A first evidence of the CMSSM is appearing soon

SATO, Joe (Saitama University)

- based mainly on arXiv:1309.2067
- Y. Konishi, S. Ohta, J.S., T. Shimomura K. Sugai, M. Yamanaka
- Also, PRD 73 (2006) 055009, 76 (2007) 125023, 78 (2008) 055007, 82 (2010) 115030, 84 (2011) 035008, D 86 (2012) 095024

1. Introduction

- At this moment
- Higgs Doublet was found
- ☑ No New Physics @ LHC
- ☑ No New (Quark) Flavor Violation

Go beyond SM

SM works quite well

- Dark Matter candidate
- Baryon Asymmetry
- Lepton Flavor Violation among Neutrino
- Lithium Problem in Big-Bang Nucleosynthesis

1. Introduction

- At this moment
- Higgs Doublet was found
- ☑ No New Physics @ LHC
- ☑ No New (Quark) Flavor Violation

Go beyond SM

SM works quite well

- Dark Matter candidate
- ☑ Baryon Asymmetry
- ☑ Lepton Flavor Violation among Neutrino
- Lithium Problem in Big-Bang Nucleosynthesis

Constrained minimal SUSY standard model (CMSSM) can solve them!? Keeping the good feature of SM

Which parameter region ? ~DM abundance and LHC result

☑ Coannihilation region Griest, Seckel

DM and Stau : degenerate in mass

DM and Stau pair-annihilate at decoupling from thermal history to give appropriate abundance

 Imposing 125GeV Higgs, muon g-2 etc, tight degenerasy,

 $\delta m \equiv m_{\tilde{\tau}} - m_{\tilde{\chi}} < m_{\tau}$

[L. Aparicio, D. Cerdeno, L. Ibanez, [HEP(2012)]. Ellis, F.Luo ,et al, PRD87(2013)]

DM abundance can be excolarinitation region

Very fortunately

 $\tilde{\tau}$

Stau is long-lived at $\delta m < m_{\tau}$ since 2-body decay is kinematically prohibited

[T. Jittoh, J. S T. Shimomura, M.Yamanaka, PRD73 (2006)]

Can not decay into two body

Phase space suppression

Long-lived particle

long-lived stau in the coannihilation scenario

2.Li problem and a solution by long-lived stau

Theoretical prediction ($4.15 \stackrel{+0.49}{_{-0.45}}$)×10 ⁻¹⁰

A. Coc, et al., astrophys. J. 600, 544(2004)

Observation ($1.26^{+0.29}_{-0.24}$)×10 ⁻¹⁰

P. Bonifacio, et al., astro-ph/0610245

Predicted⁷Li abundance \neq observed⁷Li abundance

Li problem

Solving the Li problem with stau

Key ingredient for solving the ⁷Li problem

Negative-charged stau can form a bound state with nuclei

New processes

- Internal conversion in the bound state
- Stau catalyzed fusion
- Spallation process of nucleus in the bound state

Internal conversion

PRD76,78

Hadronic current

Closeness between stau and nucleus

Overlap of the wave function : UP

Interaction rate of hadronic current :

 $\tilde{\tau}^+$ does not form a bound state

No cancellation processes

Internal conversion rate

The lifetime of the stau-nucleus bound state

$$\tau_{\rm IC} = \frac{1}{|\psi|^2 \cdot (\sigma v)}$$

$$|\psi|^2 = \frac{1}{\pi a_{\rm nucl}^3}$$

 $\left\{\begin{array}{c} \text{nuclear radius}\\ a_{\text{nucl}} = (1.2 \times A^{1/3}) \end{array}\right\}$

 \diamond (σv) is evaluated by using <u>*ft*-value</u>

 $(\sigma v) \propto (ft\text{-}value)^{-1}$

ft-value of each processes

⁷Be \rightarrow ⁷Li \cdots *ft* = 10^{3.3} sec (experimental value) ⁷Li \rightarrow ⁷He \cdots similar to ⁷Be \rightarrow ⁷Li (no experimental value)

Li destruction chain with internal conversion

Stau catalyzed fusion

[M. Pospelov, PRL. 98 (2007)]

Ineffective for reducing ⁷Li and ⁷Be

 \therefore stau can not weaken the barrieres of Li³⁺ and Be⁴⁺ sufficiently

Stau catalyzed fusion

4 He spallation process PRD 84

Reaction rate $\Gamma((\tilde{\tau}^4 \text{He}) \to \tilde{\chi}_1^0 \nu_\tau \text{tn}) = |\psi|^2 \cdot \sigma v_{\text{tn}}$

Upper bound for lifetime from not to produce much t/d

Favored parameter space in MSSM

3.Requirement for Parameter Search

∼ 2GeV

Req3: mass difference

 $\delta m = m_{\tilde{\tau}} - m_{\tilde{\chi}} \le 1 [\text{GeV}]$

- To form a bound state with Lithium $\delta m \leq 0.1 [GeV]$
- Uncertainty of Public Code

∼ 2GeV

We have calculated the case <0.1GeV but there is no qualitative difference

☑ req4:Stau (and DM(Lightest Neutralino)) mass

LHC bound

Sufficient bound states
 = Enough Stau at BBN

Strongly correlated with Number density of DM

DM abundance (fixed) = number density × mass

Direct measurement at LHC

Y

$$\bar{Y_{\tilde{\tau}_1}^{\rm BBN}}\gtrsim 1.0\times 10^{-13}~Y_{\tilde{\tau}_1}~=~n_{\tilde{\tau}_1}/s$$

We need many staus to destroy Be/Li $Y_{\tilde{\tau}_1}^{\text{BBN}} = \frac{Y_{\tilde{\chi}_1^0}^{\text{relic}}}{2(1 + e^{\delta m/T_f})}$

Exchange process stau<->DM after coanihillation

$$\begin{split} \Omega_{\rm DM} h^2 &\equiv \frac{Y_{\tilde{\chi}_1^0}^{\rm relic} s_0 m_{\rm DM} h^2}{\rho_c} \le 0.136 \\ \text{Upper bound of DM abundance} \\ m_{\tilde{\chi}_1^0} &\lesssim \frac{\rho_c}{2s_0 h^2 (1 + e^{\delta m/T_f})} \frac{0.136}{1.0 \times 10^{-13}} \end{split}$$

4. Result

Numerical Analysis

DM abundance : microOMEGA with SPheno

Higgs mass : FyenHiggs

CMSSM spectrum : SPheno

All other outputs : SPheno

4. Result

4.1. A_0 - m_0 plane ✓ Almost in a line $m_0 = -5.5 \times 10^{-3} A_0 \tan \beta + b$ $165[\text{GeV}] \lesssim b \lesssim 228[\text{GeV}]$ for $\tan \beta = 20$ due to small mass difference ✓ Negative Slope

With fixed $m_{\tilde{\chi}_1^0} \simeq 0.43 M_{1/2}$ increasing m_0 means increasing $m_{\tilde{\tau}_1}$

Need to increase $|A_0|$ to decrease $m_{\tilde{\tau}_1}$ by raising off-diagonal element of stau mass matrix

☑ Upper & Lower edge

 $\begin{cases} \text{Large RGE effect for large } \tan \beta \\ \text{Req. 4 } 339[\text{GeV}] \leq m_{\tilde{\tau}} \leq 450[\text{GeV}] \\ \text{Larger } m_0 \text{ for lager } \tan \beta \end{cases}$

☑ Left-Right edges are determined by the higgs mass

Higgs mass : strong dependence on $|X_t|/\sqrt{6}m_{\tilde{t}}$, max at 1

$$\begin{split} m_h^2 &= m_Z^2 \cos^2 2\beta \ + \frac{3m_t^4}{16\pi^2 v^2} \left[\log\left(\frac{m_{\tilde{t}}^2}{m_t^2}\right) + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2}\right) \right], \\ & (X_t = A_t - \mu \text{cot}\beta, \ m_{\tilde{t}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}), \end{split}$$

From right to left, $|A_0|$ becomes large more rapidly than m_0 Higgs mass first increases , then decreases, at maximum 126 GeV

4.2.
$$m_0 - M_{1/2}$$
 plane

✓ Upper edge $\begin{cases}
m_{\tilde{\chi}_1^0} \simeq 0.43 M_{1/2} \\
\text{Req. 4 339[GeV]} \leq m_{\tilde{\tau}} \leq 450[\text{GeV}]
\end{cases}$

 $M_{1/2}~<$ 1050 GeV

- Left-Right edges are determined by the higgs mass
 - With fixed $m_{\tilde{\chi}^0_1} \simeq 0.43 M_{1/2}$
 - increasing $\,m_0$ means increasing $\,m_{ ilde{ au}_1}$

Need to increase $|A_0|$ to decrease $m_{\tilde{\tau}_1}$ by raising off-diagonal element of stau mass matrix

From left to right , $|X_t|/\sqrt{6}m_{\tilde{t}}$ increases Higgs mass first increases , then decreases

\square Lower bound is deterbimed by DM aboundance

increasing aneta means increasing stau-tau-higgsino coupling

Increasing coanihhilation rate

Increasing DM mass

4.3. Mass spectrum
Well know relations
Gauginos

$$M_3: M_2: M_1 \simeq 6: 2: 1$$

 $M_1 \simeq m_{\tilde{\chi}_1^0} \simeq 0.43 M_{1/2}$
 $M_2:$ secnd neutralino
 $M_3:$ gluino mass
1st & 2nd generation scalars
 $m_{\tilde{q}_L}^2 \simeq m_0^2 + 4.7 M_{1/2}^2$
 $m_{\tilde{q}_R}^2 \simeq m_0^2 + 4.3 M_{1/2}^2$ due to small
 $m_{\tilde{e}_L}^2 \simeq m_0^2 + 0.5 M_{1/2}^2$
 $m_{\tilde{e}_R}^2 \simeq m_0^2 + 0.1 M_{1/2}^2$

In our parameter region

 $\begin{array}{ll} m_{\tilde{q}_L}\simeq 2.2 M_{1/2} & \mbox{5 times larger} \\ m_{\tilde{q}_R}\simeq 2.1 M_{1/2} & \mbox{than DM} \end{array}$

4.3. Mass spectrum

Well know relations

stau vs. 1st & 2nd generation sleptons
small $\tan \beta$:

Small tau-yukawa and similar RG effect

Similar mass spectrum

large aneta ;

large tau-yukawa and different RG effect.

large A term contribution

Stau is lighter than other sleptons.

- ☑ Well know relations cont'd
- Higgsinos, heavy higgses

Electroweak Sym Br.

 $|\mu|^2 = \frac{1}{2} \left[\tan 2\beta \left(M_{H_u}^2 \tan \beta - M_{H_d}^2 \cot \beta \right) - m_Z^2 \right]$ For $\tan \beta \gg 1$ $|\mu|^2 \simeq -M_{H_u}^2$

Numerically,

$$\begin{split} m_{H_u}^2 &\simeq -3.5 \times 10^3 \cot^2 \beta m_0'^2 \\ &+ 87 \cot \beta M_{1/2} m_0' - 2.8 M_{1/2}^2 \end{split}$$

 \checkmark Well know relations cont'd 3rd generation squarks stop $m_{\tilde{t}_1,\tilde{t}_2}^2 \simeq \frac{1}{2} \left(m_{Q_3}^2 + m_{U_3}^2 \right)$ $\mp \frac{1}{2} \sqrt{(m_{Q_3}^2 - m_{U_3}^2)^2 + 4(m_{\tilde{t}_{LR}}^2)^2}$ $m_{\tilde{t}_{I,P}}^2 = m_t (A_t - \mu \cot \beta),$ Large A term and Large RGE effect Lighter stop is generally pretty light though still above LHC constraint sbottom

small $\tan\beta$:

Small bottom-yukawa and similar RG effect

Similar sbottom mass spectrum large $\tan\beta$:

large bottom-yukawa and different RG effect. large A term contribution

Sbottom is lighter than other squarks

Features for spectrum summarized

- All masses are strongly related with (predicted by) $m_{ ilde{ au}}(=m_{ ilde{\chi}_1^0})$
- ☑ Squarks, gluinos, 2nd neutralino, and sleptons are proportional to

$$m_{\tilde{\tau}}(=m_{\tilde{\chi}_1^0})$$

Our 4 requirements automatically, naturally predicted that LHC could not observe any signal for SUSY

DM Higgs mass, BBN (mass difference & massrange

4.4 other constraints

- ☑ g-2 becomes within 3 sigma
- ☑ Tiny effects on B physics

4.5 Direct ditection of DM

- Most important channel
- Cross section

$$\sigma_{\rm SI} = \frac{4}{\pi} \left(\frac{m_{\tilde{\chi}_1^0} m_T}{m_{\tilde{\chi}_1^0} + m_T} \right)^2 (n_p f_p + n_n f_n)^2$$

$$f_p = \sum_q f_q \langle p | \bar{q}q | p \rangle = \sum_{q=u,d,s} \frac{f_q}{m_q} m_p f_{T_q}^{(p)} + \frac{2}{27} f_{T_G} \sum_{q=c,b} f_q = m_q \frac{g_2^2}{4m_W} \left(\frac{C_{h \tilde{\chi}_1^0 \tilde{\chi}_1^0} C_{hqq}}{m_h^2} + \frac{C_{H \tilde{\chi}_1^0 \tilde{\chi}_1^0} C_{Hqq}}{m_H^2} \right)$$

Correlation between $m_H \simeq \mu$ and $\sigma_{\rm SI}$ Heavy higgs contribution is negligible $C_{h\tilde{\chi}_1^0\tilde{\chi}_1^0} \simeq \frac{m_Z \sin \theta_W \tan \theta_W}{M_1^2 - \mu^2} [M_1 \sin \beta + \mu \cos \beta]$ Smaller μ Larger coupling for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 h$

Within the reach in the near future

4.6 LHC in near future		Input	Point 1[GeV]	Point 2[GeV]
		$M_{1/2}$	818.6	932.8
		m_0	452.0	657.7
	Tostable with 100fb ⁻¹	A_0	-2264.7	-2918.4
Ϋ́		Particle		
		h	123.8	124.6
	20% emciency ?	${\widetilde g}$	1822.4	2057.8
		$ ilde{\chi}_1^0$	349.3	400.9
		$ ilde{ au}_1$	350.3	401.0
🛛 Signals		\tilde{u}_L	1710.9	1942.2
	SIGHUIS	\tilde{t}_1	945.8	968.6
	Stau track penetrating detector	Cross Section	Point1 [fb]	Point2 [fb]
		$\sigma(\tilde{u}_L, \tilde{u}_L)$	2.915	1.277
		$\sigma(\tilde{u}_L, \tilde{u}_R)$	1.672	0.668
		$\sigma(\tilde{u}_R, \tilde{u}_R)$	2.970	1.327
	Missing energy event as same as stau	$\sigma(\tilde{u}_L, \tilde{d}_L)$	3.243	1.335
		$\sigma(ilde{u}_R, ilde{d}_R)$	2.680	1.124
		$\sigma(\tilde{g}, \tilde{u}_L)$	2.735	0.899
	Many light stop	$\sigma(\tilde{g}, \tilde{u}_R)$	3.156	1.041
		$\sigma(\tilde{t}_1,\tilde{t}_1^*)$	4.399	3.662
		$\sigma(\tilde{\chi}_1^+, \tilde{\chi}_1^-)$	1.229	0.629
		$\sigma(\tilde{\chi}_1^+, \tilde{\chi}_2^0)$	3.514	1.858
		$\sigma(\tilde{\chi}_1^-, \tilde{\chi}_2^0)$	1.232	0.616
		$\frac{\sigma(\text{All SUSY})}{\sigma(\text{All SUSY})}$	37.730	17.277
		Produced number		
		$N_{\tilde{\tau}_1}$	1595	774
		$N_{ ilde{ au}_1^*}$	2270	989
		$N_{ ilde{\chi}}$	3679	1692

Point 3[GeV]

1038.0

639.7

124.9

2272.6

448.5

449.1

2149.7

1016.3

0.614

0.296

0.652

0.608

0.522

0.330

0.391

2.6550.355

1.075

0.341

8.456

303

409

978

Point3 [fb]

-3397.0

5.Summary

- ☑ Constrained minimal SUSY standard model (CMSSM) with 4 requirement
- ☑ 4 requirement
 - Dark matter relic abundance
 - Higgs mass
 - Stau DM mass degeneracy
 - $339[\text{GeV}] \le m_{\tilde{\tau}} \le 450[\text{GeV}]$
- Very constrained PredictionsLower limit and lower limit for mass of SUSY particle
 - It is matter of cource that LHC has not observed yet Next LHC must observe SUSY signals
 - Very strong correlation among SUSY particles
 - DM direct detection in near future must observe DM signal

どこのパラメーター領域に注目すべきか?

[J. Ellis, et al, PRD87 (2013)]

I25GeV Higgs、muon g-2 なども 含めると尤もらしい領域は? $\delta m < m_{\tau}$ $\delta m = m_{\tilde{\tau}_R} - m_{\tilde{\chi}}$ 暗黒物質とスタウの質量差

リチウム7問題

- ☑ Prediction $^{7}\text{Li/H} = (4.15^{+0.49}_{-0.45}) \times 10^{-10}$
- ☑ Observation $^{7}\text{Li/H} = (1.26^{+0.29}_{-0.24}) \times 10^{-10}$
- Discrepancy:⁷Li problem

No solutions by modifying nucleus reaction rates

✓ Find mechanism to reduce both⁷Li and⁷Be at the BBN epoch

req4:Stau (and DM(Lightest Neutralino)) mass

$339[\text{GeV}] \le m_{\tilde{\tau}} \le 450[\text{GeV}]$

LHC bound

Sufficient bound states= Enough Stau at BBN

Strongly correlated with Number density of DM

DM abundance (fixed) = number density × mass

Direct measurement at LHC

[T. Jittoh, K. Kohri, M. Koike, J. S, T. Shimomura, M.Yamanaka, PRD82(2010)]

Internal conversion for solving the lithium7 problem

[T. Jittoh, K. Kohri, M. Koike, J. Sato, T. Shimomura, MY, PRD76 (2007)]

Very fortunately

☑ Stau is long-lived at $\delta m < m_{\tau}$ since 2-body decay is kinematically prohibited

[T. Jittoh, J. Sato, T. Shimomura, MY, PRD73 (2006)]

$\square \delta m > m_{\tau}$ のCMSSMを調べるだけでは見落とす現象や制限あり

☑ CMSSMの確立に向け、実現可能性大の領域を丁寧に洗い直すべき

研究目的:新たな現象、それに伴う特典・制限を含め、 現実的CMSSMの検証可能性を真摯に解析