

New T2K oscillation results

Federico Sánchez IFAE (Barcelona)

9

Neutrino oscillations

v oscillations

Similar to quarks, flavour and Lorentz eigenstates of massive neutrinos are not identical.

The two eigenbases are related through the Pontecorvo-Maki-Nakagawa-Sakata matrix (UPNMS).

$$U_{PNMS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

3

v oscillations

<u>atmospheric</u>

 $U_{PNMS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{21} & \sin\theta_{21} & 0 \\ -\sin\theta_{21} & \cos\theta_{21} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$\begin{pmatrix} \nu_e & \nu_\mu & \nu_\tau \end{pmatrix} = U_{PNMS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- With 3ν , there are 3 angles and 1 imaginary phase:
 - The imaginary phase allows for CP violation similar to the quark sector.
- There are also 2 values of Δm^2 : traditionally Δm^2_{12} & Δm^2_{23} .

v oscillations

Standard v oscillations (=) =>

- δ_{CP} accessible through:
 - comparison of appearance with reactor disappearance.

Missing

- comparison of $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
- The θ₂₃ octant:
 - The θ_{23} is close to 45° but, how close ?, is $\theta_{23} < 45^\circ$ or $\theta_{23} < 45^\circ$?
- What is the absolute neutrino mass ? (Katrin?, Cosmology?,...)
- The mass hierarchy: is $m_3 > m_1$?

 $u_{\mu} \rightarrow \nu_{\mu}$

 $\nu_{\mu} \rightarrow \nu_{e}$

 $\bar{\nu}_{\mu}
ightarrow \bar{\nu}_{\mu}$

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

F.Sánchez (IFAE) MPIfK Seminar 16th July 2014

7

History

- 1999 Ko Nishikawa and Yoji Totsuka formulate $v_{\mu} \rightarrow v_{e}$ experiment at J-PARC.
- I999-2004 K2K finds the first evidence of neutrino oscillation in a Long Base Line experiment.
- 2000-2004 Letter of Intent; Detailed design; Formation of international collaboration.
- 2004 Five year construction plan for T2K approved by Japanese government.
- Febr 2008 ND280 pit construction is completed.
- May 2008 installation ND280 magnet.
- April 2009 commissioning of beamline.
- Janu 2010 first neutrino events for neutrino oscillation studies.
- March 2011 Great East Japan earthquake.
- June 2011 T2K announces 2.5σ "indication" of $\nu_{\mu} \rightarrow \nu_{e}$
- March 2012 T2K resumes data taking after earthquake recovery.

9

.

T2K collaboration

~500 member, 59 institutions, 11 countries.

-PARC

EXCELENCIA SEVERO OCHOA

Joint Project between KEK and JAEA

v beam

n

Beam stability

Muon monitor downstream the beam dump monitors beam direction. Stability requirements < I mrad

I mrad change of v beam direction results in 2-3% change of the neutrino energy scale (~16MeV)

Data sets

- Total delivered beam: 6.63x10²⁰ protons on target.
 - 8.3% of the expected T2K PoT (7.8x10²¹PoT)
 - $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\mu}$ analyses uses 96.3% of acquired Run 1-4 PoT.

SEVERO OCHOA

Flux prediction

n

NA61: Shine

NA61/Shine measures for T2K the production of pions and kaons as function of the momentum and angle for protons interacting with carbon.

NA61/Shine measures a thin target for absolute production and thick target that is a copy of T2K target and provides also the reinteractions.

Flux prediction

- Simulation is carried out by Fluka2008 3d.
- The pion and kaon production is weighted to the results from NA61-Shine.
 - "A priori" flux error: ~15% below @ 1 GeV.
 - Strong correlation between near and far detector.

σνΝ

When $E_v > 100 MeV$ the v-Nucleus cross-section dominates.

SEVERO OCHOA

Off-axis concept

T2K runs 2.5° off-axis

30 GeV protons

off-axis optimises the flux at the maximum of the oscillation.

2.5°

 off-axis reduces the high energy contamination (NCπ⁰ and non-CCQE backgrounds.)

Beam

0 1

ND280

Super-Kamiokande

ND280

- ND280 is the near detector facility with two main detectors located
 280m from the proton interaction point:
 - On-axis INGRID.
 - Off-axis ND280m.
 - Three main purposes:
 - v beam stability.
 - V cross-sections.
 - v beam flux constraint.

On-axis (INGRID)

INGRID counts v CC events in a cross of 13 identical detectors:

total rate monitors beam intensity stability with respect to proton on target counting.

The relative event counts between modules monitor the beam direction stability.

On-axis: beam stability 🗘 🕩

Beam alignment and flux measured with neutrinos

- Neutrino rate stable within 0.7%.
- Beam direction variation << I mrad.

Off-axis: ND280

- Off-axis ND280 is a detector complex with tracking calorimeters, time projection chambers and Electromagnetic calorimeters in the UA1/Nomad 0.2T magnet.
 - V interaction target polystyrene (CH) and water.
 - Particle ID by dE/dx and calorimetry.
 - Charge sign by curvature.
- Specific π^0 detector (P0D) made of water, CH and brass optimised for NC π^0 measurement.

Magnet was granted by CERN

Off-axis: V_µ analysis

- The ND280 constrains flux and cross-section.
- Sample of CC events is selected. Muon as highest momentum negative track in the event in the target fiducial volume compatible with muon Pid in TPC.
- The sample is divided in 3 categories: $0\pi^+$, $1\pi^+$ and others (mainly Deep Inelastic Scattering) based on the detection of pions in the event.
 - Pions are detected as tracks in TPC, FGD or Michel electron signature near vertex.

Off-axis: V_{μ} analysis

Off-axis ND280 analysis real events

- Select highest momentum negative track starting in FGD to be compatible with electron according to TPC and ECAL PID.
- Subdivide the sample according to the presence of pions in the event.
- Use the V_e flux prediction after the V_{μ} flux and cross-section fit.
- Use $\gamma \rightarrow e^+e^-$ to constrain main background from $\pi^0 \rightarrow \gamma \gamma$

 $\frac{N_e^{meas}}{N_e^{pred}} = 1.01 \pm 0.06(stat) \pm 0.06(flux \oplus x.sec) \pm 0.05(det \oplus FSI)$

 N_{γ}^{meas}

 N_{a}^{pred}

arXiv:1403.2552

 $= 0.64 \pm 0.10$

n

Cross-sections

- The T2K signal is the CCQE events. The 2 body kinematics allow to estimate the neutrino energy. $\nu_{\mu}n \rightarrow \mu^{-}p$
- Other channels can be seen as backgrounds to the CCQE signal.
 - We need to identify the channel by using the hadronic component of the interactions.
- At T2K energies there are many channel thresholds (CCIπ⁺, CCIπ⁰, CC Deep Inelatic Scattering, ...)
- Cross-section models are not precise.
- Final state interactions inside the nucleus alter the hadronic component.

$$E_{reco} = \frac{m_p^2 - (m_n - E_b)^2 - m_\mu^2 + 2(m_n - E_b)E_\mu}{2(m_n - E_b - E_\mu + p_\mu \cos \theta_\mu)}$$

E_{b} is the binding energy

Cross-sections: unknowns 🗘 🖒

SEVERO

Flux prediction

Beam

ND280

Super-Kamiokande

n

Flux constraint

Neutrino Flux Model:

- Data-driven: NA61/SHINE, beam monitor measurements
- Uncertainties: modeled by variation of normalisation parameters (*b*) in bins of neutrino energy and flavour

Neutrino Cross Section Model (NEUT):

- Data-driven: External neutrino, electron, pion scattering data
- Uncertainties: modeled by variations of model parameters (M_A , p_F , E_b) and ad-hoc parameters

Constraint from ND280 Data

- Data Samples enhanced in CC interactions with 0, 1 or others (mainly multiple pions)
- Fit to data constrains flux, *b*, and cross section, $x=(M_A, p_F, E_b, ad-hoc, ...)$, parameters
- Constrained SK flux parameters and subset of cross section parameters are used to predict SK event rates

Data from T2K Runs 1-4: 5.9x10²⁰ protons on target

Selection	Number of Events
СС0п	16912
CC1π	3936
CC Other	4062
CC Inclusive	24910

Data are binned in two dimensions: muon momentum (p) and angle ($\cos\theta$) preserving information on neutrino energy and interaction q²

Constrained flux

Cross-section parameters

N		
Parameter	Prior to ND280 Constraint	After ND280 Constraint
M _A ^{QE} (GeV)	1.21 ± 0.45	1.223 ± 0.072
M _A ^{RES} (GeV)	1.41 ± 0.22	0.963 ± 0.063
CCQE Norm.	1.00 ± 0.11	0.961 ± 0.076
CC1π Norm.	1.15 ± 0.32	1.22 ± 0.16
NC1π ⁰ Norm.	0.96 ± 0.33	1.10 ± 0.25

T2K SK V_e Flux

- T2K v_{μ} and v_{e} flux predictions are constrained by the fit.
- The cross-section parameters are also constrained.
- Plots show central values and error bands for normalisation parameters.

Covariance matrix

T2K SK flux parameters are constrained through their prior correlations with the ND280 ν_{μ} flux parameters

Subset of cross section parameters are correlated at near and far detectors: M_A^{QE} , M_A^{RES} , low energy CCQE normalisation, low energy CCI π normalisation.

n

Super-Kamiokande

- 50 kTon water Cherenkov detector. (22.5 KTon fiducial).
- ~II 000 20" PMT inner detector.
- ~2000 8" PMT outer detector to veto external background.

SK: particle ID

- The expected angular distribution of Cherenkov photons along the primary particle direction is different in electrons and muons:
- The electron is not sharp due to Multiple Scattering & showering.

Super-Kamiokande & modeles

- The misidentification of π⁰ and electrons happens when one photon is not identified:
 - The two electron-like rings overlap.
 - One of the two e-like rings is faint and it is lost in the Cherenkov light of the other photon.
- Or with 2 γ , the invariant mass of the photons has poor resolution.

γ πο γ

Super-Kamiokande & TT⁰

Likelihood Ratio vs π^0 Mass

- We can prepare a likelihood for 2 electron-like rings and compare with 1 electron-like ring hypothesis (rings are normally superimposed):
 - Even if 2^{nd} photon is clearly identified, it may be on the tail of the π^0 mass resolution.
 - The selection favours good π^0 mass or good 2 electron-ring events.
- 2D cut removes 70% more π⁰ background than previous method for the same signal efficiency.

v_{μ} selection

V_e selection

Reconstructed v Energy (GeV)

Relative uncertainty in # of v_{μ} candidates (%)	Systematic error source	Relative uncertainty in # of v_e candidates (%)
2.7	Flux + Xsec. (ND280 constrained)	2.9
4.9	Xsec. (ND280 independent)	4.7
3.5	π Hadronic Interactions	2.3
4.4	SK Detector	2.6
8.1	Total	6.8

MR

v oscillation analysis

Beam

ND280

G.

Super-Kamiokande

0 1

A

Flux x σ_{vN}

• Expected number of events in absence of oscillations: 446.0 ± 22.5 (syst).

• Observed number of events: 120

6.57 x 10²⁰ PoT

Energy reconstruction assuming CCQE

The θ_{23} octant

• In the limit: $\Delta m_{12}^2 << \Delta m_{23}^2$ the disappearance probability is given by:

 $P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4\cos^2\theta_{13}\sin^2\theta_{23}[1 - \cos^2\theta_{13}\sin^2\theta_{23}]\sin^2(1.27\Delta m_{32}^2 L/E_{\nu})$

- If $\theta_{13} = 0$
 - $P(\nu_{\mu} \to \nu_{\mu}) \simeq \qquad 1 4\sin^2 \theta_{23} [1 \sin^2 \theta_{23}] \sin^2 (1.27\Delta m_{32}^2 L/E_{\nu})$ $1 2\sin^2 2\theta_{23} \sin^2 (1.27\Delta m_{32}^2 L/E_{\nu})$

• If $\theta_{13} = 0$ and $\theta_{23} \sim 45^\circ$, the v_{μ} disappearance is sensitive to the octant

(i.e. $P_{\nu\mu \to \nu\mu}(\theta_{23} > 45^{\circ}) \neq P_{\nu\mu \to \nu\mu}(\theta_{23} < 45^{\circ})$)

- The right fit parameter is $\sin^2\theta_{23}$ and not the traditional $\sin^2(2\theta_{23})$
- Uncertainty in θ_{13} needs to be propagated !!!!.

v_{μ} disappearance

 $P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4\cos^2\theta_{13}\sin^2\theta_{23}[1 - \cos^2\theta_{13}\sin^2\theta_{23}]\sin^2(1.27\Delta m_{32}^2 L/E_{\nu})$

\vec{C}_{2}	4.2	<u> </u>				
້ຍ	4	- 68% (dashed) and 90% (solid) CL Co	ontours			
10	3.8	— — T2K [NH]	SK I-IV [NH]	arXiv:14	03.1532 (2014)	Best-fit ± FC 68% CL
$\sum_{i=1}^{n}$	3.6	MINOS 3-flavor+atm [NH]				
m_2^2	3.4	- 			$sin^2\theta_{23}$	0.514 ^{+0.055} -0.056
\triangleleft	3.2			N 11 1		
	3				$(10^{-3} - 1/2)$	2.51 ± 0.10
	2.8	-		6.	$\Delta m_{23}^{23} (10^{-9} \text{ eV}^2)$	
	2.6					0.511 ± 0.055
	2.4				sin²θ ₂₃	
	2.2	-		IH		2.48 ± 0.10
	$2^{[}$		1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	-	Δ m ² ₂₃ (10 ⁻³ eV ²)	2.48 ± 0.10
		0.5 0.55 0.4 0.45 0.5 0	$\sin^2(\theta_{aa})$			
			(\mathbf{v}_{23})			

• T2K already dominates the measurement of mixing angle.

• Off-axis configuration reduces sensitivity to Δm^2

♠

6.4×10²⁰ PoT

U	Event cath.	$sin^2 2\theta_{13} = 0$	$sin^2 2\theta_{13} = 0.1$	Aer and
ctic	V _e signal	0,38	16,42	
edi	Ve back.	3,17	2,93	
t Pr	v_{μ} back.	0,89	0,89	2000 sin ² 2 θ_{13} = 0.1 w/ ND280 constraint
/ent	$v_{\mu^+} v_e$ back.	0,20	0,19	$\frac{1500}{1500} = \frac{\sin^2 2\theta_{23}}{2} = 1.0$ (Normal hierarchy)
ш	Total	4,64	20,44	$\sum_{i=1}^{n} \delta_{CP} = 0$ $= 0$ $= 6.4 \times 10^{20} \text{ p.o.t.}$
<u>د</u>	Error source	$sin^2 2\theta_{13} = 0$	$sin^2 2\theta_{13} = 0.1$	
cerro	Beam flux and V int	4,9%	3,0%	$ = \begin{bmatrix} & & & & & \\ & & & & & & \\ & & & & &$
atic	Far detector	6,7%	7,5%	Expected number of signal+background events
em	+FSI+SI+PN	7,3%	3,5%	- X X X
yst	Total	11,1%	8,8%	
S	Total(2012)	13,0%	9,9%	

Tension between T2K and reactor experimental results \rightarrow assumptions

 $\delta_{
m CP}$ Normal hierarchy Allowed region of $sin^2 2\theta_{13}$ for each value of δ_{CP} 68% C.L. 0 90% C.L - Best fit Best fit w/ 68% C.L. error @ $\delta_{CP}=0$ Run1-4 data (6.393e20 POT) normal hierarchy $|\Delta m_{32}^2|=2.4\times 10^{-3} \text{ eV}^2$ -2 $\sin^2 2\theta_{23} = 1.0$ $\sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032}$ Normal hierarchy: $\sin^2 2\theta_{13} = 0.170^{+0.045}_{-0.037}$ $\delta_{
m CP}$ 3 Inverted hierarchy: Inverted hierarchy 7.3 σ observation claim 68% C.L. - 90% C.L. — Best fit This is the first time an Run1-4 data (6.393e20 POT) inverted hierarchy exclusive neutrino flavour $|\Delta m_{32}^2|=2.4\times 10^{-3} \text{ eV}^2$ -2 $\sin^2 2\theta_{23} = 1.0$ appearance is measured. -3 0.2 0.4 0.6 $\sin^2 2\theta_{13}$

57

The uncertainty in the atmospheric mixing angle.

• δ_{CP} vs. sin²2 θ_{13} contour depends significantly on the value of sin² θ_{23} .

Joint analysis

No assumptions!

Likelihood ratio fit to both $v_{\mu} + v_{e}$ *event samples*

Accounting for correlations in the parameter space $(\theta_{23}, \theta_{13}, \delta_{CP}, \Delta m_{32}^2)$ $\Delta\chi^2$ Normal Hierarchy 6 **Inverted Hierarchy** FC 90 % Δχ²_c (NH) 5 FC 90 % Δχ² (IH) 90 % excluded (NH) 90 % excluded (IH) 3 Feldman Cousin 2 0 -0.5 0.5 -1 0 $δ_{CP}(π)$

Including constraint from reactor experiments *Daya Bay, RENO, Double Chooz*

sin²2θ₁₃ = 0.095 ± 0.010 (PDG 2013)

	90% CL	
NH	$\delta_{\text{CP}} \in \textbf{[-1.18, 0.15]} \ \pi$	
IH	$\delta_{\text{CP}} \in$ [-0.9, -0.08] π	

Joint analysis (Bayes)

Markov Chain Monte Carlo (MCMC) with both T2K-SK $v_{\mu} + v_{e}$ and ND280 samples

Can easily marginalize over e.g. mass hierarchy (MH)

And compare the probabilities for each MH and θ₂₃ octant combination

	NH	IH	Sum
$\sin^2\theta_{23} \le 0.5$	18%	8%	26%
$\sin^2 \theta_{23} > 0.5$	50%	24%	74%
Sum	68%	32%	

Beam

0 1

ND280

Super-Kamiokande

n

Upgrade plan

- T2K has collected only 8% of the expected proton on target.
 - Maximum operation power achieved 235kW
 - Design operation 750kW.
 - JParc already achieved world record on proton on target per pulse but it is handicapped by relatively low proton energy (30 GeV).
- How to get to full acceleration power ?
 - Linac upgrade to be completed within a year. Expect range of steady Main Ring operation for neutrino between 250-400 kW after the summer.
 - Planned Main Ring upgrade depends on funding \rightarrow 750 kW.

Future Scp sensitivity

SEVERO OCHOA

7.8×10²¹ PoT + 2012 systematics

Future δ_{CP} sensitivity (1)

T2K + Nova + reactor

Concluding remarks

- T2K has shown the first evidence (7.4 σ significance) of the appearance of V_e in a V_µ beam with only 8.3% of the total T2K statistics.
- Also measurement of $v_{\mu} \rightarrow v_{\mu}$ which favours maximal mixing. Oscillations at "atmospheric" baseline are now precision measurements
- This success is the result of a combined effort of JPARC accelerator increasing the PoT statistics (x2 in one year!) and T2K analysis improvements reducing the systematic errors.
- T2K will continue to run and benefit from planned J-PARC Main Ring (MR) power improvements 220 kW operation in 2014/15.
- T2K horn system designed to easily switch from neutrino to anti-neutrino beams. First anti-neutrino run in May-June 2014.

The future is here

Ist antineutrino candidate @ SK

8th July 2014

Antineutrino candidate @ ND280

F.Sánchez (IFAE) MPIfK Seminar 16th July 2014

Support slides

67

ND280 other analysis

SEVERO OCHOA

Off-axis: Ve analysis

V_e events at the ND280 P0D detector calculated with 8.6x10¹⁹ PoT.

 $\frac{Data - Back_{MC}}{Sign_{MC}} = 0.91 \pm 0.13(stat) \pm 0.18(det) \pm 0.13(flux)$

In good agreement with the tracker $V_{\rm e}$ measurement

J-PARC accident

11:55 on May 23

- An abnormal proton beam was injected to the gold target.
- The target heated up to a extraordinarily high temperature.
- Radioactive material was released from the target.
- The radioactive material was leaked into the HD hall: xWorkers were exposed to radiation.
- The radioactive material was released to the outside of the radiation controlled area and to the environment outside of the HD hall.

θ_{13} : other results (1)

Strong confirmation of oscillation-interpretation of observed $\bar{\nu_e}$ deficit

	Normal MH Δm_{32}^2 [10 ⁻³ eV ²]	Inverted MH Δm_{32}^2 [10 ⁻³ eV ²]
From Daya Bay Δm_{ee}^2	$2.54^{+0.19}_{-0.20}$	$-2.64\substack{+0.19\\-0.20}$
From MINOS $\Delta m^2_{\mu\mu}$ [João, NuFact2013]	$2.37\substack{+0.09\\-0.09}$	$-2.41\substack{+0.12\\-0.09}$

Reactor experiments measure θ_{13} with no degeneracies.

Ve analysis

F.Sánchez (IFAE) MPIfK Seminar 16th July 2014

72
p-value calculation

p-value is calculated as followings:

- 1. Generate 1e15 toy experiments with $sin^22\theta_{13}=0.0$.
- 2. Fit each toy experiment to extract $-2\Delta lnL$ (= $\Delta \chi^2$).
- 3. p-value is the fraction of toy experiments above $\Delta \chi^2_{data}$

For the actual calculation, we use time saving method.

- We only fit the data if $N_{obs} > 24$.

- We do not throw systematic parameters for 1e15 times.

Sensitivity checks

We fit the toy MC experiments (true $\sin^2 2\theta_{13} = 0.1$) to check the sensitivity. The averaged ln L curves \downarrow are generated by averaging 4000 toy experiments.

Sensitivity checks

Run1-4 POT & Run1-3 fiTQun π^0 cut & POLfit π^0 old & new BANFF POT $2*\Delta(averaged \ln L')$ cut Norm+Shape, Norm+Shape, Norm+Shape, 30 w/ ND280 fit, Run1-4 w/ ND280 fit, Run1-4 w/ ND280 fit, Run1-4 fiTQun π⁰ cut fiTOun π⁰ cut fiTOun nº cut Norm+Shape, Norm+Shape, Norm+Shape, w ND280 fit, Run1-4 w ND280 fit, Run1-4 w/ ND280 fit, Run1-3 fiTQun πº cut, BANFF v7 POLfit nº cut 20 fiTOun π⁰ cut Significance($\sqrt{\Delta \ln L} = 0$): Significance($\sqrt{\Delta}\ln L@\theta_{13}=0$): Significance($\sqrt{\Delta}$ lnL@ θ_{13} =0) Run1-4 PØT: 5.5σ 10 fiTQun: 5.5σ new BANFF: 5.5σ Run1-3 POT: 3.9σ POLfit: 5.0σ old BANFF: 5.4 σ 00 0.2 0.3 0.1 0.40 0.3 0.40.1 0.2 0.2 0.3 0.4) 0.1 $\sin^2 2\theta_{13}$ $\sin^2 2\theta_{13}$ $\sin^2 2\theta_{13}$

Significance becomes much larger by adding Run4.

Effect of using fiTQun is not significantly large but important. Significance is not much different for toy MC, because the N_{exp} become smaller with new BANFF while the errors are improved.

Fake data fit results

			True values	X X		
Data	a set	D	E	F	G	
Δm_{21}^2	(eV^2) 7	7.6×10^{-5}	7.6×10^{-5}	7.6×10^{-5}	7.6×10^{-5}	Four different cots of fake data
Δm_{32}^2	$(eV^2) -$	-2.5×10^{-1}	$^{-3}$ 2.5 × 10 ⁻³	-2.7×10^{-3}	2.4×10^{-3}	Four unierent sets of lake uata
\sin^2	$^{2} heta_{12}$	0.35	0.32	0.32	0.32	sets are prepared by Roger. The
\sin^2	$^{2} heta_{23}$	0.42	0.62	0.50	0.50	true values were blinded.
\sin^2	$^{2} heta_{13}$	0.018	0.039	0.010	0.0251	
\sin^2	$2\theta_{13}$	0.0707	0.150	0.0396	0.0980	
δ_{CP} (ratio	adians)	4.712	0.0	3.14159	0.0	
N	obs	18	35	8	27	
	1	Fitt	ted values	XIL		
set		l	Normal hierarchy	Inverted hie	erarchy	
set	best-fit] (Normal hierarchy).090	Inverted hie 0.110	erarchy	he fitted values were consistent
set D	best-fit 68% C.L. a	allowed (Normal hierarchy 0.090 0.063 < x < 0.121	Inverted hie 0.110 $0.077 < x < x$	T T T T T T T T T T	The fitted values were consistent with the true values. $p-\theta$ and E_{rec}
set D	best-fit 68% C.L. a 90% C.L. a	allowed (allowed (Normal hierarchy 0.090 0.063 < x < 0.121 0.048 < x < 0.145	Inverted hie 0.110 $0.077 < x <$ $0.060 < x <$	erarchy T 0.147 0.175 W	The fitted values were consistent with the true values. $p-\theta$ and E_{rec} were also consistent with each
set D	best-fit 68% C.L. a 90% C.L. a best-fit	allowed (allowed (Normal hierarchy 0.090 0.063 < x < 0.121 0.048 < x < 0.145 0.174	Inverted hie 0.110 $0.077 < x <$ $0.060 < x <$ 0.210 0.120	erarchy T 0.147 0.175 W	The fitted values were consistent with the true values. $p-\theta$ and E_{rec} were also consistent with each other
set D set E	best-fit 68% C.L. a 90% C.L. a best-fit 68% C.L. a	allowed (allowed (allowed (allowed (Normal hierarchy 0.090 0.063 < x < 0.121 0.048 < x < 0.145 0.174 0.139 < x < 0.216 0.118 < x < 0.247	Inverted hie 0.110 $0.077 < x <$ $0.060 < x <$ 0.210 $0.168 < x <$	erarchy T 0.147 0.175 W 0.259 0.204	The fitted values were consistent with the true values. $p-\theta$ and E_{rec} were also consistent with each other.
set D set E	best-fit 68% C.L. a 90% C.L. a best-fit 68% C.L. a 90% C.L. a	allowed (allowed (allowed (allowed (allowed (Normal hierarchy 0.090 0.063 < x < 0.121 0.048 < x < 0.145 0.174 0.139 < x < 0.216 0.118 < x < 0.247	Inverted hie 0.110 $0.077 < x <$ $0.060 < x <$ 0.210 $0.168 < x <$ $0.144 < x <$	erarchy T 0.147 W 0.175 W 0 0.259 0.294	The fitted values were consistent with the true values. $p-\theta$ and E_{rec} were also consistent with each other.
set D set E	best-fit 68% C.L. a 90% C.L. a best-fit 68% C.L. a 90% C.L. a best-fit 68% C.L. a	allowed (allowed (allowed (allowed (allowed (allowed (Normal hierarchy 0.090 0.063 < x < 0.121 0.048 < x < 0.145 0.174 0.139 < x < 0.216 0.118 < x < 0.247 0.026	Inverted hie 0.110 0.077 < x < 0.060 < x < 0.210 0.168 < x < 0.144 < x < 0.032 0.012 < x <	erarchy T 0.147 0.175 W 0.259 0.294 (The fitted values were consistent with the true values. $p-\theta$ and E_{rec} were also consistent with each other. Osc. params other than $\sin^2 2\theta_{13}$
set D set E set F	best-fit 68% C.L. a 90% C.L. a best-fit 68% C.L. a 90% C.L. a 90% C.L. a 90% C.L. a	allowed (allowed (allowed (allowed (allowed (allowed (allowed (Normal hierarchy 0.090 0.063 < x < 0.121 0.048 < x < 0.145 0.174 0.139 < x < 0.216 0.118 < x < 0.247 0.026 0.010 < x < 0.046 0.002 < x < 0.062	Inverted hie 0.110 $0.077 < x <$ $0.060 < x <$ 0.210 $0.168 < x <$ $0.144 < x <$ 0.032 $0.012 < x <$ $0.002 < x <$	erarchy T 0.147 0.175 W 0.259 0.294 (0.057 0.077 0.077	The fitted values were consistent with the true values. $p-\theta$ and E_{rec} were also consistent with each other. Osc. params other than $\sin^2 2\theta_{13}$ are fixed in the fit. i.e.
set D set E set F	best-fit 68% C.L. a 90% C.L. a best-fit 68% C.L. a 90% C.L. a best-fit 68% C.L. a 90% C.L. a 90% C.L. a 90% C.L. a	allowed (allowed (allowed (allowed (allowed (allowed (allowed (Normal hierarchy 0.090 0.063 < x < 0.121 0.048 < x < 0.145 0.174 0.139 < x < 0.216 0.118 < x < 0.247 0.026 0.010 < x < 0.046 0.002 < x < 0.062 0.140	Inverted hie 0.110 $0.077 < x <$ $0.060 < x <$ 0.210 $0.168 < x <$ $0.144 < x <$ 0.032 $0.012 < x <$ $0.002 < x <$ 0.170	erarchy T 0.147 0.175 W 0 0.259 0 0.294 (0.057 0.077 0 0 0 0 0 0 0 0 0 0 0 0 0	The fitted values were consistent with the true values. $p-\theta$ and E_{rec} were also consistent with each other. Osc. params other than $\sin^2 2\theta_{13}$ are fixed in the fit. i.e. $\sin^2 2\theta_{23} = 1.0$,
set D set E set F set G	best-fit 68% C.L. a 90% C.L. a best-fit 68% C.L. a 90% C.L. a best-fit 68% C.L. a 90% C.L. a best-fit 68% C.L. a	allowed (allowed (allowed (allowed (allowed (allowed (allowed (allowed (allowed (allowed (Normal hierarchy 0.090 $0.063 < x < 0.121$ $0.063 < x < 0.145$ $0.048 < x < 0.145$ 0.174 $0.139 < x < 0.216$ $0.118 < x < 0.247$ 0.026 $0.010 < x < 0.046$ $0.002 < x < 0.062$ 0.140 $0.107 < x < 0.178$	Inverted hie 0.110 $0.077 < x <$ $0.060 < x <$ 0.210 $0.168 < x <$ $0.144 < x <$ 0.032 $0.012 < x <$ $0.002 < x <$ $0.132 < x <$	erarchy T 0.147 0.175 W 0.259 0.259 0.294 (0.057 0.077 0.0216	The fitted values were consistent with the true values. $p-\theta$ and E_{rec} were also consistent with each other. Osc. params other than $\sin^2 2\theta_{13}$ are fixed in the fit. i.e. $\sin^2 2\theta_{23} = 1.0$, $2m^2 = 2.4 \times 10^{-3} \delta = 0$

Likelihood curves for Run1-4 data

(summary table will be shown later.)

F.Sánchez (IFAE) MPIfK Seminar 16th July 2014 Jater.)

SEVERO OCHOA

77

Best fit distributions (Run I-4, normal

Fit summary table

	Run1–4 (p–θ)	Run1–4 (E _{rec})	Run4 only	Run1-3 (2013 analysis)	Run1-3 (2012 analysis)
POT	6,39E+20	6,39E+20	3,38E+20	3,01E+20	3,01E+20
Observed number of events	28	28	17	11	11
<u>Normal hierarchy</u> Best fit 90% C.L. 68% C.L.	0.150 0.097 - 0.218 0.116 - 0.189	0.152 0.099 - 0.222 0.118 - 0.193	0.180 0.105 - 0.280 0.131 - 0.237	0.112 0.050 - 0.204 0.072 - 0.164	0.088 0.030 - 0.175 0.049 - 0.137
<u>Inverted</u> <u>hierarchy</u> Best fit 90% C.L. 68% C.L.	0.182 0.119 - 0.261 0.142 - 0.228	0.184 0.120 - 0.264 0.143 - 0.230	0.216 0.129 - 0.332 0.160 - 0.283	0.136 0.062 - 0.244 0.088 - 0.198	0.108 0.038 - 0.212 0.062 - 0.167

ystematic errors for N_{exp}

(unit: %)

Black: 2013	$\sin^2 2\theta$	$_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$	
Error source Blue: 2012	w/o ND280 fit	w/ ND280 fit	w/o ND280 fit	w/ ND280 fit
Beam only	$10.6\ 10.8$	7.3 7.5	11.611.9	$7.5 \ 8.1$
M_A^{QE}	$15.6 \ 9.5$	2.4 4.0	21.516.3	$3.2 \ 6.7$
M_A^{RES}	7.2 4.5	2.1 3.9	3.3 2.0	$0.9\ 1.8$
CCQE norm. $(E_{\nu} < 1.5 \text{ GeV})$	7.1 4.9	4.8 3.8	9.3 7.9	$6.3 \ 6.2$
$CC1\pi$ norm. $(E_{\nu} < 2.5 \text{ GeV})$	4.9 5.1	$2.4 \ 3.5$	4.2 5.2	$2.0\ 3.5$
$NC1\pi^0$ norm.	2.7 7.9	$1.9 \ 7.3$	$0.6 \ 2.3$	$0.4\ 2.2$
CC other shape	0.3 0.2	0.3 0.2	0.1 0.1	$0.1 \ 0.1$
Spectral Function	4.7 3.3	4.8 3.3	6.0 5.7	$6.0\ 5.7$
p_F	0.1 0.3	$0.1 \ 0.3$	0.1 0.0	$0.1 \ 0.0$
CC coh. norm.	0.3 0.2	0.3 0.2	$0.3 \ 0.2$	$0.2 \ 0.2$
NC coh. norm.	$1.1 \ 2.1$	$1.1 \ 2.0$	0.3 0.6	$0.2\ 0.6$
NC other norm.	2.3 2.6	$2.2 \ 2.6$	$0.5 \ 0.8$	$0.5 \ 0.8$
$\sigma_{ u_e}/\sigma_{ u_\mu}$	2.4 1.8	$2.4 \ 1.8$	2.9 2.6	$2.9\ 2.6$
W shape	1.0 1.9	$1.0 \ 1.9$	0.2 0.8	$0.2 \ 0.8$
pion-less Δ decay	3.3 0.5	$3.1 \ 0.5$	3.7 3.2	$3.5\ 3.2$
SK detector eff.	5.7 6.8	5.6 6.8	2.4 3.0	$2.4 \ 3.0$
FSI	3.0 2.9	$3.0 \ 2.9$	2.3 2.3	2.3 2.3
PN	3.6	3.5	0.8	0.8
SK momentum scale	1.5 0.0	$1.5 \ 0.0$	0.6 0.0	0.6 0.0
Total	24.5 21.0	11.113.0	28.1 24.2	8.8 9.9

EXCELENCIA SEVERO OCHOA

Systematic errors for Nexp

	- PA		A	X		(unit: S
	Black: 2013	$\sin^2 2\theta$	$_{13} = 0$	$\sin^2 2\theta_1$	$_{3} = 0.1$	(
Error source	Blue: 2012	w/o ND280 fit	w/ ND280 fit	w/o ND280 fit	w/ ND280 fit	
Beam only		10.6 10.8	7.3 7.5	11.611.9	$7.5\ 8.1$	The for
M_A^{QE}		$15.6 \ 9.5$	2.4 4.0	$21.5\underline{16.3}$	$3.2 \ 6.7$	
$M_A^{\hat{R}ES}$		$7.2 \ 4.5$	$2.1 \ 3.9$	3.3 2.0	$0.9\ 1.8$	
CCQE norm.	$(E_{\nu} < 1.5 \text{ GeV})$	$7.1 \ 4.9$	4.8 3.8	9.3 7 .9	$6.3 \ 6.2$	
${\rm CC1}\pi$ norm.	$(E_{\nu} < 2.5 \text{ GeV})$	4.9 5.1	2.4 3.5	$4.2 \ 5.2$	$2.0\ 3.5$	
•Photo Nuclear effect is added in SK MC. •SK momentum scale was only implemented as PDF error, but now it is also implemented for N_{exp} error. (It was already implemented CC col NC col NC col NC col NC oth •Enu 1pi shape error is removed from BANFF. •SK error is improved thanks to additional atm. nu. data set and						
W shap wice	mprovemen	22.05	2105	27.20	2529	4
SK detector of	f	$5.3 0.3 \\ 5.7 6.8 \\ 1.3 $	$5.1 \ 0.5$ 5.6 6.8	$3.7 \ 3.2$ $2.4 \ 3.0$	$3.0 \ 3.2$ $2 \ 4 \ 3 \ 0$	
FSI	11.	$3.7 \ 0.8$	$3.0 \ 0.8$	$2.4 \ 0.0$	$2.4 \ 3.0$	
PN		3.6 3.6	$3.0 \ 2.9$	0.8	0.8	
SK momentur	n scale	1.5 0.0	1.5 0.0	0.6 0.0	0.6 0.0	2
Total		24.5 21.0	11.113.0	28.1 24.2	8.8 9.9	

EXCELENCIA SEVERO OCHOA

Systematic errors for N_{exp}

	//			• 0
$\sin^2 2\theta$	$_{13} = 0$	$\sin^2 2\theta_1$	$_{3} = 0.1$ (unit)	. /
w/o ND280 fit	w/ ND280 fit	w/o ND280 fit	w/ ND280 fit	
$10.6\ 10.8$	$7.3 \ 7.5$	11.611.9	$7.5\ 8.1$	
15.6 9.5	2.4 4.0	$21.5\underline{16.3}$	3.2 6.7	
7.2 4.5	$2.1 \ 3.9$	3.3 2.0	0.9 1.8	
7.1 4.9	4.8 3.8	9.3 7.9	$6.3\ 6.2$	
4.9 5.1	$2.4 \ 3.5$	4.2 5.2	$2.0\ 3.5$	
2.7 7.9	1.9 7.3	0.6 2.3	$0.4\ 2.2$	
0.3 0.2	0.3 0.2	0.1 0.1	0.1 0.1	
4.7 3.3	4.8 3.3	6.0 5.7	6.0 5.7	
01 03	0103	01 00	0100	
۲Qun, the f	raction of v _e	signal even	ts (i.e.	
ts) increase	d. Therefor	e. the domin	ant error	
eased and t	he total erro	or increased	4	
actional er	ror. The abs	solute error I	S	
)				
5.7 6.8	5.6 6.8	2.4 3.0	2.4 3.0	
3.0 <u>2.9</u>	3.0 2.9	2.3 2.3	2.3 2.3	
3.6	3.5	0.8	0.8	
1.5 0.0	1.5 0.0	0.6 0.0	0.6 0.0	
24.5 21.0	11.113.0	28.1 24.2	8.8 9.9	
	$\frac{\sin^2 2\theta}{v/o \text{ ND280 fit}}$ 10.6 10.8 15.6 9.5 7.2 4.5 7.1 4.9 4.9 5.1 2.7 7.9 0.3 0.2 4.7 3.3 0 1 0 3 TQun, the fits) increase ased and t factional error $5.7 6.8$ 3.0 2.9 3.6 1.5 0.0 24.5 21.0	$\frac{\sin^2 2\theta_{13} = 0}{\text{v/o ND280 fit}} \text{w/ ND280 fit}} \\ 10.6 10.8 & 7.3 7.5 \\ 15.6 9.5 & 2.4 4.0 \\ 7.2 4.5 & 2.1 3.9 \\ 7.1 4.9 & 4.8 3.8 \\ 4.9 5.1 & 2.4 3.5 \\ 2.7 7.9 & 1.9 7.3 \\ 0.3 0.2 & 0.3 0.2 \\ 4.7 3.3 & 4.8 3.3 \\ 0.1 0.3 & 0.1 0.3 \\ 1 0$	sin ² $2\theta_{13} = 0$ sin ² $2\theta_{13}$ v/o ND280 fitw/ ND280 fitw/o ND280 fit10.6 10.87.37.511.6 11.915.6 9.52.4 4.021.5 16.37.2 4.52.13.93.37.2 4.52.13.93.34.9 5.12.43.54.22.7 7.91.97.30.60.3 0.20.30.20.10.1 0.30.1 0.30.1 0.0FQun, the fraction of v_e signal events) increased. Therefore, the domineased and the total error increased.ractional error. The absolute error i5.7 6.85.6 6.82.43.0 2.93.02.92.3 2.33.63.50.60.10.50.1 0.50.00.60.024.5 21.011.113.028.1 24.2	$\frac{\sin^2 2\theta_{13} = 0}{(1 + 1)^2 (1 + 1)^2} \frac{\sin^2 2\theta_{13} = 0.1}{(1 + 1)^2 (1 + 1)^2} \frac{\sin^2 2\theta_{13} = 0.1}{(1 + 1)^2 (1 + 1)^2 (1 + 1)^2} \frac{\sin^2 2\theta_{13} = 0.1}{(1 + 1)^2 (1 + 1)^2$

EXCELENCIA SEVERO OCHOA

New reconstruction validation <> | ->

Validation with stopping muons

SEVERO OCHOA

à.

EXCELENCIA Simulating neutrino flux ()

I. p interaction inside the carbon target with FLUKA2008.3d
2. Tracking through horn fields and decay volume using GEANT3 with GCALOR Calculate neutrino producing decays Estimate the flux at the near/far detector

Systematic error sources for neutrino

0

ND280

F.Sánchez (IFAE) MPIfK Seminar 16th July 2014

01

à

Detector systematics (1)

Number

1500

1000

500

0^L 0

Number events / 125 MeV/c 000 125 MeV/c 120 120 125 125 MeV/c

100

50

F.Sánchez (IFAE) MPIfK Seminar 16th July 2014

Post-fit v_{μ} ND280 (=)

- Use beam and cross section parameters obtained from the constrained fit to the ND280 v_{μ} (p_{μ} , $\cos\theta_{\mu}$) spectra to re-weight the MC.
- Improved agreement between the MC distributions, after post-fit re-weight, and the data.

EXCELENCIA SEVERO OCHOA

CC-I-pion post-fit

EXCELENCIA SEVERO OCHOA

CC-Other post-fit

EXCELENCIA SEVERO OCHOA

ND280 Fit Δx^2 $p, \cos \theta$ bins $\Delta X^2 = 2 \quad \sum \quad N_i^{\text{pred}}(\vec{b}, \vec{x}, \vec{d}) - N_i^{\text{data}} + N_i^{\text{data}} \ln[N_i^{\text{data}}/N_i^{\text{pred}}(\vec{b}, \vec{x}, \vec{d})]$

$$+\sum_{i}^{E_{v} bins} \sum_{j}^{E_{v} bins} (1-b_{i})(V_{b}^{-1})_{i,j}(1-b_{j}) + \sum_{i}^{xsec \ pars} \sum_{j}^{xsec \ pars} (x_{i}^{nom} - x_{i})(V_{x}^{-1})_{i,j}(x_{j}^{nom} - x_{j})$$

$$+\sum_{i}^{p,\cos\theta \text{ bins } p,\cos\theta \text{ bins}} \sum_{j}^{p,\cos\theta \text{ bins}} (d_i^{nom} - d_i) (V_d^{-1})_{i,j} (d_j^{nom} - d_j)$$

b = flux nuisance parameters x = cross section nuisance parameters d = detector/reconstruction model nuisance parameters $V_{b}, V_{x}, V_{d} =$ covariance matrices (pre-fit uncertainties)

$$N_i^{pred}(\vec{b}, \vec{x}, \vec{d}) = d_i \sum_{j=1}^{MC \ Events} b_j x_j^{norm} w_j^x(\vec{x})$$

Pre-calculated weight function for cross section parameters with nonlinear response

Results from Fit to ND280 Data <- | ->

Selection	Number of Events (Data)	Number of Events (MC before ND280 constraint)	Number of Events (MC after ND280 constraint)
CC 0π	16912	20016	16803
CCIπ	3936	5059	3970
CC Other	4062	4602	4006
CC Inclusive	24910	29678	24779

Test the data and constrained MC agreement with toy experiments:

Generated variations of models within prior uncertainties

Fit toy data in same manner as data

Record $\Delta \chi^2$ at minimum for each toy fit

 $\Delta \chi^2_{min}$ =580.7 for data has p-value of 0.57

Data and Constrained Model (CC0π) +

17

SEVERO

EXCELENCIA Data and Constrained Model (CC0m)

F.Sánchez (IFAE) MPIfK Seminar 16th July 2014

New SK TT⁰ analysis

Event Display: π⁰ Fit

EXCELENCIA SEVERO OCHOA

102

π⁰ Fit Performance

- Previous T2K v_e appearance cut: $m_{\pi 0} < 105 \text{ MeV/c}^2$
- The π⁰ mass tail is much smaller for fiTQun
 - Significant spike at zero mass in standard fitting algorithm (POLFit)
 - Lower plot: π⁰ rejection efficiency vs lower photon energy
 - fiTQun is more sensitive to lower energy photons

SK systematics and control

sample

SK detector error estimation

- To evaluated SK detector systematic uncertainties, employ several control samples:
 - Atmospheric Ve samples (errors on Ve's), "Hybrid-π0" samples (errors on π0's), Cosmic-ray muon samples, ...
- The errors evaluated with the control samples are combined with Toy MC method

Monday, July 15, 13

Basic distributions

13

Control Samples

- Ve candidate sample ("core" sample) + rejected samples (three "tail" samples)
 - Selections: ring counting, PID, and π 0 rejection
 - (cf. ve candidates: I -ring & e-like & none π0-like)

 Evaluate errors on 'Ve selection efficiencies' by fit the MC predictions to data by introducing the efficiency parameters ε, that describes event migration between 'core' and 'tail' samples

Number of events in p- θ bins and control samples.

Monday, July 15, 13

8

SK error w/ atm-V fit

- Errors on number of Ve candidates (n_{SK}) in 19 p-θ bins for 'Ve CC single-electron' events and 1 bin for 'Ve CC other' events
 - Correlated error (red point): difference from the 'best fit'
 - Uncorrelated error (blue bar): fit error (stat. error)

Monday, July 15, 13

9

"Hybrid-π0" samples

- "Hybrid-π0" samples
 - Electron track from atm-V data is combined with γ from MC following π0 decay kinematics

- Control samples:
 - Primary: electron from atm-ν is used for the higher energy "γ", and the lower energy γ from MC
 - Secondary: electron of atm-ve (and decay-e from cosmicray μ) is the lower energy "γ", and higher energy γ from MC

fiTQun TT⁰ Fitter

- Assumes two electron hypothesis rings produced at a common vertex
- I 2 parameters (single track fit had 7)
 - Vertex (X,Y,Z,T)
 - Directions $(\theta_1, \phi_1, \theta_2, \phi_2)$
 - Momenta (p1, p2)
 - Conversion lengths (c1, c2)
- Seeding the fit

• Use result of single-track electron fit

- Scan over various directions with a 50 MeV/c electron and evaluate the likelihood
 Verifinction Conversions
 - Choose the direction that yields the best likelihood
- First, fit while floating only p1 and p2
- Do full 12 parameter fit

Error matrices in p- θ

• Error matrices for inputs to oscillation analyses in p- θ bins

Square-root of diagonal elements of covariance matrix

Correlation matrix

Error matrices in rec E_{ν}

 Error matrices for inputs to oscillation analyses in EV bins

Square-root of diagonal elements of covariance matrix

20

Monday, July 15, 13

114

n

Cross-sections: FSI

Nucleus Final State Interactions (FSI)

- Interactions of final state hadrons in nucleus can cause migration from signal to background type events.
- Constrain with external pion-nucleus scattering data in a cascade model.
- Uncertainties assigned to span the pion-nucleus scattering data.

