I very much hope

Dark matter – what it is and how to determine its properties

Leszek Roszkowski
University of Sheffield (UK) & NCBJ (Poland)

Three approaches:

Direct, indirect, collider

Different motivations:

- Curiosity driven
- Data driven
- Theory driven

Can partly overlap, specific models can be the same, but very different "philosophy"

After WIMP discovery...

Inferring DM particle properties

The different approaches may possibly remain, or even intensify

Three ways to identify DM WIMP

Curiosity driven:

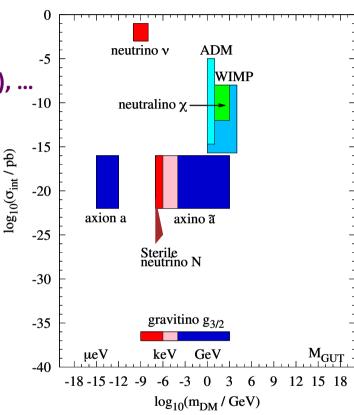
- Any interactions allowed by basic principles and data
- Not necessarily complete models
- Usually not addressing other issues
- Simplified models
- •

Data driven:

- Fermi LAT GC excess
- 3.5 keV X-ray line
- Positron fraction excess
- Self-interacting DM
- 130 GeV GR line
- DAMA/LIBRA annual modulation effect
- 0.5 MeV excess (Integral)
- •

Particle theory driven approach

WIMP is part of a more complete framework...


- Solves more than one (DM) problem
 - Gauge hierarchy problem
 - Unification of SM forces (+gravity?)
 - Unification of SM matter (quarks, leptons), ...
 - Strong CP problem
 - Naturalness of some sort?
 - •
- Provides promising framework for Big Bang physics
 - Cosmic inflation (+reheating)
 - Baryo/leptogenesis
 - DM (production and abundance)
 - ...
- Is compatible with data:
 - All limits on new physics (masses, precision measurements of radiative corrections to EW observables
 - Higgs boson

SM is not enough. Need "new physics".

Particle theory motivated approach

WIMP is part of a more complete framework...

- Solves more than one (DM) problem
 - Gauge hierarchy problem
 - Unification of SM forces (+gravity?)
 - Unification of SM matter (quarks, leptons), ...
 - Strong CP problem
 - Naturalness of some sort?
 - •
- Provides promising framework for Big Bang physics
 - Cosmic inflation (+reheating)
 - Baryo/lepto-genesis
 - DM (production and abundance)
 - ...
- Is compatible with data:
 - All limits on new physics (masses, precision measurements of radiative corrections to EW observables
 - Higgs boson

Need "new physics"

SUSY remains most promising framework.

Where is "new physics"?

➤ No convincing hint from the LHC

but...

Higgs boson:

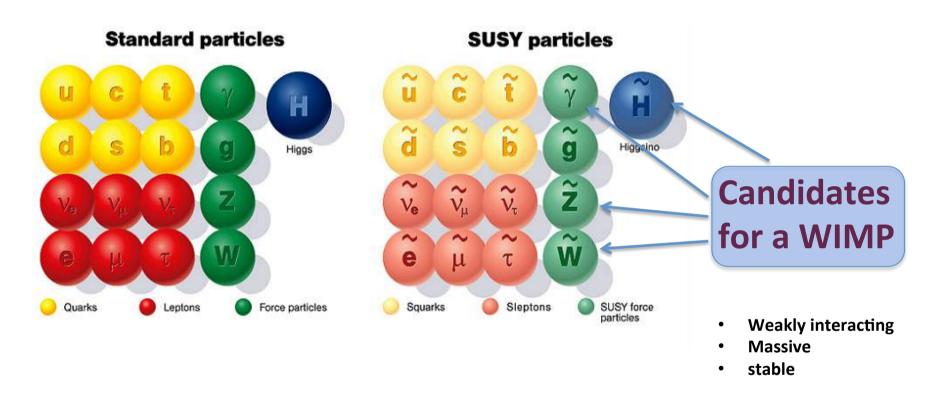
- > Fundamental scalar --> SUSY
- ➤ Light and SM-like --> SUSY

Low energy SUSY remains the front-runner for "new physics"

Plan:

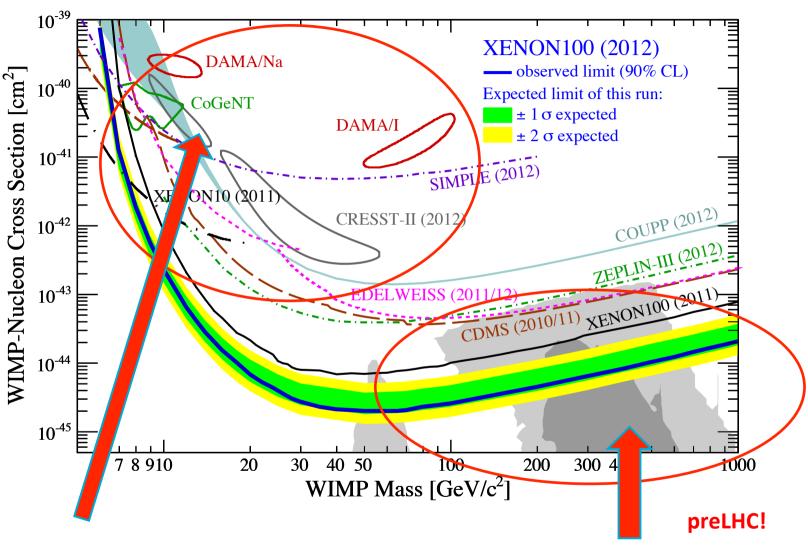
♦ Implications of Higgs boson m_h~125 GeV and direct limits on SUSY:

DM WIMP: ~1 TeV neutralino (higgsino)


- **♦ Prospects for detection in unified and general SUSY models**
 - **♦** complementarity of LHC and DM searches (direct and CTA)
- **♦ Once WIMP detected: challenge of WIMP reconstruction**
- **♦ Summary**

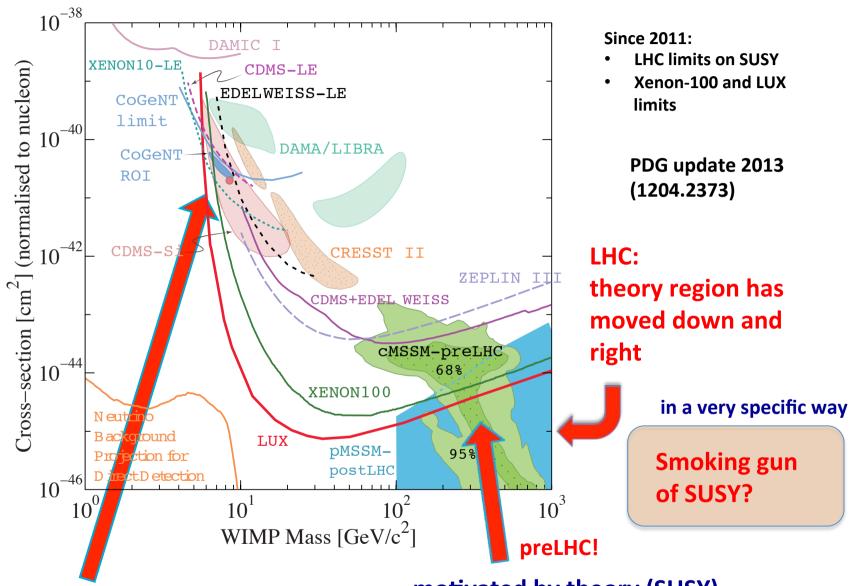
Based mainly on:

- K. Kowalska, L. Roszkowski, E. M. Sessolo, arXiv:1302.5956, JHEP 1306 (2013) 078
- L. Roszkowski, E. M. Sessolo, A. J. Williams, arXiv:1405.4289 and arXiv:1411.5214 (JHEP)
- K. Kowalska, L. Roszkowski, E. M. Sessolo, S. Trojanowski, 1402.1328 (JHEP)
- K. Kowalska, L. Roszkowski, E. M. Sessolo, A. J. Williams, <u>1503.08219</u> (JHEP)
- L. Roszkowski, E. M. Sessolo, S. Trojanowski, A. J. Williams, <u>1603.06519</u> (JCAP)


SUSY and dark matter

With R-parity to keep it stable

WIMP: lightest supersymmetric particle


Direct Detection AD 2011 - Before LHC

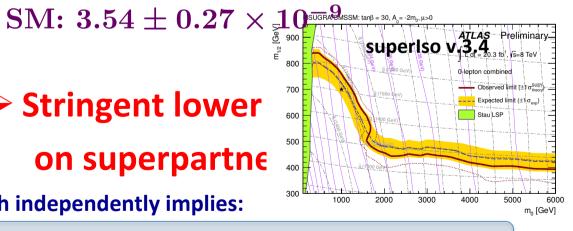
Confusion region

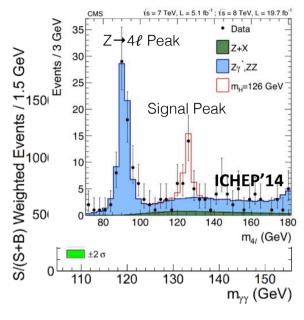
motivated by theory (SUSY)

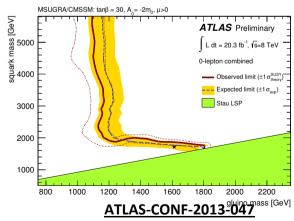
Direct Detection Nov. 2013

Confusion region gone

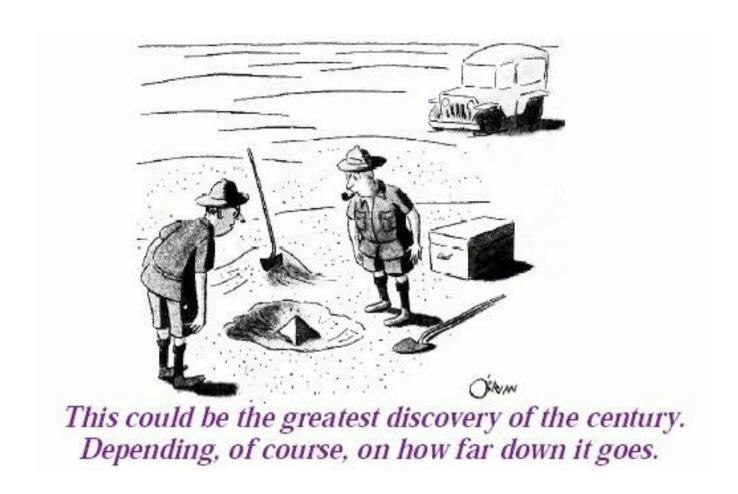
motivated by theory (SUSY)

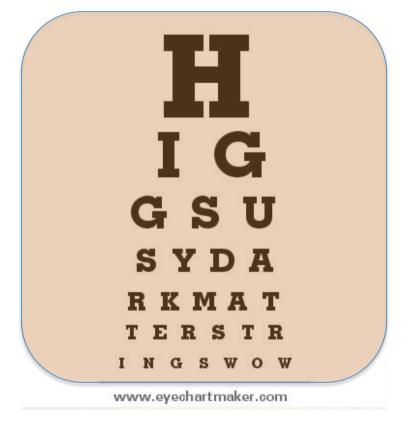

Main news from the LHC...


- > SM-like Higgs particle at ~125 GeV
- **→** No (convincing) deviations from the SM

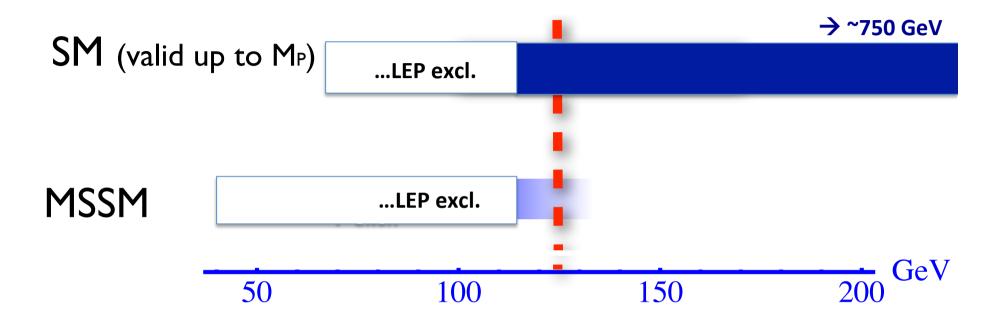

$${
m BR}(\overline{B}_s o\mu^+\mu^-)=2.8^{+0.7}_{-0.6} imes10^{-9}$$
 Combined LHCb+CMS

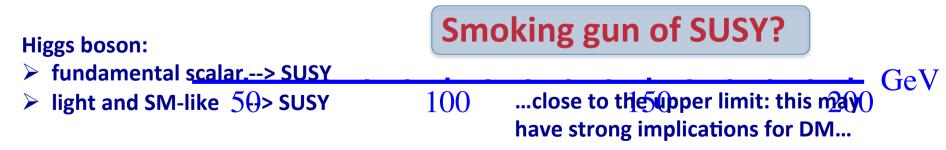
> Stringent lower on superpartne




SUSY masses pushed to 1 TeV+ scale...

Impact of Higgs boson discovery...


Higgs boson discovery: Final pages of SM book? or ION Talk First pages of "new physics" book? Vision T



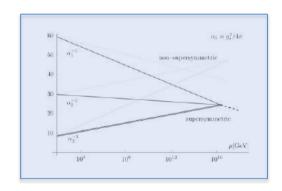
seph Lykken Standard Model is all that is there. Higgs -> SUSY -> dark matter->...

The 125 GeV Higgs boson and SUSY

Higgs boson mass of 125 GeV came out to lie in a narrow window allowed by simplest SUSY models (114.4 to ~132 GeV)

Why SUSY...

IN FAVOUR:


- Gauge coupling unification
- ➢ Higgs boson: m_h=125 GeV (SUSY: <~ 130 GeV)</p>

- **>** ...
- Dark matter (neutralino, gravitino, axino)
- > Inflation, baryo/leptogenesis
- Superpartners at ~ TeV scale (consistent with LHC limits, flavor and EW observables)

AGAINST (???):

➤ M_{SUSY} few TeV -> too much fine tuning? (small hierarchy problem), MPI Heidelberg, 7 Nov. 2016

Unnatural?

But what about naturalness?!

What is natural?

Natural is what is realized in Nature.

LR, Moriond 2015 arXiv:1507.07446 c.f. Frank Wilczek Stockholm June 2015

How to compare theory with experiment

- ➤ Rigid step-function application of limits/allowed ranges (e.g. DM relic abundance, etc)

 Mahmoudi et al, Hewett et al. ...
- > Frequentist (chi^2-based) MasterCode, Fittino, Raby, ...
- **Bayesian**BayesFITS, Allanach, SuperBayes, Balazs,...

Frequentist: "probability is the number of times the event occurs over the total number of trials, in the limit of an infinite series of equiprobable repetitions"

Bayesian: "probability is a measure of the degree of belief about a proposition"

Both F and B are based on the likelihood function.

The Likelihood function

Central object: Likelihood function

Positive measurements:

Take a single observable $\xi(m)$ that has been measured

• c – central value, σ – standard exptal error

(e.g., M_W)

define

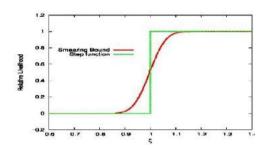
$$\chi^2 = \frac{[\xi(m) - c]^2}{\sigma^2}$$

assuming Gaussian distribution $(d \rightarrow (c, \sigma))$:

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

when include theoretical error estimate τ (assumed Gaussian):

$$\sigma \to s = \sqrt{\sigma^2 + \tau^2}$$


TH error "smears out" the EXPTAL range

for several uncorrelated observables (assumed Gaussian):

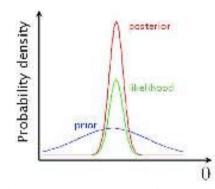
$$\mathcal{L} = \exp\left[-\sum_i rac{\chi_i^2}{2}
ight]$$

• Limits:

- Smear out bounds.
- Add theory error.

• LHC direct limits:

 Need careful treatment. Typically use Poisson.

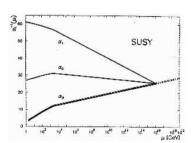

Bayes theorem: | Posterior =

$$\frac{Posterior}{Evidence} = \frac{\frac{Prior \times Likelihood}{Evidence}}{Evidence}$$

- Prior: what we know about hypothesis BEFORE seeing the data.
- Likelihood: the probability of obtaining data if hypothesis is true.
- **Posterior**: the probability about hypothesis AFTER seeing the data.
- Evidence: normalization constant, crucial for model comparison.

If hypothesis is a function of parameters, then posterior becomes posterior probability function (pdf).

Posterior → <u>credible regions</u> at chosen CL



SUSY: Constrained or Not?

Constrained:

Low-energy SUSY models with grand-unification relations among gauge couplings and (soft) SUSY mass

parameters

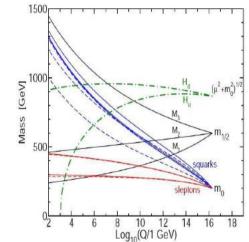
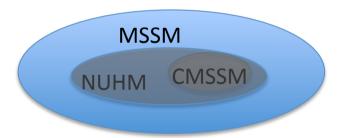


figure from hep-ph/9709356

Virtues:

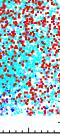
- Well-motivated
- Predictive (few parameters)
- Realistic

Many models:


- CMSSM (Constrained MSSM): 4+1 parameters
- NUHM (Non-Universal Higgs Model): 6+1
- CNMSSM (Constrained Next-to-MSSM) 5+1
- CNMSSM-NUHM: 7+1
- L. Roszkowski, MPI Heidelberg, 7 Nov. 2016

Phenomenological:

Supersymmetrized SM...

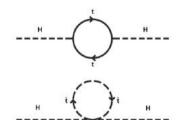

Features:

- Many free parameters
- Broader than constrained SUSY

Many models:

- general MSSM over 120 params
- MSSM + simplifying assumptions
- pMSSM: MSSM with 19 params
- p9MSSM, p12MSSM, pnMSSM, ...

 $_{h} \simeq 125.3$


The 125 GeV Higgs Boson and SUSY

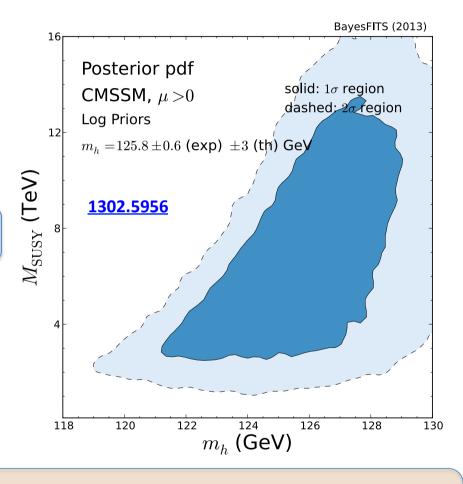
A curse...

In SUSY Higgs mass is a calculated quantity

> 1 loop correction

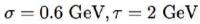
$$\Delta m_h^2 = \frac{3m_t^4}{4\pi^2 v^2} \left[\ln \left(\frac{M_{\rm SUSY}^2}{m_t^2} \right) + \frac{X_t^2}{M_{\rm SUSY}^2} \left(1 - \frac{X_t^2}{12M_{\rm SUSY}^2} \right) \right]$$

$$X_t = A_t - \mu \cot \beta$$

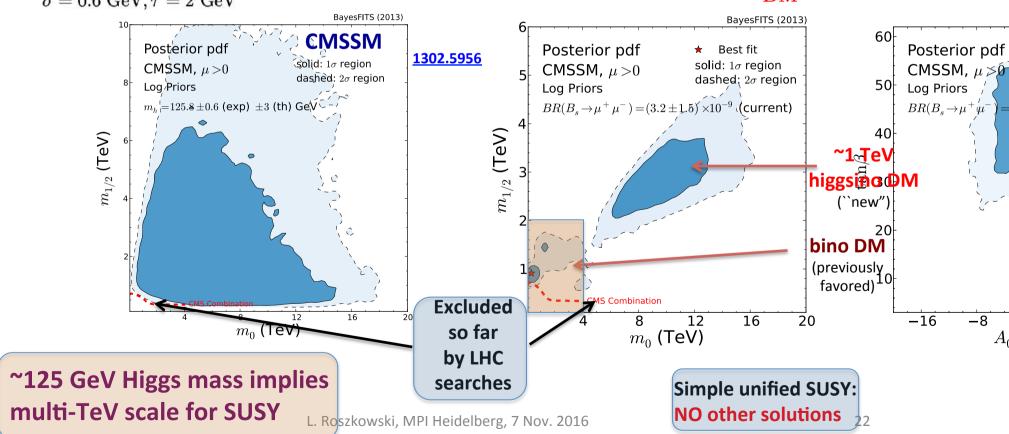

$$M_{\rm SUSY} \equiv \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$$

$$\mathcal{L} \sim e^{rac{(m_h-125.8\,\mathrm{GeV})^2}{\sigma^2+ au^2}}$$

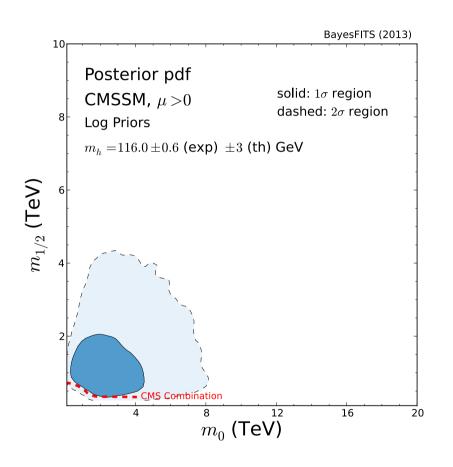
$$\sigma=0.6~{\rm GeV}, \tau=2~{\rm GeV}$$

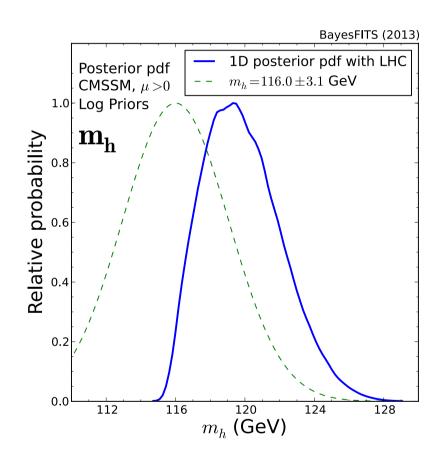

~125 GeV Higgs and unified SUSY

 $m_{h_2} \simeq 125.3$ Take only $m_h m_h m_{h_2} \simeq 126$ BeV and lower limits from direct SUSY searches


$$\Delta m_h^2 = \frac{3m_t^4}{4\pi^2 v^2} \left[\ln \left(\frac{M_{\text{SUSY}}^2}{m_t^2} \right) + \frac{X_t^2}{M_{\text{SUSY}}^2} \left(1 - \frac{X_t^2}{12M_{\text{SUSY}}^2} \right) \right]$$

$$\mathcal{L} \sim e^{\frac{(m_h - 125.8\,\mathrm{GeV})^2}{\sigma^2 + au^2}}$$

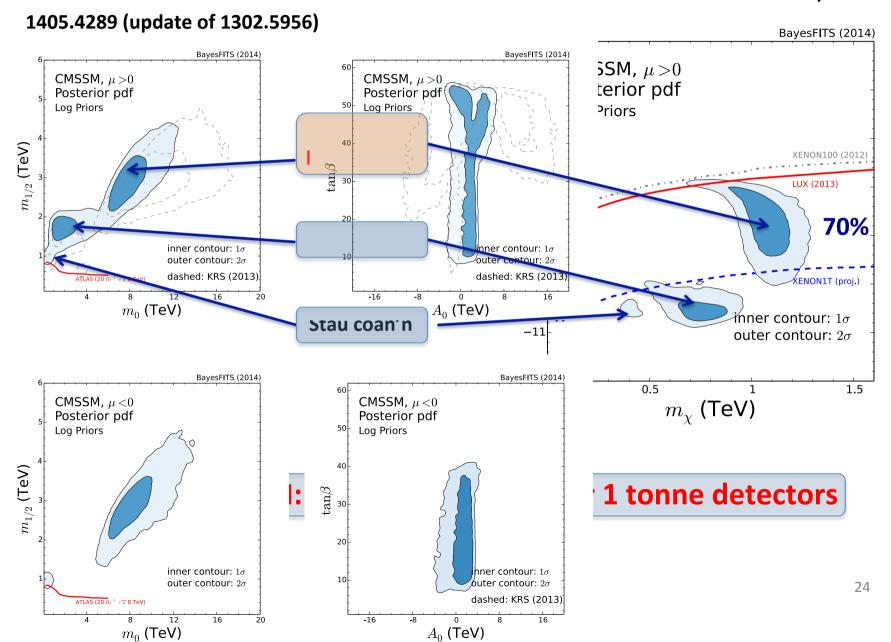

$$M_{\rm SUSY} \equiv \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$$
 $X_t = A_t - \mu \cot \beta$



lacktriangle Add relic abundance $\Omega_{
m DM} {
m h}^2 \simeq 0.12$

If m_h were, say, 116 GeV...

...would have created significant tension with LHC bounds on SUSY


CMSSM and direct DM searches

 $\mu > 0$

-25

-28

 $\log_{10} \sigma v$ (cm³ /s)

CMSSM: numerical scans

 Perform random scan over 4 CMSSM +4 SM (nuisance) parameters simultaneously Very wide ranges:

1302.5956

$$egin{aligned} 100 \, ext{GeV} & \leq m_0 \leq 20 \, ext{TeV} \ 100 \, ext{GeV} & \leq m_{1/2} \leq 10 \, ext{TeV} \ -20 \, ext{TeV} & \leq A_0 \leq 20 \, ext{TeV} \ 3 \leq aneta \leq 62 \end{aligned}$$

- Use Nested Sampling algorithm to evaluate posterior
- Use 4 000 live points

Nuisance	Description	Central value \pm std. dev.	Prior Distribution
M_t	Top quark pole mass	$173.5 \pm 1.0 \mathrm{GeV}$	Gaussian
$m_b(m_b)_{ m SM}^{\overline{MS}}$	Bottom quark mass	$4.18 \pm 0.03 \mathrm{GeV}$	Gaussian
$\alpha_s(M_Z)^{\overline{MS}}$	Strong coupling	0.1184 ± 0.0007	Gaussian
$1/\alpha_{\mathrm{em}}(M_Z)^{\overline{MS}}$	Inverse of em coupling	127.916 ± 0.015	Gaussian

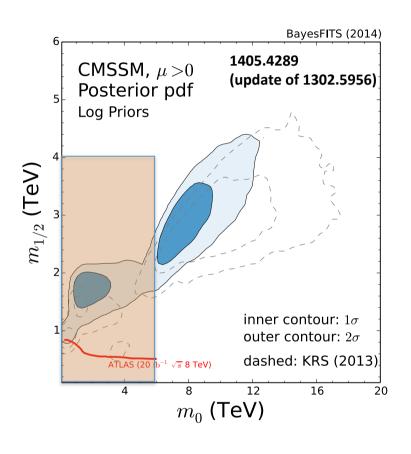
Use Bayesian approach (posterior)

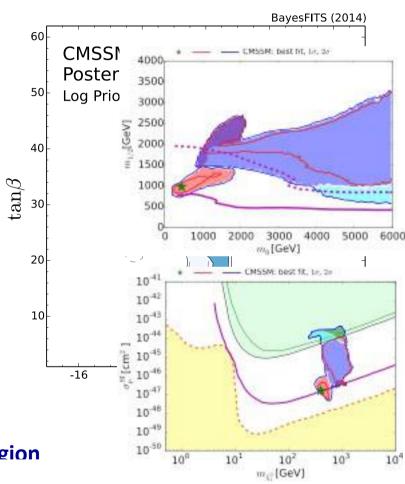
SUSY confronting data

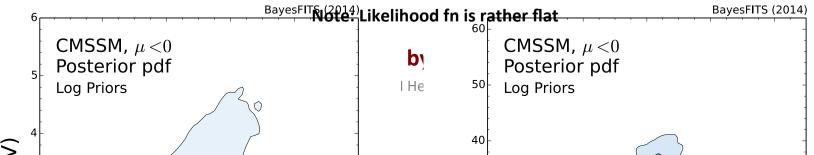
The experimental measurements that we apply to constrain the CMSSM's parameters. Masses are in GeV.

		Constraint	Mean	Exp. Error	Th. Error
? -		Higgs sector	See text.	See text.	See text.
		Direct SUSY searches	See text.	See text.	See text.
		$\sigma_p^{ m SI}$	See text.	See text.	See text.
	\longrightarrow	$\Omega_\chi h^2$	0.1199	0.0027	10%
		$\sin^2 heta_{ ext{eff}}$	0.23155	0.00015	0.00015
	\rightarrow	$\delta \left(g-2\right)_{\mu} \times 10^{10}$	28.7	8.0	1.0
		$BR\left(\overline{B} \to X_s \gamma\right) \times 10^4$	3.43	0.22	0.21
		$BR(B_u \to \tau \nu) \times 10^4$	0.72	0.27	0.38
		ΔM_{B_s}	17.719 ps^{-1}	0.043 ps^{-1}	2.400 ps^{-1}
		M_W	$80.385\mathrm{GeV}$	$0.015\mathrm{GeV}$	$0.015\mathrm{GeV}$
		BR $(B_s \to \mu^+ \mu^-) \times 10^9$	2.9	0.7	10%

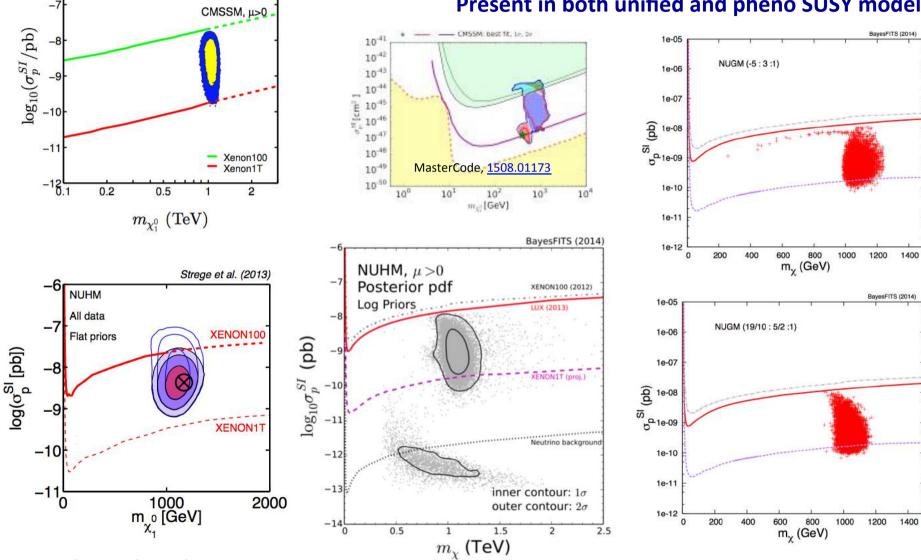
10 dof


most important (by far)


SM value: $\simeq 3.5 \times 10^{-9}$


Bayesian vs chi-square analysis

(updated to include 3loop Higgs mass corrs)



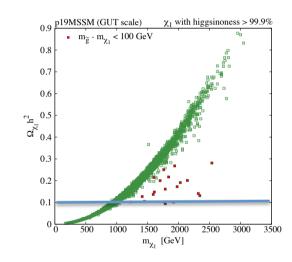
Reasonably good agreement in overlapping region

~1 TeV higgsino DM is robust

Present in both unified and pheno SUSY models

Watch prior dependence and chi2 vs Bayesian

Cabrera, Casas and Ruiz de Austri (2012)


Log priors

L. Roszkowski, MPI Heidelberg, 7 Nov. 2016

Why ~1 TeV higgsino DM is so interesting

Condition: heavy enough gauginos

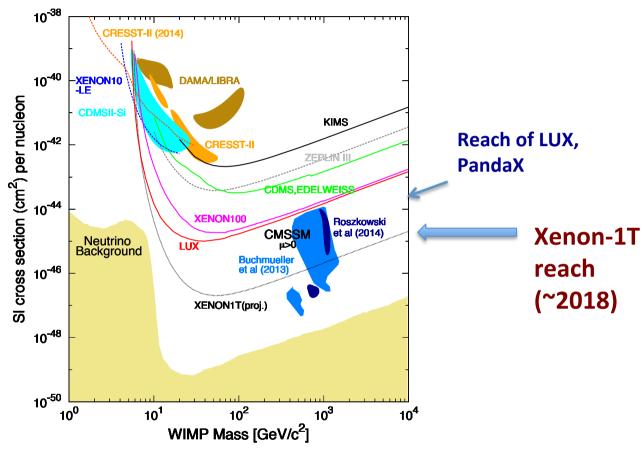
When $m_{\tilde{B}} \gtrsim 1\,{
m TeV}$: easiest to achieve $\Omega_\chi h^2 \simeq 0.1$ when $m_{\tilde{H}} \simeq 1\,{
m TeV}$

- **♦** smoking gun of SUSY!?

No need to employ special mechanisms (A-funnel or coannihilation) to obtain correct relic density

Similarly with wino but mass less determined due to Sommerfeld effect

Fine print: How robust is m_{WIMP} ~1 TeV?


m_{WIMP} ~1 TeV if one makes usual assumptions:

➤ WIMP makes up <u>all</u> DM

- Could be a x:(1-x) with e.g. axions. Then m_{WIMP} ~ x²⋅ 1 TeV
- > All DM comes from thermal freeze-out
 - Additional (non-thermal)
 production modes (e.g., from
 decaying inflaton)
 --> m_{WIMP} < 1 TeV
- **▶** Reheating after inflation T_R >> T_{freeze-out}
 - --> allows m_{WIMP} > 1 TeV

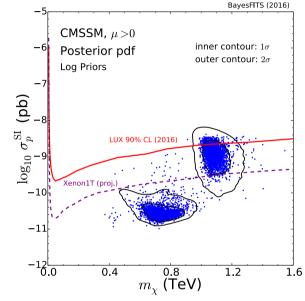
DM direct detection (2014)

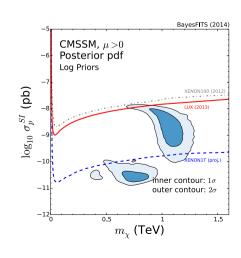
Recent Phys. Rept. (1407.0017) H. Baer, K.-Y. Choi, J.E Kim, LR

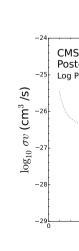
~1 TeV higgsino DM: Excellent prospects!

DM direct detection (2016)

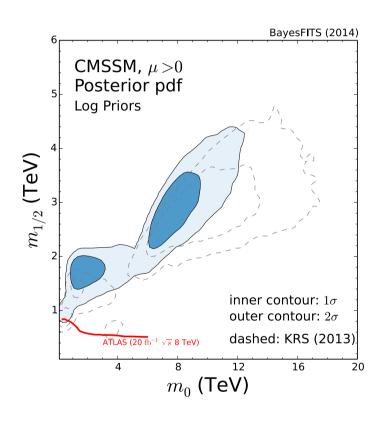
Final limit from LUX, first one from PandaX

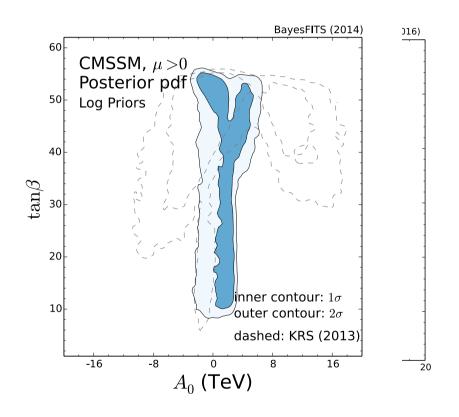


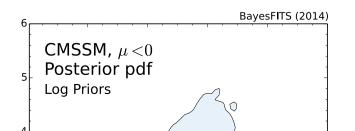

LUX, PandaX 90%CL limits: Impact on ~1 TeV WIMP in CMSSM not as big as claimed.

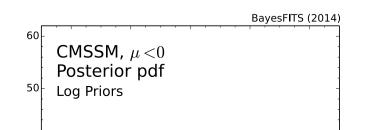

L. Roszkowski, MPI Heidelberg, 7 Nov. 2016

our update, to appear in a DM review in ROPP

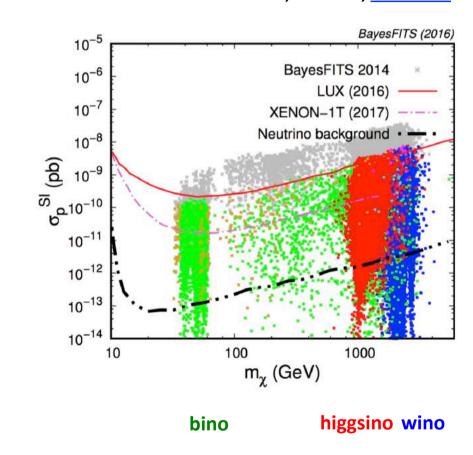

For comparison, w/o final LUX limit






Update - CMSSM After ICHEP'16

71 H


Direct Search for DM in general SUSY

- **pMSSM** (=**p19**MSSM)
- bino (M1) vs wino (M2)
 masses: free parameters

Parameter	Range	
Higgsino/Higgs mass parameter	$-10 \le \mu \le 10$	
Bino soft mass	$-10 \le M_1 \le 10$	
Wino soft mass	$0.1 \le M_2 \le 10$	
Gluino soft mass	$-10 \le M_3^* \le 10$	
Top trilinear soft coupl.	$-10 \le A_t \le 10$	
Bottom trilinear soft coupl.	$-10 \le A_b \le 10$	
τ trilinear soft coupl.	$-10 \le A_{\tau} \le 10$	
Pseudoscalar physical mass	$0.1 \le m_A \le 10$	
1st/2nd gen. soft L-slepton mass	$0.1 \le m_{\tilde{L}_1} \le 10$	
1st/2nd gen. soft R-slepton mass	$0.1 \le m_{\tilde{e}_R}^{-1} \le 10$	
3rd gen. soft L-slepton mass	$0.1 \le m_{\tilde{L}_3} \le 10$	
3rd gen. soft R-slepton mass	$0.1 \le m_{\tilde{\tau}_R}^{-3} \le 10$	
1st/2nd gen. soft L-squark mass	$0.75 \le m_{\tilde{O}_1} \le 10$	
1st/2nd gen. soft R-squark up mass	$0.75 \le m_{\tilde{u}_R}^{21} \le 10$	
1st/2nd gen. soft R-squark down mass	$0.75 \le m_{\tilde{d}_R} \le 10$	
3rd gen. soft L-squark mass	$0.1 \le m_{\tilde{Q}_3}^{a_R} \le 10$	
3rd gen. soft R-squark up mass	$0.1 \le m_{\tilde{t}_R} \le 10$	
3rd gen. soft R-squark down mass	$0.1 \le m_{\tilde{b}_R} \le 10$	
ratio of Higgs doublet VEVs	$1 \le \tan \beta \le 62$	

- Very wide scan
- All relevant constraints
- Sommerfeld effect included

Update of Roszkowski, Sesssolo, Williams, 1411.5214

General MSSM: No DM mass restrictions ... but different WIMP compositions

Strategies for WIMP Detection

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
 - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only ν 's escape

• $[antimatter\ (e^+, ar{p}, ar{D})]$ from WIMP pair-annihilation in the MW halo

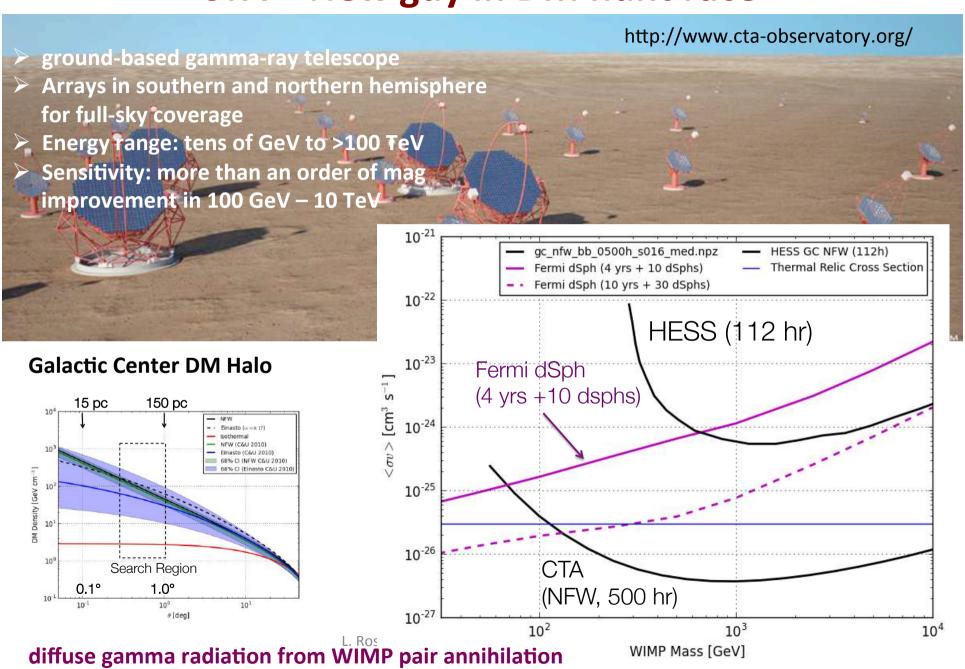
from within a few kpc

gamma rays from WIMP pair-annihilation in the Galactic center

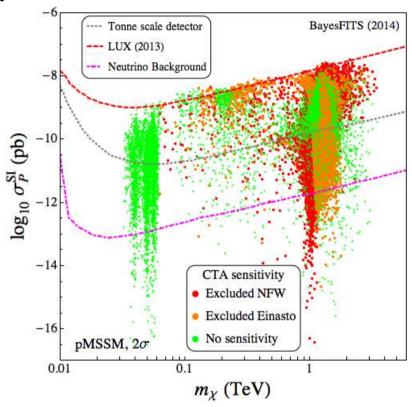
depending on DM distribution in the GC


• other ideas: traces of WIMP annihilation in dwarf galaxies,

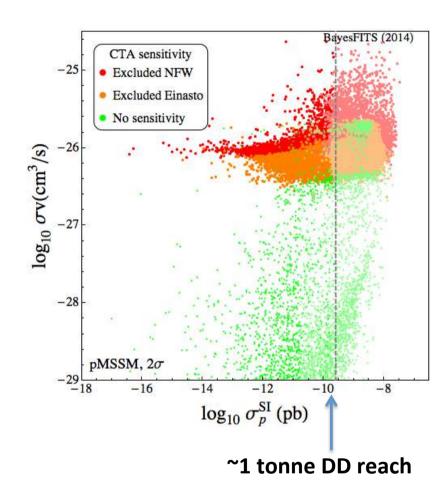
indirect detection (now)


in rich clusters, etc

more speculative

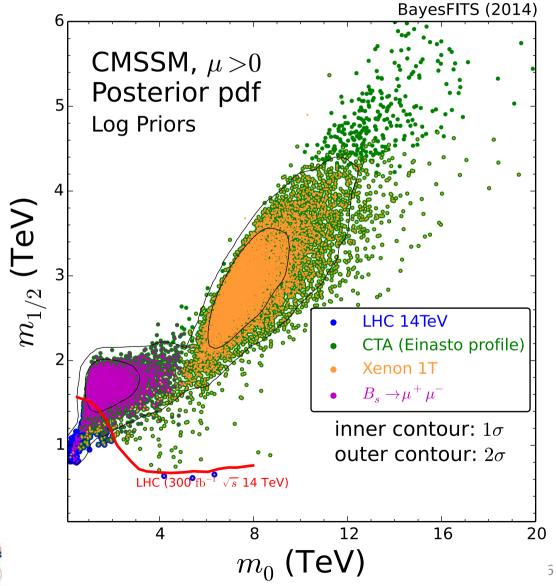


CTA – New guy in DM hunt race



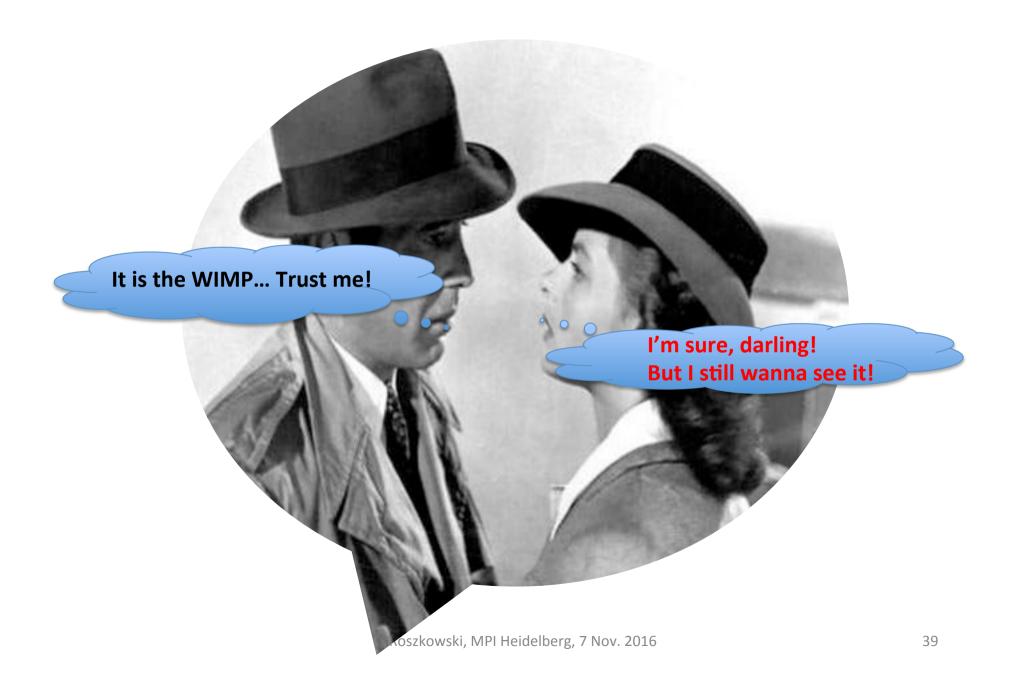
General SUSY: CTA vs direct detection

p19MSSM


Roszkowski, Sesssolo, Williams, <u>1411.5214</u>

General pMSSM:

- CTA to probe WIMP regions below reach of ~1 tonne detectors (even below neutrino floor!)
- Good complementarity of DD and CTA
 L. Roszkowski, MPI Heidelberg, 7 Nov. 2016


CMSSM: Complementarity of DD, CTA and LHC

..all parameter space covered at 2 sigma

CMSSM can be fully explored by experiment

Assuming one year (day?) a CDM signal is actually detected...

What can one learn from WIMP signal?

Attempt to reconstruct:

- WIMP mass m_x
- WIMP DD cross-section sigma_p
- WIMP annihilation c.s. sigma*v
- Dominant annihilation channel(s)

- Confirm (thermal?) WIMP hypothesis?
- Compatible with some theory frameworks...

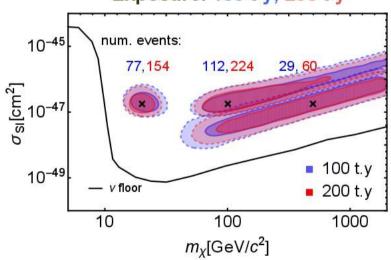
How well?

Likely to be a challenging task!

Will possibly need signal in both DD and ID

...and eventually colliders

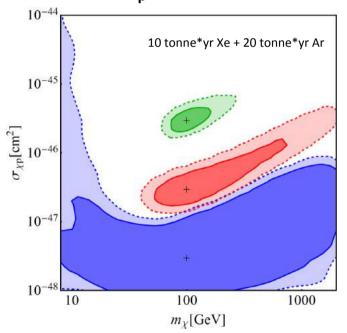
If signal seen in direct detection only


Reconstruction of m_x and sigma_pSI:

- Low mass (tens of GeV): good
- <~100 GeV: still reasonable
- >~200 GeV: poor

...(?) Drees and Shan, 0803.4477 Peter, 0910.4765, Pato, et al, 1006.1322 Bernal, et al., 0804.1976 (DD + ID + ILC)

E.g., $m_x = 20, 100, 500 \text{ GeV}$


Exposure: 100 t y; 200 t y

Update of Newstead et al., PRD 8, 076011 (2013)

Schumann @COSMO-15

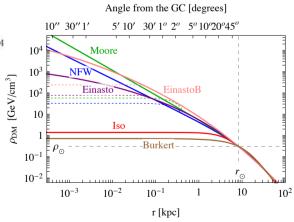
When sigma_n^{SI} low: prospects poorer

Newstead, 1306.3244

How about diffuse gamma radiation

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi) = \sum_{i} rac{\sigma_{i}v}{8\pi m_{\chi}^{2}} rac{dN_{\gamma}^{i}}{dE_{\gamma}} \int_{\mathrm{l.o.s.}} dl
ho_{\chi}^{2}(r(l,\psi))$$

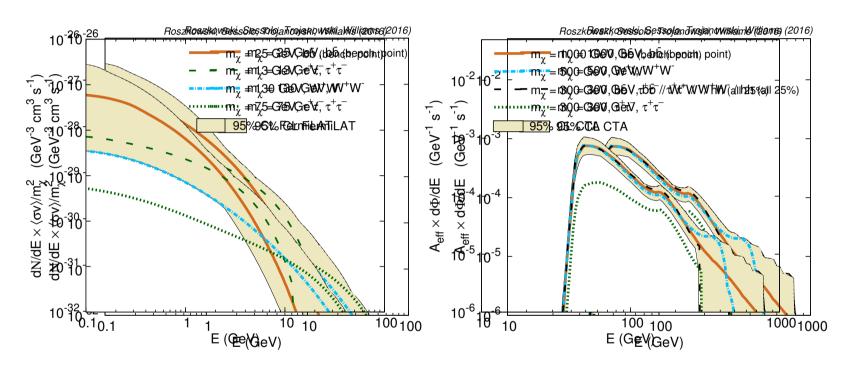
15 dSphs. 6 Years 15 dSphs, 15 Years 10^{-24} 45 dSphs, 15 Years Pass 8 Combined dSphs (15 dSphs, 6 Years) H.E.S.S. GC Halo Abazajian et al. 2014 (1σ) Gordon & Macias 2013 (2σ) 10^{-25} Daylan et al. 2014 (2σ) $\begin{array}{c} \left(\text{cm}_{3}^{25}\right) \\ \left(\text{cm}_{3}^{2}\right) \\ \left(\text{cm}_{3}^{25}\right) \end{array}$ Calore et al. 2015 (2σ) Thermal Relic Cross Section (Steigman+ 2012 CTA GC Halo 500 h 10^{-27} Fermi 15 years, 3x dwarfs Preliminary $b\bar{b}$ 10^{2} 10^{3} 10^{1} 10^{4} Morselli, DSU-15 DM Mass (GeV/c^2)


- Mid range: Fermi LAT and CTA

Low WIMP mass: Fermi LAT

High mass: CTA

Fermi LAT CTA - upcoming



WIMP reconstruction with diffuse gamma radiation

Cirelli et al., 2010

•••

- Differential flux shapes different when vary m_x but...
- Similar for different final states (esp. qqbar, VV, hh, but not for ee, mu mu,tau tau)

Consider direct detection and/or gamma radiation

LR + Sessolo + Trojanowski + Williams, 1603.06519

Assume signal detected in DD and/or DGR

Bernal, et al., 0804.1976 (DD + ID + ILC)

DGR: Diffuse Gamma Radiation

Assume WIMP benchmark points: mass, sigma_pSI, sigma*v, annihilation BR

	BP1	BP2	BP3	BP4(a, b, c, d)	BP5
m_χ	$25\mathrm{GeV}$	$100\mathrm{GeV}$	$250\mathrm{GeV}$	$1000\mathrm{GeV}$	$1000\mathrm{GeV}$
σv	$8 \times 10^{-27} \text{ cm}^3/\text{s}$	$2 \times 10^{-26} \text{ cm}^3/\text{s}$	$4 \times 10^{-26} \text{ cm}^3/\text{s}$	$2 \times 10^{-25} \text{ cm}^3/\text{s}$	$3 \times 10^{-26} \text{ cm}^3/\text{s}$
$\sigma_p^{ m SI}$	$2 \times 10^{-46} \text{ cm}^2$	$3 \times 10^{-46} \text{ cm}^2$	$5 \times 10^{-46} \text{ cm}^2$	$2 \times 10^{-45} \text{ cm}^2$	$2 \times 10^{-45} \text{ cm}^2$
Final state				(a) $b\bar{b}$ (b) $W^{+}W^{-}$	
(hadronic scans)	$bar{b}$	$bar{b}$	$bar{b}$	(c) $\tau^{+}\tau^{-}$	W^+W^-
Final state					
(leptonic scan)				(d) $\mu^{+}\mu^{-}$	

Symbol	Parameter	Range	Prior distribution
m_{χ}	WIMP mass	10 - 10000 GeV	log
σv	Annihilation cross section	$1 \times 10^{-30} - 1 \times 10^{-21} \text{ cm}^3/\text{s}$	log
$\sigma_p^{\rm SI}$	Spin-independent cross section	$1 \times 10^{-12} - 1 \times 10^{-6} \text{ pb}$	log
	Fraction of $b\bar{b}$ final state		
$f_{bar{b}}$	(benchmarks a,b,c,d)	0 - 1	See text
	Fraction of WW final state		
f_{WW}	(benchmarks a,b,c,d)	0 - 1	See text
	Fraction of hh final state		
f_{hh}	(benchmarks a,b,c,d)	0 - 1	See text
$f_{ au au}$	Fraction of $\tau\tau$ final state	0 - 1	See text
	Fraction of leptonic final state		
$f_{ m lep}$	(benchmarks e,f)	0 - 1	See text
	Fraction of hadronic final state		
$f_{ m had}$	(benchmarks e,f)	0 - 1	See text
v_0	Circular velocity	$220 \pm 20 \text{ km/s}$	Gaussian
$v_{ m esc}$	Escape velocity	$544 \pm 40 \text{ km/s}$	Gaussian
ρ_0	Local DM density	$0.3 \pm 0.1 \mathrm{GeV/cm^3}$	Gaussian
$\gamma_{ m NFW}$	NFW slope parameter	1.20 ± 0.15	Gaussian

- Statistical approach
- Construct likelihood function for DD, Fermi LAT dSphs, CTA
- Vary four WIMP properties + several astrophysical parameters
- Produce mock data
- Compare with benchmark point

$$\rho(r) = \frac{\rho_0 \left(1 + \frac{R_{\odot}}{r_s}\right)^{3 - \gamma_{\text{NFW}}}}{\left(\frac{r}{R_{\odot}}\right)^{\gamma_{\text{NFW}}} \left(1 + \frac{r}{r_s}\right)^{3 - \gamma_{\text{NFW}}}}$$

Diffuse Gamma Radiation: Fermi LAT, CTA

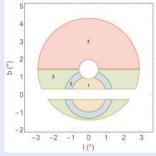
Fermi LAT

Assume 15 yrs and 45 dSphs

$$\mathcal{L}_{\text{dSphs}} = \prod_{j=1}^{N_{\text{dSphs}}} \left\{ \int \frac{dJ_j}{\log(10)\bar{J}_j \sqrt{2\pi}\sigma_j} \exp\left[-\frac{(\log_{10} J_j - \log_{10} \bar{J}_j)^2}{2\sigma_j^2} \right] \times \left(\prod_{i=1}^{N_{\text{Fermi}}} \frac{1}{\sqrt{2\pi}\bar{\sigma}_{ij}} \exp\left[-\frac{(\Phi_{ij} - \overline{\Phi}_{ij})^2}{2\bar{\sigma}_{ij}^2} \right] \right) \right\}$$

 $N_{\text{Fermi}} = 17 \text{ energy bins}$

CTA


Assume 500 hrs

 $N_{\rm CTA} = 30$ energy bins. logarithmically spaced

$$\mathcal{L}_{\text{CTA}} = \prod_{i=1}^{N_{\text{CTA}}} \left\{ \int dR_i^{\text{CR}} e^{-\frac{\left(1 - R_i^{\text{CR}}\right)^2}{2\sigma_{\text{CR}}^2}} \int dR_i^{\text{GDE}} e^{-\frac{\left(1 - R_i^{\text{GDE}}\right)^2}{2\sigma_{\text{GDE}}^2}} \left[\prod_{j=1}^3 \frac{\mu_{ij} \left(R_i^{\text{CR}}, R_i^{\text{GDE}}\right)^{n_{ij}}}{n_{ij}!} e^{-\mu_{ij} \left(R_i^{\text{CR}}, R_i^{\text{GDE}}\right)} \right] \right\}$$

mu_ij – expected signal + bgnd n_ij – observed signal +bgnd

$$\mu_{ij} \left(R_i^{\text{CR}}, R_i^{\text{GDE}} \right) = \mu_{ij}^{\text{DM}} + R_i^{\text{CR}} \mu_{ij}^{\text{CR}} + R_i^{\text{GDE}} \mu_{ij}^{\text{GDE}}$$

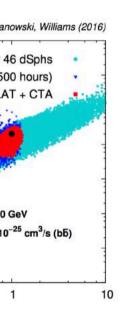
Use modified Ring Method: ON, OFF 1, OFF 2

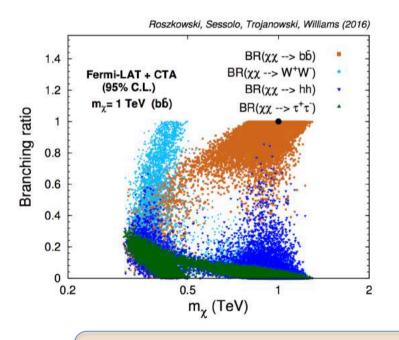
DM: prompt and secondary (ICS from electrons on CMB, starlight and IR)
(Cirelli, et al., Silk et al.)

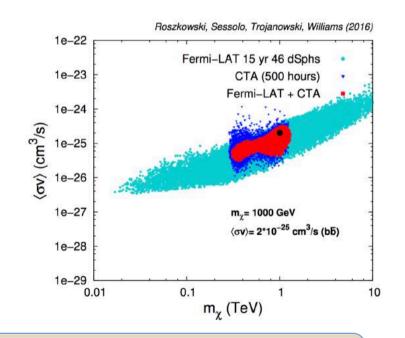
R - background normalization

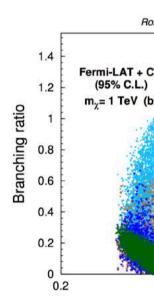
CR: isotropic cosmic ray (from CTA)

GDE: galactic diffuse emission


GDE: Extrapolated from Fermi LAT beyond 500 GeV (Silverwood, et al., Silk et al.)

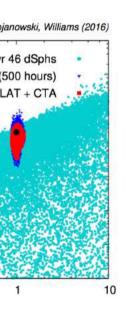

WIMP reconstruction with Fermi LAT and CTA

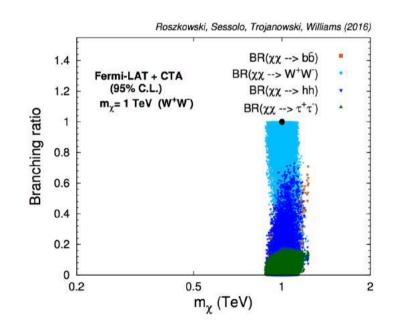

Example: BP4a (``generic")

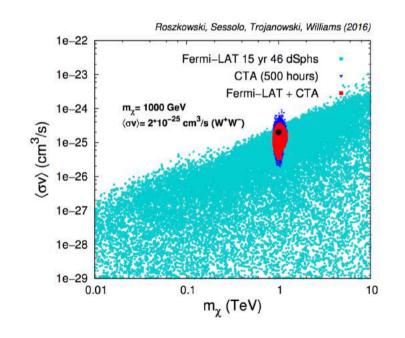

"True" WIMP: $m_x = 1$ TeV, BR(b-bbar)=1, sigma*v= $2x10^{-25}$ cm³s⁻¹

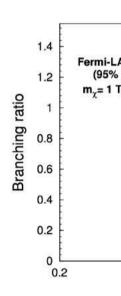
But other values of m_x and final states can give very similar spectra!

--> Heavy WIMP: Mass reconstruction doable but crude (CTA)
Fermi LAT helps narrow down sigma*v

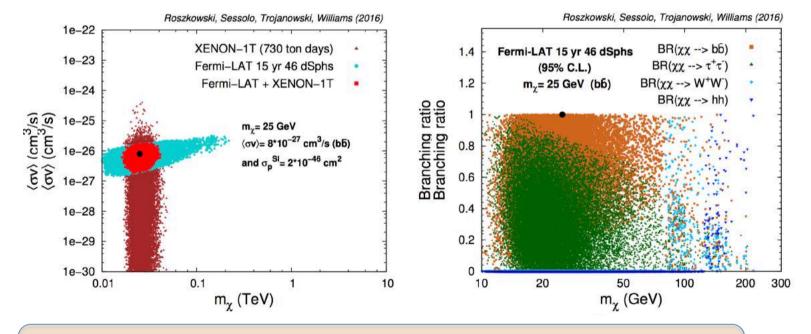

WIMP reconstruction with Fermi LAT and CTA


Example: BP4b (close to SUSY ~1 TeV higgsino case)


"True" WIMP: $m_x = 1 \text{ TeV}$, BR(WW) = 1, $sigma*v = 2x10^{-25} \text{ cm}^3 \text{ s}^{-1}$


Additional spectral feature: spike at E_{gamma}=~ m_X

(caused by W → W+gamma)



WW final state: both m_x and final states can be reconstructed rather well!

Even more optimistic results for tau-tau and leptonic final states (mu-mu and e-e)

Interplay of direct detection and gamma radiation

Example BP1: $m_X = 25 \text{ GeV}$ $sigma_p = 9.0 \times 10^{-47} \text{cm}^2$, $sigma*v = 8.0 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$ BR(b bbar)=1 Of help only for low m_x

Direct detection signal can essential in pinpointing WIMP mass but only at low m_{χ} .

This will in turn help reconstructing final states.

To take home:

- WIMP dark matter is still awaiting a discovery
- > SUSY Higgs of 125 GeV + DM abundance + unification:
 - ➤ M_{susv} ~ few TeV
 - ➤ DM WIMP is preferably ~1 TeV higgsino
- ➤ DM ~1 TeV higgsino case will be sensitive to only DM searches (direct + CTA)
 Far beyond the reach of LHC LUX and PandaX started probing it
- > WIMP reconstruction: likely to be CHALLENGING
 ...unless WIMP << 100 GeV (DD)
 - High mass (~1 TeV): CTA signal essential
 - ➤ Mid-range (~100 few hundred GeV): most difficult

The real message:

It is not SUSY that we should worry about.

It's whether we can probe favored SUSY ranges with available experimental tools.

Dark matter searches may come to the rescue.