

The High Energy Neutrino Sky

Irene Tamborra Niels Bohr Institute, University of Copenhagen

Astroparticle Theory Seminar MPIK, January 23, 2017

- ★ Features of high energy neutrino flux detected by IceCube
- * Neutrino emission from hadro-nuclear and photo-hadronic sources
- ★ Prospects for detection of point sources
- ★ Conclusions

High-energy neutrino astronomy is happening!

★ IceCube observed 54 events over four years in the 25 TeV-2.8 PeV range.

- ★ Zenith Distribution compatible with isotropic flux.
- **★** Flavor distribution consistent with $\nu_e : \nu_\mu : \nu_\tau = 1 : 1 : 1$.

^{*} IceCube Collaboration, Science 342 (2013) 6161, PRL 113 (2014) 101101, PRD 91 (2015) 2, 022001. IceCube Collaboration, ApJ 809 (2015) 1, 98; PRL 115 (2015) 8, 081102. M. Kowalski @ Neutrino 2016.

Sky Map of 54 High Energy Starting Events

Distribution of events compatible with an isotropic one. No evidence of (significant) correlation neither spacial nor temporal with known sources.

* Slide adapted from M. Kowalski @ Neutrino 2016.

The measured astrophysical flux

* Slide adapted from J. Kiryluk @ NOW 2016.

The measured astrophysical flux

Are we seeing a spectral flattening of energy spectrum?

* Plots adapted from J. Kiryluk's talk @ NOW 2016.

The measured astrophysical flux

Flavor composition at Earth (combined likelihood analysis).

Not yet possible to pinpoint the production mechanism.

* IceCube Collaboration, ApJ 809 (2015) 1, 98. See also: Bustamante, Beacom, Winter, PRL (2015). Arguelles, Katori, Salvado, PRL (2015). Palladino, Pagliaroli, Villante, Vissani, PRL (2015).

Where are these neutrinos coming from?

Where are these neutrinos coming from?

★ New physics?

* Galactic origin [sub-dominant contribution or new unknown sources?]

* Extragalactic origin [flux compatible with Waxman&Bahcall bound]

- Star-forming galaxies
- · Gamma-ray bursts
- Active galactic nuclei
- · Low-power or choked sources

Warning: More statistics needed! No strong preference so far.

* Anchordoqui et al., JHEAp (2014). Meszaros, arXiv: 1511.01396. Waxman, arXiv: 1511.00815. Murase, arXiv: 1511.01590.

Neutrino Production Mechanisms

Lepto-hadronic interactions

$$\begin{array}{c}
\pi^{+} \rightarrow \mu^{+}\nu_{\mu}, \\
\mu^{+} \rightarrow \bar{\nu}_{\mu} + \nu_{e} + e^{+} \\
\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}, \\
\mu^{-} \rightarrow \nu_{\mu} + \bar{\nu}_{e} + e^{-} \\
K^{+} \rightarrow \mu^{+} + \nu_{\mu}, \\
n \rightarrow p + e^{-} + \bar{\nu}_{e}
\end{array}$$

* Anchordoqui et al., PLB (2004). Kelner, Aharonian, Bugayov, PRD (2006). Kelner, Aharonian, PRD (2008).

Diffuse backgrounds

Diffuse background ingredients

- Gamma and neutrino energy fluxes
- Distribution of sources with redshift
- Comoving volume (cosmology)

Neutrino-Gamma Connection

Confined cosmic rays can make both neutrinos and gamma rays.

Are gamma and neutrino backgrounds explained by the same sources?

Murase, Ahlers, Lacki, PRD (2013). Plot adapted from Murase's talk @ Weizmann workshop 2017.

Isotropic Gamma-Ray Background

Star-forming galaxies and radio galaxies are among the main contributors to the IGRB.

* Linden, arXiv: 1612.03175.

Star-forming galaxies

Star-forming galaxies

Normal galaxies (i.e., Milky Way, Andromeda)

Starburst galaxies (i.e., M82, NGC 253)

* Loeb & Waxman JCAP (2006). Credits for images: ESA, Hubble, NASA web-sites.

Star-forming galaxies

$$\log\left(\frac{L_{\gamma}}{\text{erg s}^{-1}}\right) = \alpha \log\left(\frac{L_{\text{IR}}}{10^{10}L_{\odot}}\right) + \beta$$

Gamma-ray-IR linear relation from Fermi data.

* Gruppioni et al., MNRAS (2013). Ackermann et al., ApJ (2012).

Diffuse emission from star-forming galaxies

Neutrino intensity with its astrophysical uncertainty band within IceCube band for E<0.5 PeV.

Improved modeling of starburst galaxies may be useful.

* Tamborra, Ando, Murase, JCAP (2014).

See also: Strong et al. (1976), Thompson et al. (2006), Fields et al. (2010), Makiya et al. (2011), Stecker&Venters(2011). Loeb&Waxman (2006), Lacki et al. (2011), Murase et al. (2013).

Radio Galaxies

Diffuse emission from radio galaxies

Radio galaxies (active galaxies with mis-aligned jets) can also be primary sources of the diffuse neutrino background.

Hooper, JCAP (2016).

Tomographic constraints

Cross-correlation between GeV gamma rays and galaxy catalogs provide bounds on the neutrino luminosity density up to **one order of magnitude tighter** than those obtained from the energy spectrum.

Any hadro-nuclear source with a spectrum softer than $E^{-2.1}$ and evolution slower than $(1+z)^3$ is excluded.

^{*} Ando, Tamborra, Zandanel, PRL (2015).

Gamma-ray bursts

Neutrinos from gamma-ray bursts

Sizable emission of high-energy neutrinos from gamma-ray bursts expected.

* Waxman & Bahcall, PRL (1997), PRD (2001). Guetta et al., Astropart. Phys. (2004).

Neutrinos from gamma-ray bursts

Dedicated stacking searches on GRBs unsuccessful up to now.

Existing detectors are achieving relevant sensitivity.

Does the diffuse emission from ALL GRB families contribute to the IceCube flux?

* Allison et al., arXiv: 1507.00100. IceCube Collaboration, ApJ (2015). ANTARES Collaboration, A&A (2013).

Diffuse emission from gamma-ray bursts

* Tamborra & Ando, JCAP (2015).

Diffuse emission from gamma-ray bursts

GRBs can make up to few % of the high-energy IceCube flux in the sub-PeV region. LL-GRBs can be main sources of the IceCube flux in the PeV range.

* Tamborra & Ando, JCAP (2015). See also: Liu&Wang (2013), Murase&loka (2013), Razzaque & Yang (2015).

Neutrino emission from blazars

Blazars cannot explain the flux observed by IceCube. Few PeV events may be associated with distant blazars (still low significance).

* IceCube Coll., arXiv: 1611.03874. Kadler et al., Nature Phys. (2016). Padovani, Resconi, MNRAS (2014).

Choked or low-power sources

Hidden cosmic ray accelerators

Latest data may point toward a population of CR accelerators hidden in GeV-TeV gamma-ray range. Future searches in the X-ray and MeV bands may address with issue.

^{*} Murase, Guetta, Ahlers, PRL (2016). Murase & loka, PRL (2013).

Neutrinos from Choked Bursts

Dark GRBs are especially poorly understood because scarcely (or not) visible in photons.

* Meszaros, Astropart. Phys. (2013). Waxman & Bahcall, PRL (1997). Meszaros & Waxman, PRL (2001). Senno et al. (2016).

Constraints on SN-GRB connection

Redshift evolution:
$$R(z) \propto \left[(1+z)^{p_1k} + \left(\frac{1+z}{5000}\right)^{p_2k} + \left(\frac{1+z}{9}\right)^{p_3k} \right]^{1/k}$$

Rate evolution with the Lorentz boost factor:

$$\int_{1}^{10^3} d\Gamma_b \ \Gamma_b^{\alpha_{\Gamma}} \beta_{\Gamma} = R_{\rm SN}(0) \zeta_{\rm SN} \frac{\theta_{\rm SN}^2}{2}$$

$$\int_{200}^{10^3} d\Gamma_b \ \Gamma_b^{\alpha_{\Gamma}} \beta_{\Gamma} = \rho_{0,\rm HL-GRB} ,$$

* Tamborra & Ando, PRD (2016).

Neutrinos Production in Dark GRBs

* Tamborra & Ando, PRD (2016). Senno et al. PRD (2016). Meszaros & Waxman, PRL (2001).

Constraints on the SN-GRB connection

IceCube flux can put indirect constraints on the fraction of SNe evolving in choked bursts and their jet energy.

* Tamborra & Ando, PRD (2016). IceCube and ROTSE Collaborations, A&A (2012).

Point Source Detection

Anisotropies of the Local Universe

* Mertsch, Rameez, Tamborra, arXiv: 1612.07311. Murase & Waxman PRD (2016). Feyereisen, Tamborra, Ando, arXiv:1610.01607.

Anisotropies of the Local Universe

⁶ Mertsch, Rameez, Tamborra, arXiv: 1612.07311. Murase & Waxman PRD (2016). Feyereisen,Tamborra, Ando, arXiv:1610.01607.

Conclusions

- ★ Origin of the IceCube high-energy neutrino flux not yet clear.
- * Multi-messenger approach useful to pinpoint the origin of the IceCube events.
- ★ Diffuse neutrino flux from starburst-like galaxies is one natural possibility. Improved modeling required.
- * Low-luminosity gamma-ray bursts (and blazars) may dominate the PeV energy region.
- ★ Correlation studies with IceCube and IceCube-Gen2 will allow to place constraints on certain kind of sources provided they have the right local density and luminosity.

Thank you

for your attention!