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The aim:

Challenge the conventional view of the strong CP problem by showing that
a careful infinite 4d volume limit implies that QCD does not violate CP
regardless of the value of the 6 angle

The plan:

1. The strong CP problem in the UV and the IR
2. Constraints from chiral symmetries
3. Fermion correlators from cluster decomposition and the index theorem



1. The strong CP problem in the UV and the IR



Charge conjugation and parity

Charge conjugation (C):

Exchanges particles with antiparticles

Au — _A/m ?P — _i(E’YO'ﬁ)T

Parity (P):
Reverses vector quantities (electric fields), exchanges fermion chirality

Does not affect axial quantities (spin)

Ao — Ao, A = —A; ¢—>’YO¢



CP violation from the neutron dipole moment

Neutron dipole moment: coupling between the neutron’s spin and electric fields

Spin operator St — ; €7k 7T AF]

Electric field E; = Fy;

. i o -
Lo D Zf(q2)N7“7"75FWN X gN[W“ﬁV]%FWN x N[v", 7| Fu N D N(S - E)N
CP-odd!

Neutron dipole moment d, = f(0)



CP violation from the neutron dipole moment

As the neutron is a boundstate of the strong interactions, dn, # 0 would imply

that the strong force violates CP

Experiments have not detected d,, # 0

Experimental bound

dy| < 1.8 x 107 %%¢ - em



What are the theoretical expectations for d,?



The UV perspective: QCD 6 angle

Ny

1 g0 — :

4 a a Vpo 174 a . 1005

Sqcp = /d x e Fo F., + 612 e Pl F o, + g Y, (z'y“Du — mge 75) (18
i=1

2P er
O-term is a total derivative and thus corresponds to a boundary term
it can never contribute in perturbation theory:
effects of ¢ are nonperturbative

S is CP-odd! Expected to contribute to the neutron dipole moment



Nonperturbative ‘t Hooft vertices in QCD

[‘t Hooft] derived an effective Lagrangian accounting for nonperturbative interactions
arising from nontrivial saddle points (instantons) in the Euclidean path integral

Ny Ny
QCD —i6 T i0 7
Lt Hoott ™ € H ViPry; +e H Vi Pr;
i=1 i=1

According to [t Hooft] : phases misaligned with fermion masses: CP violation

» To link @ to the neutron dipole moment, we must match with low-energy theory that
includes the neutron



The IR perspective: Chiral Lagrangian

,Haaa

Goldstones from U(3)r xU3)r = U(3)v U= (U)e V2t ~ 1) Pra
Neutron-proton doublet N = ( i )
My €° "
Quark masses M = mgeted
ios CP-odd phases

mge€
Lagrangian

1 .
Lopn2 7 f2TeD, UD*UT + (af>TrMU + |ble™" fdetU + h.c.)
+iNIPN — (myNUPLN +ic Ny*U'D,UP,N +dNMTP,N + e NUMUP.N +h.c.)

(U : projection into u,d flavours)



CP-odd terms In the neutron interactions

Writing etPu
() =
e'¥Ps

Minimizing Lpion|U = (U)] w.rt. angles:
mz(SOz + ai) — m(m’tm mgq, ms)(‘f + Qy + g + 048)

Substituting ¥i in Leutron and after appropriate field redefinition N — N(N,U)

2c + 1

_ 2(d 7
Eneutron S5 — f aMWaNTa,yu,y5N_|_ ( + e)m

fr

(€ + oy + ag + ag )N T*T* N

CP-even



Neutron dipole moment
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Lo 2 i(f + ay + ag + as) fF(P)NVY 3 FuN D (€4 ay + aq + as) f(¢*)N(S - E)N

CP-odd term o (£ + «a,, + ag + as) gives contribution to neutron dipole moment



Summary: d, from chiral Lagrangian

ChPT result dp x (€ + ay + ag + ay)

Experimental bound d,| < 1.8 x 107%%¢ - em  [NEDM collaboration 2020]

What is the value of £ in terms of fundamental parameters?

Central question of this talk



How to fix € in the low energy theory?

» Using symmetry arguments related to anomalous chiral symmetries

& = 6 thought to be the unique possibility ( CP violation)

» Matching correlators with results from the fundamental UV theory (QCD)

Only real computation that we know of is 't Hooft’s, using dilute instanton
gas and yielding £ = 6 ( CP violation)



Matching the UV and the IR a la ‘t Hooft

UV: ‘t Hooft vertices
Ny Ny
CD s — . —
£§ﬁ“,’t Hooft ™ € 0 H %PR% + 610 H szL¢z
i—1 i=1

IR: Chiral Lagrangian
Loion D |ble”*® f2detU +h.c., U ~ ) Pgy

Matching leadsto & = 0

Neutron dipole moment: |d,| « (§ + a, + ag+ as) =60 + Z a; =0

Experimental bounds: 0 < 1010



The strong CP problem:

Why does nature prefer 8 < 107!Y as opposed to O(1)?

Why do we care?

Strong CP problem motivates searching for new physics
that dynamically relaxes 6 to zero: e.g. QCD axions



Our work

We have noted an ambiguity in the choices of & compatible with chiral symmetries
This talk

We also have a UV computation of fermion correlators which does not rely on
instantons, yielding the same conclusion This talk
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Implications of our work

If we are right:
There would be no strong CP problem
QCD would directly explain the lack of CP violation in the strong force

There would be no need for QCD axions



2. Constraints from chiral symmetries



Spurious chiral symmetry

The QCD partition function changes under chiral field redefinitions due to masses
and anomaly

P — eP15q) Z(0,05) = Z(0 — 2N B, a5 + 25)

1, 5 ptBY5 .
P — e fermion mass phases

Spurion symmetry: Zinvariant under chiral transformations plus “spurion” transf:

C— el —2if . .
D — DeiB 0= 0+2Ns8, m; =m;e” — e “"m,;

P> Effective Lagrangians for QCD should respect spurion symmetry



Spurious symmetry in the chiral Lagrangian

v ey s ey N el
Y — wew% N — Neibs
m; = mjeio‘-’f — e_zwmj M — e 2B\

) +2 -2 2+2  -2N; +2N;
LrpnD 7 f2TeD, UDHUT + (af3TrMU + |ble™" fidetU + h.c.)

F1 +1 142 -1 41 -2 42 -1 142 -1 -1+2-2+2 -1
+iNIPN — (myNUPLN +ic Ny*U'D,UP,N +dNM'P,N + e NUMUP.N +h.c.)



Spurious symmetry in the chiral Lagrangian

Spurious chiral symmetry requires

§ = &+ 2Nsf

More than one possibility in terms of fundamental parameters 6, «; !

E=10 Usual option, assumed by [Baluni, Crewther et al] = CP violation
dp o< (4> i) =(0+) a;)=0

§=— Z a; Alternative option = CP conservation

1

dp < (E4+ ) ;) =0



What is the correct value of &?



3. Fermion correlators from cluster
decomposition and the index theorem



» In order to resolve the ambiguity, we must match effective detU term in the chiral
Lagrangian with results for correlators in QCD, paying special attention to
complex phases

» We will derive an effective Lagrangian capturing this correlators and match to
Ny Ny
LSHCD ~ e 8 H 1V Pri); + el H Vi Prab; < Lonpr X e €detU + e'detU?

Read ¢ from phases in effective vertices derived from QCD

» Next we proceed to calculate the phase of QCD correlators starting from the path
integral and using clustering and the index theorem.



Towards correlators: vacuum path integral

/@,qbf,zv (ITDe) €57 = (65le= " T16s) = 3 e (6 m) (nl)

n

To get a vacuum transition amplitude we can take the infinite 7 limit,

7= I ( D)iSTw I 0le—HT |0
m,, [ ([IPs)e m | {0le" 7 )0)

T—ocoe T—socoe 04

To recover the vacuum amplitude for finite 7, one would need to know the wave
functional of the vacuum

(0le*""0) = / (Do ¢)r/2[Di] —12(0|d ) (b gle™ " |di) (¢:]0)

(rD¢> oiS

- / DY 172 (D] 1201 ) (1]0) /

@i, T



Wrap-up: the importance of boundary conditions

Infinite Tmethod

Z=lim / (Hm) lim (0]~ "H7|0)

T—o00e ™ 0+ T—>ooe 104

Boundary conditions remain arbitrary!

Wave functional method

(0le= 7|0y = / D6 17/2[Déi] 12 (0165) (6510) /¢ .

(IIPe) e

Boundary conditions are fixed by unknown wave functional, need additional reweighting



Wrap-up: the importance of boundary conditions

To ensure projection into vacuum, we use the Euclidean path integral for infinite V 7,
without the need to enforce particular b.c.s

This is in contrast with lattice simulations at finite volume with periodic b.c.s

This requires to subtract contamination from excited states!



Finite action constraints and topology

According to Picard-Lefschetz theory, Euclidean path integral can be formulated in
terms of a sum of integrations over steepest descent flows that start from finite action
saddles [Witten]

In infinite spacetime, gauge fields at saddles must be pure gauge transf. at «




Finite action constraints and topology

This leads to maps Ss — » SU(3) that fall into equivalence or homotopy classes

“wrappings” of SU(3) over S; that cannot be connected by continuous
deformations

The steepest descent flows are continuous

» the full flow from a saddle point falls into the same homotopy class
Homotopy classes characterized by integer topological charge An

In an infinite spacetime Z = Z ZAn
An



Path integral a la Picard-Lefschetz

7 = Z ZAn
An

_§ A saddle points -S on steepest descent paths

e

Ans Ang A,u, / AMS«,

Integration contour covers all field configs. topological sectors



Ordering of limits

Z = lim lim Za, ()
N—o00 Q— o0
|An|<N

Need infinite spacetime volume to project into vacuum

An required to be integer only in infinite volume —j take infinite volume first
-S A

== /\ ) increasing N

’/

-0 H : : > S
Ang, i An, Ang Any, A,u / Au o

Integration contour remains continuous
Exponential suppression of large N contributions

Carlos Tamarit
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Alternative ordering of limits

Z = lim lim Z Zan(9)

Q—o00 N—o0

For finite spacetime volume, topological charge is not necessarily quantized
Insisting on integer charge means that one misses configurations

-S'A

: I increasing Q

Ang @i Anp i Amg i i Amg PP Ang 1 Ang AL /AS

Integration contour not connected does not capture full path integral



Topological charge and the index theorem

Atiyah-Singer’s index theorem relates the topological charge to the eigenspectrum of
the Euclidean Dirac operator

Zero modes:

Index theorem

An = #(Right-handed zero modes of 1)) — #(Left-handed zero modes of D)

Dyr =0 Dy, =0



The 6 term and the topological charge

The 6 term turns out to be proportional to the topological charge

2
E __ - 4 a

In an infinite spacetime Z = Z 2" Zan

An

Remember: Integer topological charge only enforced for infinite volume



Strategy to compute correlators

The aim is to constrain the functional dependence of the partition functions
Zanon VT =Q, An, m; = m;e'

Fermion masses can be understood as sources for the integrated fermion
correlators [Leutweyler & Smilga]

LD Z (v (m} Pp, + m; PR)v;)

J

These correlators should be sensitive to global CP-violating phases

0 _ 0 _
gy Zap = — /d4$ (Vi PRi) An,s WZATL = —/d4513 (Vi PLi) An.

1




Cluster decomposition

(0. @) oo

Z(Q) _ Z D¢e—SQ [#]+iAnd — Z 6iAnHZAn(Q)

An=—oo

4D volume

Factorizing path integral a la [Weinberg]

Ian(@= 0 +9) = [ DoeSmrmalél = 3 [ pe-smuld / Dpe— 50210
An A Anq An—Anq

ni

Zan@=0+Q) = Y Zan, () Zan—an, ()

Ani=—o0



Cluster decomposition

Want to solve this infinite number of relations by following these steps:
P> Factorize all complex phases and obtain a set of relations for real functions
» Find a suitable Ansatz

> Assuming analiticity in ), we can construct the full function by computing
all the derivatives at (2 =0 .



Factorizing out all the complex phases

With @ factored out, additional complex phases can only come froma; , i.e. from
the integration over fermion fields

Fermionic path integrals give determinants of massive Euclidean Dirac operator
/ DyyDipe YPH0Prtm™ PL)Y o qot(—I) — mPr — m* Py

P The eigenvalues of det(—I) — mPr —m*PL) can be constructed in terms of
those of )



Factorizing out all the complex phases

Nonzero eigenvalues of ) come in pairs that differ in sign

Dt = At = D(v507) = —A(15¢7)

This leads to pairs of eigenvalues of det(—I) — mPg — m*Py)

m=mg + 1img

D+ mg + ify5m1 0 gp>‘ [ A+ mr img >
0 D+ mg +iv>my Vet ) 1my —A+mp Yot )

The matrix has eigenvalues £(A),£*(A) with EA)E(N) = [m[> + [

Nonzero modes of ) give a real contribution to det(—I) — mPr — m*Py)



Factorizing out complex phases

Zero modes of ) contribute phases to det(—I) — mPr — m*Pyp)

ngOO = 0, 900 = PR/LQOO = (lp ‘|‘mPR +m*PL)QOO = \m\eimPR/L@O

Total phase of det(—I) — mPr — m*Py) follows from index theorem

det(—]D — mPR — m*PL)
_ (_eia)#(r.h. zero modes)—#(L.h. zero modes)‘ det(—lD o mPR o m*PL)]

(—€')2"| det(—Ip — mPr — m* Py



Factorizing out complex phases

Finally considering all fermion flavours, and defining a = Z %

(]

ZAn(Q> = €iAn6‘9An(Q) = gAn(Ql + QQ) — Z JdAn, <Q1>9An—An1 <Q2>

Ani=—o0
Real
Parity properties

2
An = d4a:g—emmsF“ F? changes sign under parity
647’(’2 mn> rs

the real functions ga,(§2) are insensitive to CP-odd phases from fermion masses

9—an(82) = gan(Q2)



Towards an Ansatz

gAn(Ql + Q2) — Z gAn, (Ql)gAn—Anl (QQ)

Ani=—0o0
0y =0 gan(@1) = > gan, (2)gan—an, (0)
Ani=—o0

gAan (O) — 5An,0

This and the previous parity considerations motivate Ansatz

gA"(Q) = g|A’n|(Q) — Q|An|f|An|(Q2)7 f|An|(0) 7é 07 fO(O) =1



A unique solution to the infinite tower of egqns
Taking derivatives of cluster relations and proceeding recursively leads to

8@ = (O S () asnmsa()
k=0

9an(® = 2, g 9an OV =D O ( 5 )Q "
> 1 2£(0) Q) |An|+2k
:Zk!(\An]Jrk)!( fl(z) ) = 1an(211(0)).



Final result of partition function

There is a unique solution with a single real parameter f1(0) =3
fAn(Q) — IAn@BQ)

Zpn = 20T 11, (28Q)

Matches results of [Leutweyler & Smilga] achieved in a different way!

Making dependence on complex masses explicit:

ZAn(Q) _ eiAn(e—i/Q Zj IOg(mj/m;))IAn(Qﬁ(mka) Q)



Mass dependence and correlators

Taking derivatives with respectto m, m™ gives averaged integrated correlators

Spurion chiral charge -2

| +2NTf -2N¢ -5
VT d*s (Y PLpiyan = — 20T o7 ({an+1(26€2) — Ian-1(259))
(a1 (259) + Lan1(200) s Bmuany))

-2

spurion chiral charges match!



Summing over topological sectors

) 5
N 1 4 n
1 47 N . Yorn—n T ) AT (iPri)an 3§
vr | ety = Jim L lm N = —2m; Om,mz B(mm),
Z ZAm
Am=—N

Topological classification only enforced in infinite volume, which fixes ordering

Result due to all Bessel functions having a common asymptotic behaviour

Ian(269) = Io(28Q)(1 + O((62) ™)

Phase of correlator fixed by masses



Summing over topological sectors

1 . Zgn:—N o7 [ d* (Vi Pri) an
ﬁ/ x (VY Ppap;) = hm lim

N—oco VI —o00 N B
ZAm
AmZ::—N
1 - 2 [ B
lim lim _gowEre) ( Inn1(28Q) — Tan—1(2852
N—00 VT —00 Z|A <N € iAM(0+a) [ A, (269) |A§|;N ( Zm;‘( +1( ) 1 )

+m;(Lan+1(269Q) + Inn—1(269)) 8(11‘3111*) B(ﬂ‘lkm}i)))



Summing over topological sectors

d*z (Y Ppyi) = lim  lim ZX”:—N vr J d'w (WiPri) an _

VT N—o00 VT —00 N
ZAm
Amz::—N
= lim lim .Al — > (—eiA”<9+a> (ﬂ —To(2580))
N—o00 VT—)ooZlAmKN elAm(0+a) [4(230Q) ARTAN .

Ian(289) = Io(28)(1 + O((62)~")



Summing over topological sectors

N 1 4 0
. 407 N : > Anen 77 J d* T (i Pr) an B
v | P = i v -
Z ZAm

Am=—N

Z|An|<W 0

— i 1i - - 2mz— mom>t
NE)HOOV'J}I—D-%NGIAT)’L(Q-FOL) 3(mzm;“) 5( k k)




Summing over topological sectors

d*z (P Prap;) = —211%'% B(mgmy)

(e’

VT

Opposite order of limits:

N 1 A, 0.7 -
2 An——N V7;Vf z(YiPryia — QZf sin(6 + &) — 2m; cos(f + a) 0 —~ B(memy)
S m O(m;m;)
Am=—N "

lim lim
VT —-00 N—oo

Phases not fixed by masses!



General correlators

Taking higher-order derivatives w.rt. m;, m;, yields general integrated correlators

Nf -2Nf -2Nf
{ H/d45”j(¢jPL¢j) ) = €23 % f(mjmy)
j=1

Reproduced by the following effective interaction (after factoring out ordinary props/)
-2 N +2Ns
Eeﬁ" D) ei Zj T H @EjPij
J

To be matched to chiral Lagrangian with U ~ 1 Pr E=— Z a;
J

Loion D |ble™® fidetU



Consequences for d,and CP violation
dp X &+ oy +ag+as =0

» Al phases of all fermion correlators are fixed by the «;:

» 0 disappears

» Al phases can be eliminated with chiral field redefinitions

No CP violation in fermion correlators



Where we did depart from the usual results?

P> Only in the ordering of limits!

P Opposite order of limits yields traditional picture of CP-violation

55



Conclusions



QCD with an arbitrary 8 does not predict CP violation, as long as the sum over
topological sectors is performed at infinite volume

This ordering of limits is the correct one because the topological classification is only
enforced for an infinite volume



Danke!



Additional material



Finite volumes in an infinite spacetime

» To project into the vacuum for finite Q requires knowing vacuum wave functional

P We aim to derive an effective finite-volume description starting from an infinite-
volume path integral guaranteed to capture the vacuum state

» The finite volume description can can help make contact with lattice computations



Finite volumes in an infinite spacetime

Assume local operator (9; with support in finite spacetime volume €4

S €A [ DO, o—Sald]

An=—o00 n
(O1)g = ="
Z etAnd f D¢e—SQ[(b]
An=—o00 An
3 S A0 [ PO, oSl Ii Depe—592[4)
B An=—oco0 Ani=—0c0 Aniy Ans=An—An1
3 S eilng [ DgeSonldl [ Do 509
An=—00 Ani=—00 Anq Ans=An—An,

[Note: Integer An; is only an approximation, carried out in a surface kept finite, with
reduced impact in full path integral. ]



Finite volumes in an infinite spacetime

Path integrations over ()5 give just the partition functions we calculated before

In the infinite volume limit the Bessel functions tend to common value and
dependence on An factorizes out and cancels:

. z_: Af qu (_1)—NfAnle—iozAn1 01 e—SQ1[¢]
<(91>Q — nl_o_ooo -
N z_: Af D¢ (_1)—NfAnle—iaAnle—SQI[¢]

We recover a path integration over a finite volume, without 6 dependence
Extra phases precisely cancel those from fermion determinants if;

No interferences between different topological sectors: CP is conserved



Baluni’s CP-violating effective Lagrangian

Baluni’s CP-violating Lagrangian (used by [Crewther et al]) is based on searching
for field redefinitions that minimize the QCD mass term

[,M(UR,L)ZQZU;{MULwL—I-h.C., UR,L ESUR,L(S)
(0[0£|0) = mingy,, , (0[Lar(Ur,r)|0)

However, there is an extra assumption: that the phase of the fermion condensate
is aligned with 6

(YrYr) = AT

This assumption does not hold for the chiral Lagrangian with £ = —a;, but is valid for

£=90



Crewther et al’s calculations

Using Baluni’'s CP-violating Lagrangian and current algebra [Crewther et al] get

Mymg M2 7
(mu + md)2 f?‘l‘ .

(06L|n'n"n") =

From our general Chiral Lagrangian we get

_ Match for
chpr s Dot outod) (oo gpipo]y 6=0
f \/ 4 4 2cos(E+ay+ag)
T m2 2 Moy
2
Mo,y ma —
(06L|n'n"n") = (E+a),.

(mu + md)2 fﬂ'

So once more, traditional results are built on (hidden) assumption £ =60



The n’ mass

Chiral Lagrangian with alignment in the phases of mass terms and anomalous terms
still predicts a nonzero value of the N’ mass

L= f2Tro, Uo"UT + af>TeMU + [ble' 24 M f2detU 4+ h.c.
m3, = 8lb|f2
Can be seen to be proportional to the topological susceptibility over finite volumes

of the pure gauge theory, in line with [Witten, Di Vecchia & Veneziano]

Classic arguments linking topological susceptibility to CP violation ([Shifman et al])
rely on analytic expansions in 8 which don’t apply with our limiting procedure

Z becomes non-analytic in 6. This possibility has been mentioned by [Witten]



[Witten, Nucl. Phys. B 156 (1979)]

the physics is of order e, contrary to the basic assumptions of this paper, or else
the physics is non-analytic as a function of @, In the latter case, which is quite
plausible, the singularities would probably be at § = £, as Coleman found for the
massive Schwinger model [10]. It is also quite plausible that # is not really an
angular variable.) |

To write a formal expression for d2E/d#?, let us think of the path integral
formulation of the theory:

Z= J. dA, exp :'j Tr[—:’;Fm, +£—ﬁFufuy] , (5)



Partition function and analiticity

Usual partition function is analytic in 9

. . 2 T _y
Zusual = lim lim E ZAn — IHNfV cos(a+0+Nys)
VT—o00 N—oco
NeN An—=—N

6-dependence of observables (giving CP violation) usually relies on 8 expansion. e.g.

(An) . (An?)
o 10-6) =

+ OO — 6p)?
0o

topological susceptibility [Shifman et al]

In our limiting procedure the former is not valid, as Z becomes nonanalytic in 8

Z = lim lim g ZAn = Ip( 21/-£Nf VT) lim el An(at0+Nym)
NeN An=— NeN |An|<N

6 drops out from observables, there is no CP violation



The QCD angle from the vacuum state

Hamiltonian is zero for pure gauge transformations, with integer 77_.: Expect
degenerate classical pre-vacua |ncg) = |n)

If the true vacuum |w)were to be a linear combination of the classical prevacua

= f(n)n

Demanding invariance up to a phase under gauge transformations in the An class

Unn|w) = Z F(n)|n + An) = im0\ = f(n) = e~in0
2(6) = (wle o) = 30 S mle Ty = A7+ Anfe T
m n An
:NZ D¢€—Sa+...
An An



Can one use the “6 vacuum?” at finite volume?

\VAS

vs 6 vacuum having support only on classical vacua
\Icu«)

Neg =4 Nes=1 th

Bloch wave function in QM:

Too naive! Have to use path integral in infinite 4D volume to project into vacuum



Dvali’s footnote

2 The 3-form language of clarifies the claim of that by
changing the order of limits in ordinary instanton calculation, one
ends up with ¥ = 0. In this approach one performs calculation in
the finite volume and then takes it to infinity. In 3-form language
the meaning of this is rather transparent. The finite volume is
equivalent of introducing an infrared cutoff in form of a shift of
the massless pole in (28) away from zero. This effectively gives
a small mass to the 3-form. For any non-zero value of the cutoff,
the unique vacuum is Ep = 0 which is equivalent to ¥ = 0. Other
states F # 0 (corresponding to ¥ # 0) have finite lifetimes which
tend to infinity when cutoff is taken to zero. In this way the 9 # 0
vacua are of course present but one is constrained to ¢ = 0 by the
prescription of the calculation. Thus, changing the order of limits
by no means eliminates the ¥-vacua. As usual, when taking the
limit properly, one must keep track of states that become stable
in that limit. These are the states with ¥ # 0 (E # 0), which
become the valid vacua in the infinite volume limit. The effect is
in certain sense equivalent to introducing an auxiliary axion and
then decoupling it.



Dvali’s 3-form formalism

[Dvali] has the following line of reasoning from which he concludes that QCD violates CP

Nonzero topological Massless pole in EFT for massless
susceptibility CS current-current 3-form with CP
at zero momentum / correlators violating vacua
full volume

With our ordering of limits, we have that the topological susceptibility is:
zero at zero momentum/full volume
nonzero at finite volume/nonzero momentum

Dvali’s first premise is violated and his argument does not apply



Dvali’s criticism

[Dvali] argues that in a calculation at finite volume which is then sent to infinity,
CP violation can’t be captured because the infrared regulation gives a mass to the 3 form.

We make the following observations:

['t Hooft]'s original calculations (at finite volume, taken to o« in the end)
lead to CP violation for arbitrary &, in conflict with Dvali’s argument

If finite volume is problematic, more reason to take the infinite volume limit
as soon as possible, as we do, leading to no CP violation for arbitrary 4

Dvali’s formalism has no explicit/direct link to UV & parameter

Dvali’s critique of finite volumes can be turned against his own construction,
as it is based on assuming nonzero topological susceptibility, while the only
nonperturbative evidence for it comes from lattice results at finite volume



Dvali’s criticism

[Dvali]’s construction can be seen to imply boundary conditions that do not correspond
to vanishing physical fields at the boundary, and so does not capture the standard
partition functions
FF 0, K"
[Dvali] argues
0, K" = /x0r, const.
This implies a single frozen topological sectoras An /d% 0, K" = const
Constant, gauge-invariant 9, K" does not vanish at the boundary

No reason for periodicity in 8, so no clear relation to usual 8 angle

Does not correspond to QCD partition function
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