theories with scalars and fermions. *Phys. Rev.*, D51:3870–3875, hep-ph/9411288.

Branco, G., Gerard, J., and Grimus, W. (1984).

Geometrical T Violation. Phys. Lett., B136:383.

Buchbinder, I. L., Gitman, D. M., and Shelepin, A. L. (2002).

Discrete symmetries as automorphisms of the proper Poincare group. *Int. J. Theor. Phys.*, 41:753–790, hep-th/0010035.

Chen, M.-C., Fallbacher, M., Mahanthappa, K. T., Ratz, M., and Trautner, A. (2014).

CP Violation from Finite Groups. Nucl. Phys., B883:267–305, 1402.0507.

Ecker, G., Grimus, W., and Neufeld, H. (1987).

A Standard Form for Generalized CP Transformations. *J.Phys.*, A20:L807.

Fallbacher, M. and Trautner, A. (2015).

Symmetries of symmetries and geometrical CP violation. *Nucl. Phys.*, B894:136–160, 1502.01829.

Bibliography II

Fonseca, R. M. (2012).

Calculating the renormalisation group equations of a SUSY model with Susyno. *Comput. Phys. Commun.*, 183:2298–2306, 1106.5016.

GAP (2012).

GAP – Groups, Algorithms, and Programming, Version 4.5.5. The GAP Group.

Grimus, W. and Rebelo, M. (1997).

Automorphisms in gauge theories and the definition of CP and P. *Phys. Rept.*, 281:239–308, hep-ph/9506272.

Haber, H. E. and Surujon, Z. (2012).

A Group-theoretic Condition for Spontaneous CP Violation. *Phys. Rev.*, D86:075007, 1201.1730.

Holthausen, M., Lindner, M., and Schmidt, M. A. (2013).

CP and Discrete Flavour Symmetries. *JHEP*, 1304:122, 1211.6953.

Ivanov, I. P. and Silva, J. P. (2016).

CP-conserving multi-Higgs model with irremovable complex coefficients. *Phys. Rev.*, D93(9):095014, 1512.09276.

Luhn, C. (2011).

Spontaneous breaking of SU(3) to finite family symmetries: a pedestrian's approach. *JHEP*, 1103:108, 1101.2417.

Bibliography III

Merle, A. and Zwicky, R. (2012).

Explicit and spontaneous breaking of SU(3) into its finite subgroups. *JHEP*, 1202:128, 1110.4891.

Trautner, A. (2016).

CP and other Symmetries of Symmetries. PhD thesis, Munich, Tech. U., Universe, 1608.05240.

Weinberg, S. (1995).

The Quantum theory of fields. Vol. 1: Foundations. Cambridge University Press. 609 p.