Higgs Mass and the Scale of New Physics

Michael M. Scherer

Institute for Theoretical Physics, University of Heidelberg

in collaboration with

Astrid Eichhorn, Holger Gies, Joerg Jaeckel, Tilman Plehn and René Sondenheimer

May 4, 2015 @ MPIK, Heidelberg

UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

IHEP 04 (2015) 022 or arXiv:1501.02812

Phys. Rev. D 90 (2014) 025023 or arXiv:1404.5962

Outline

• Introduction

- Higgs Mass Bounds
- Vacuum Instability
- The Scale of New Physics

• Standard Model as Low-Energy Effective Field Theory

- Gauged Higgs-Top Model
- Impact of Higher-Dimensional Operators
- Generation of Higher-Dimensional Operators

• Conclusions

The Standard Model a

• Discovery of the **Higgs** @ LHC:

- Standard model:
 - effective theory
 - \blacktriangleright physical cutoff Λ
 - \blacktriangleright "New Physics" beyond Λ

- Range of validity of SM?
 - Gravity effects: $\Lambda \sim M_{\rm Pl} = \sqrt{\hbar c/G} \approx 10^{19} {\rm GeV}$
 - ▶ Landau pole in U(1)_{hypercharge}: $\Lambda > M_{Pl}$
 - Higgs potential...

Higgs Mass Bounds

• Higgs mass is related to Higgs coupling and *vev*:

$$m_h = \sqrt{2\lambda_4} \cdot vei$$

• Upper bound related to Landau pole

Standard model running couplings:

• renormalization group β functions

Mechanism for Lower Higgs Mass Bound

Lower Mass Bound in the Standard Model

$$\beta_{\lambda_4} = \frac{d\,\lambda_4}{d\,\log k} = \frac{1}{8\pi^2} \left[12\lambda_4^2 + 6\lambda_4 y^2 - 3y^4 - \frac{3}{2}\lambda_4 \left(3g_2^2 + g_1^2 \right) + \frac{3}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right]$$

Scenarios at the Scale of New Physics

$@ \sim 10^{10} \text{ GeV}$ several scenarios are possible:

- 1. New degrees of freedom appear that render Higgs potential stable dark matter?
- 2. Stable minimum might appear for large field values
 - True minimum @ $H \sim 10^{25}$ GeV?
 - Metastability of Higgs vacuum?
 - Small tunnelling rates to stable minimum?

- 3. Include higher powers in Higgs field (e.g. $\sim H^6, H^8, ...$) to render potential stable
 - Do not appear in perturbatively renormalizable Higgs Lagrangian
 - Appear in *effective theories* with finite Λ_{UV} when approaching underlying theory
 - New physics appears at higher scales 10[?] GeV > 10¹⁰ GeV
 - Link to BSM particle physics models?

Stability & Higher-Dimensional Operators

Does the top loop induce an instability in the potential?

- Vacuum stability in presence of a finite UV-cutoff Λ :
 - → start with stable bare potential $V_{\rm UV} = V_{\rm eff}(\Lambda) = \frac{\mu^2(\Lambda)}{2}H^2 + \frac{\lambda_4(\Lambda)}{4}H^4$
 - ightarrow consider: $\beta_{\lambda_4} = -3y^4/(8\pi^2) + \cdots$

→ top loop contribution to effective potential @ EW scale ($k_{EW} \ll \Lambda$):

$$\Delta V_{\rm top} = -c_2 \Lambda^2 H^2 + c_4 \frac{y^4}{4} H^4 \log \frac{\Lambda}{k_{\rm EW}} + \dots$$
positive terms

➡ Higgs potential @ EW scale:

$$V_{\rm eff}(k_{\rm EW}) \approx V_{\rm UV} + \Delta V_{\rm top}$$

→ contribution to quartic term: $\lambda_4(k_{\rm EW}) = \lambda_4(\Lambda) + c_4 y^4 \log \frac{\Lambda}{k_{\rm EW}} \approx \frac{1}{8} \longrightarrow M_H \approx 125 \text{ GeV}$

→ Large Λ forces us to choose $\lambda_4(\Lambda) < 0$ to obtain measured Higgs mass!

Stabilizing the UV potential

- No instability induced by top loop!
- However: have to chose unstable Φ^4 potential @ $\Lambda_{\rm UV}$ to reproduce $M_H = 125 \text{ GeV}$
- Idea: include higher-dimensional operators!

$$V_{\rm UV} = V_{\rm eff}(\Lambda) = \underbrace{\frac{\mu^2(\Lambda)}{2}}_{2} H^2 + \underbrace{\frac{\lambda_4(\Lambda)}{4}}_{4} H^4 + \underbrace{\frac{\lambda_6(\Lambda)}{8\Lambda^2}}_{fixed by Higgs mass}$$

RG Flow of Generalized Potentials

$$V_{\text{eff}}(k) = \frac{\mu(k)^2}{2}H^2 + \sum_{n=2} \frac{\lambda_{2n}(k)}{k^{2n-4}} \left(\frac{H^2}{2}\right)^n = \frac{\mu^2(k)}{2}H^2 + \frac{\lambda_4(k)}{4}H^4 + \frac{\lambda_6(k)}{8k^2}H^6 + \cdots$$

• RG flow from UV to IR:

- unique minimum between Λ and $k_{\rm EW}$
- EW minimum forms in the IR @ 246GeV

- smaller $\lambda_6(\Lambda)$
- 'meta-stable' behavior for intermediate k
- EW minimum forms in the IR @ 246GeV

distinguish between stability of UV potential and IR potential!

Stability with Higher-Dimensional Operators

- UV potential and effective potential can have quite different shapes
- presence of higher-dimensional operators modifies UV potential in general way
- higher-dimensional operators contribute to RG flow of renormalizable operators
- take this into account with scale-dependent effective potential $V_{\text{eff}}(k;H)$:

$$V(k = \Lambda; H) = V_{\rm UV}$$
 and $V(k = 0; H) = V_{\rm eff}$

• follow (meta-)stability properties in scale-dependent manner

➡ need non-perturbative approach → functional RG

Gauged Higgs-Top Model

Gauged Higgs-Top Model - 1-Loop Running

$$S_{\Lambda} = \int d^4x \left[\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \left(\partial_{\mu} \varphi \right)^2 + V_{\text{eff}}(\Lambda) + i \sum_{j=1}^{n_f} \overline{\psi}_j \mathcal{D} \psi_j + i \frac{y}{\sqrt{2}} \sum_{j=1}^{n_y} \varphi \overline{\psi}_j \psi_j \right]$$

Standard Model as a Low-Energy Effective Theory

• Potential at UV scale: all operators compatible with symmetries

RG scale in GeV

Functional RG for Gauged Higgs-Yukawa Model

- Use functional RG method as an appropriate tool to obtain β functions:
 - Illows to include all quantum fluctuations in presence of higher-dim operators
 - flowing action Γ_k with RG scale k interpolates between

microscopic action $(k \to \Lambda)$: $\Gamma_k[\Phi] \to S[\Phi]$ full effective action $(k \to 0)$: $\Gamma_k[\Phi] \to \Gamma[\Phi]$

▶ FRG flow equation:

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr}\{[\Gamma_k^{(2)}[\Phi] + R_k]^{-1}(\partial_t R_k)\}.$$
Wetterich (1993)

• truncation:
$$\Gamma_k = \int d^4x \left[V + \frac{Z_H}{2} (\partial_\mu H)^2 + \sum_{j=1}^{n_f} Z_{\psi_j} \bar{\psi}_j i D \psi_j + i \frac{1}{\sqrt{2}} \sum_{j=1}^{n_y} \bar{y}_j H \bar{\psi}_j \psi_j + \frac{Z_G}{4} F^a_{\mu\nu} F^{a\mu\nu} \right]$$

• effective potential:
$$V_{\text{eff}}(k) = \frac{\mu(k)^2}{2}H^2 + \sum_{n=2} \frac{\lambda_{2n}(k)}{k^{2n-4}} \left(\frac{H^2}{2}\right)^n$$

e.g., FRG flow of effective potential:

al:

$$\frac{dV(H)}{d\log k} = \frac{k^4}{32\pi^2} \left[\frac{1 - \frac{\eta_H}{6}}{1 + \frac{V''(H)}{k^2 Z_H}} - 4\sum_{j=1}^{n_y} N_c \frac{1 - \frac{\eta_{\psi_j}}{5}}{1 + \frac{\bar{y}_j^2 H^2}{2k^2 Z_{\psi_j}^2}} \right]$$

theory space

UV

٦

Functional RG for Gauged Higgs-Yukawa Model

- Use functional RG method as an appropriate tool to obtain β functions:
 - ▶ allows to include all quantum fluctuations in presence of higher-dim operators
 - flowing action Γ_k with RG scale k interpolates between

microscopic action $(k \to \Lambda)$: $\Gamma_k[\Phi] \to S[\Phi]$ full effective action $(k \to 0)$: $\Gamma_k[\Phi] \to \Gamma[\Phi]$

► FRG flow equation:

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr}\{[\Gamma_k^{(2)}[\Phi] + R_k]^{-1}(\partial_t R_k)\}.$$
Wetterich (1993)

UV

theory space

Threshold contributions allow for dynamical mass generation by SSB

Functional RG for Gauged Higgs-Yukawa Model

- Use functional RG method as an appropriate tool to obtain β functions:
 - Ilows to include all quantum fluctuations in presence of higher-dim operators
 - flowing action Γ_k with RG scale k interpolates between

microscopic action $(k \to \Lambda)$: $\Gamma_k[\Phi] \to S[\Phi]$ full effective action $(k \to 0)$: $\Gamma_k[\Phi] \to \Gamma[\Phi]$

▶ FRG flow equation:

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr}\{[\Gamma_k^{(2)}[\Phi] + R_k]^{-1}(\partial_t R_k)\}.$$
Wetterich (1993)

β functions for model couplings...

...(e.g. reproduce 1-loop β functions from PT, include threshold effects, higher-dim operators,...)

UV

theory space

Gauged Higgs-Top Model - Higher-dimensional operators

$$V_{\rm UV} = \frac{\lambda_4(\Lambda)}{4} H^4 + \frac{\lambda_6(\Lambda)}{8\Lambda^2} H^6 + \dots$$

• **Potential at UV scale:** completely stable with unique minimum at *H*=0

- Potential completely stable during entire RG flow
- Extend UV cutoff by orders of magnitude (~ 2)

- Potential develops 2nd Minimum during RG flow
 - Min @ *H*=0 only metastable
- Small λ_6 sufficient to stabilize UV potential
- Further studies required...

Higgs Mass Bounds

shifts at level of 1-5% seem viable

Stability regions

- Moderately small $\lambda_6(\Lambda)$ extend UV cutoff by 2 orders of magnitude at full stability (green)
- Pseudo-stable region (blue) allows for more orders of magnitude
 - extend FRG study
 - → possibility of meta-stable effective potential at $k \approx 0$

Models for High-Scale Physics

Models for High-Scale Physics

- how to generate suitable higher-dimensional couplings from high-scale physics?
- induce potential with $\lambda_4 < 0$ and $\lambda_6 > 0$
- simple model: introduce N_S heavy scalars with inherent cutoff, e.g. @ $\Lambda_{BSM}=M_{Pl}$

Summary & Outlook

- measured Higgs mass very close to lower bound $m_h(\Lambda = M_{Pl})$
- perturbative analysis: Higgs potential loses stability around 10¹⁰ GeV
- this statement can be relaxed:
 - \blacktriangleright higher-dimensional operators at UV scale Λ

- ✓ Higgs masses below lower bound are possible
- ✓ with completely stable potential, we can extend UV cutoff by 2 orders of magnitude
- Question: What type of physics can predict higher-dim operators of suitable size?
 - we have investigated simple SM extension with heavy scalars
 - required parameter choices in simple model are at border to non-perturbative

IHEP 04 (2015) 022 and arXiv:1501.02812
Phys. Rev. D 90 (2014) 025023 and arXiv:1404.5962

