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Introduction: flavour symmetries
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The flavour puzzle in the SM 

• 3 families ↔ U(3)5 symmetry of the gauge lagrangian 

• Charged fermions: m1 « m2 « m3 
Quarks: VCKM ~ 1  

• Neutrinos: lighter, milder hierarchy,  
UPMNS ≠ 1 
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Smallness of neutrino masses and high scales
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Λ     –

E

mν   – 

SM + eff. 
interactions

QED + QCD + 
eff. interactions

?

mu,d,e = �u,d,e v m⌫ = h v ⇥ v

⇤

⇤ ⇠ (0.5 · 1015 GeV)h
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Le↵
E⌧⇤ = Lren
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hij

2⇤
(lih)(ljh) + h.c.

This is the framework we consider 
The results can be extended to other set-ups



• Gf flavour group acting on “i”, L invariant 

•  

Flavour symmetries
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Lf = �ij i jh
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ij = �ijv m1

ij = �ijk
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The content of this talk
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Q1: can a flavour symmetry acting on the low-scale 
effective lagrangian (light neutrino Majorana masses) 
provide an approximate description of lepton flavour in 
the symmetric limit (neglecting SB effects)?

A1: yes, but only if neutrinos are inverted hierarchical or 
unconstrained (anarchical). If NH is confirmed, the 
symmetric limit cannot provide an understanding of 
lepton mixing (LO role of symmetry breaking effects)
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Q2: the Weinberg operator originates from high-scale 
physics. Is studying the flavour symmetry at low-scale 
equivalent to studying it at high-scale?

A2: not necessarily. Necessary and sufficient conditions 
in the case of see-saw I
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Q3: can a flavour symmetry constraining a see-saw 
lagrangian provide an approximate description of lepton 
flavour in the symmetric limit?

A3: yes, and neutrinos can be normally hierarchical if the 
high-scale and low-scale actions of the flavour symmetry 
are not equivalent
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Definition of the problem, and Q1
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Flavour group

• Gf flavour group 

• any: discrete/continuous, abelian/non-abelian, global/gauge, etc 

• includes all “hidden” factors 

• unitary representation, commuting with Poincaré and GSM

Flavour representation

g 2 Gf :

(
li ! Ul(g)ij lj

eci ! Uec(g)ij e
c
j
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Invariant lagrangian, <φ> = 0 (low-scale)
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L(0)
low-scale = �E

ije
c
i ljh

⇤ +
cij
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! m0E
ij eciej +

m0⌫
ij

2
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Symmetric limit

mE = m0
E +m1

E

m⌫ = m0
⌫ +m1

⌫

invariant under Gf not invariant under Gf 
generated by φ

Uec(g)
Tm0

E Ul(g) = m0
E

Ul(g)
T m0

⌫ Ul(g) = m0
⌫

(from the invariance 
of the lagrangian)

Symmetry breaking
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The symmetric limit provides an approximate description of lepton flavour

• mE ≠ 0 and mν ≠ 0 mE = m0
E +m1

E

m⌫ = m0
⌫ +m1

⌫

approximate 
description of lepton 

observables

moderate correction 
necessary for an 

accurate description
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The LO pattern of lepton flavour is determined by symmetry breaking

• mE = 0 or mν = 0 mE = m0
E +m1

E

m⌫ = m0
⌫ +m1

⌫

mE = 0 or mν = 0  
in the symmetric limit

fully determine  
the PMNS matrix

e.g. G = A4

m
0
⌫ =

0

@
a 0 0
0 0 a

0 a 0

1

A m
0
E =

0

@
0 0 0
0 0 0
0 0 0

1

A

m
1
⌫ : H1 invariant m

1
E : H2 invariant
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The symmetric limit provides an approximate description of lepton flavour

• mE ≠ 0 and mν ≠ 0 mE = m0
E +m1

E

m⌫ = m0
⌫ +m1

⌫

approximate 
description of lepton 

observables

Charged lepton masses

(A 0 0)

Hierarchy 
needed

(A B 0)

(A B C)

0

@
X X 0
X X X
X X X

1

A or

0

@
X X X
X X X
X X X

1

A

PMNS matrix

(A 0 0)

(A B 0)

(A B C)

Charged lepton masses
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Neutrino masses

NH/IH (a 0 0) (0 a a)

NH

or

IH

(a a a) (a b 0)

(a b b) (a b c) (X ≠ 0 generic)



Gf Ul Ue leading, in the symmetric limit, to lepton 
masses and mixings in the above form

• A complete and concise classification is possible, as the predictions in the 
symmetric limit only depend on the structure of the decomposition of the 
representations in irreducible components (irreps) and in particular on their 

• Type (real, pseudoreal, complex) 

• Dimension 

• Equivalence 

• Notation 

• “n”:	 	 dimension n complex or pseudoreal irrep 

• “n”:	 	 dimension n real irrep 

• “n, n’, n’’”:	dimension n inequivalent irreps
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Gf Ul Ue leading, in the symmetric limit, to lepton 
masses and mixings in the above form

• Only 6 cases 

• Only d = 1 (abelian) irreps 

• No pseudoreal irreps (d ≥ 2) 

• Neutrinos are either 
unconstrained (anarchical) or 
inverted hierarchical 

• If NH confirmed, lepton 
flavour at low-scale can only 
be accounted for by SB

Ul, Uec irreps masses ⌫ hierarchy PMNS zeros

1 1 1

1 r + 1

(A00)

(abc)
NH or IH none

1 1 1
1 r + 1,1

(A00)

(0aa)
IH none (13)

1 1 1

1 1 r 6= 1

(AB0)

(abc)
NH or IH none

1 1 1
1 1 r 6= 1

(AB0)

(0aa)
IH 13

1 1 1

1 1 1

(ABC)

(abc)
NH or IH none

1 1 1
1 1 1

(ABC)

(0aa)
IH 13, 23, 33
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1+1+1

• “1” = real one-dimensional:		 f → ± f 

• 1+1+1: 	 	 	 	 	 	 	 	 U(g)ij = ± 1ij  

• any mν is trivially invariant 

• neutrino masses and mixing completely unconstrained 

• (anarchy)
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SU(5) and SO(10)

• SU(5): assume U5 = Ul and U10 = Uec, require (VCKM)0 = 1 or V12 

• only unconstrained (anarchical) neutrinos are allowed 

• SO(10): assume Ul = Uec = U16  

• no solutions

_
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Proof - in 2 steps: masses first, then mixings
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Step 1: precise formulation of the problem

• Given each of the previous 3x6=18 mass patterns, find all Gf, U s.t. 

• ∀ invariant mE, mν the mass eigenvalues are in that form 

• ∃ invariant mE, mν with mass eigenvalues in that form and generic
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(A 0 0)

(A B 0)

(A B C)

Charged lepton massesNeutrino masses

NH/IH (a 0 0) (0 a a)

NH

or

IH

(a a a) (a b 0)

(a b b) (a b c)



Step 1: results		 charged lepton entries of the same order

lepton masses decompositions of Ul and Uec

(00A) (aaa) none

(00A) (aab)
1 1 1
1 r + 1,1

1 1 1
1 r + 1,1

1 2
1 r 6= 2

(00A) (aa0)
1 10 1
1 r + 1,10

10 1 1

1
0

r + 1,1
1 1 1
1 r + 1,1

1 1 1
1 r + 1

1 2
1 r 6= 2

(00A) (00a)
1 1 10

1 r + 1,10
1 10 1
1 r + 1,10

1 1 1
1 r + 1

1 1 1
1 r + 1,1

1 2
1 r + 2

(00A) (cba)
1 10 100

1 r + 10, 100
1 1 10

1 r + 1, 10
10 1 1
10 r + 1

1 1 1
1 r + 1

(00A) (0ba)
1 10 1
1 r + 10,1

1 10 1
1 r + 1, 10

1 1 1
1 r + 1

1 1 1
1 r + 1,1
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Step 1: results		 hierarchies allowed

lepton masses decompositions of Ul and Uec

(0BA) (aaa) none

(0BA) (aab)
1 1 1
1 1 r 6= 1

1 1 1
1 1 r 6= 1

(0BA) (aa0)
1 1 10

1 1 r 6= 10
1 10 1
1 10 r 6= 1

1 1 1
1 1 r 6= 1

1 1 1
1 1 r 6= 1

(0BA) (00a)
1 1 10

1 1 r 6= 10
1 10 1
1 10 r 6= 1

1 1 1
1 1 r 6= 1

1 1 1
1 1 r 6= 1

(0BA) (cba)
1 10 100

1 10 r 6= 100
1 1 10

1 1 r 6= 10
10 1 1
10 1 r 6= 1

1 1 1
1 1 r 6= 1

(0BA) (0ba)
1 10 1
1 10 r 6= 1

1 1 10

1 1 r 6= 10
1 1 1
1 1 r 6= 1

1 1 1
1 1 r 6= 1

(CBA) (aaa) none

(CBA) (aab)
1 1 1
1 1 1

(CBA) (aa0)
1 10 1
1 10 1

1 1 1
1 1 1

(CBA) (00a)
1 1 10

1 1 10
1 1 1
1 1 1

(CBA) (cba)
1 10 100

1 10 100
1 1 10

1 1 10
1 1 1
1 1 1

(CBA) (0ba)
1 10 1
1 10 1

1 1 1
1 1 1
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Comments

• 3 degenerate neutrinos in the symmetric limit cannot be obtained  

• no d = 3 irreps 

• d = 2 irreps can only appear if me = mμ = 0 in the symmetric limit

�25



Sketch of the proof of step 1

• subspaces in flavour space associated to (zero or non-zero) degenerate 
mE masses are invariant under both Ul and Uec  

• the Ul and Uec sub-representations corresponding to non-zero degenerate 
charged lepton masses are conjugated to each other and irreducible.  

• the Ul and Uec sub-representations corresponding to zero masses, nor any 
of their irreducible components, are not conjugated to each other 

• each set of degenerate non-zero neutrino masses corresponds to either a 
real irrep or to a pair of conjugated complex irreps 

• none of the remaining irreps (correspond to vanishing neutrino masses) 
should be real, nor any of them should be conjugated to any other
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Step 2: select the cases also leading, in the symmetric limit, 
to a PMNS matrix close to what observed

• Definition of “close to what observed”: PMNS matrix 

• |U13| ≲ 0.16 

• |U21|, |U31| can be as small as 0.25 

• all other entries larger than 0.45 

• 	 	 	 	 	 	 	 	 with small correction or small accident

|U | =

0

@
0.798 ! 0.843 0.517 ! 0.584 0.137 ! 0.158
0.232 ! 0.520 0.445 ! 0.697 0.617 ! 0.789
0.249 ! 0.529 0.462 ! 0.708 0.597 ! 0.773

1

A

0

@
X X 0
X X X
X X X

1

A or

0

@
X X X
X X X
X X X

1

A
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Master formula for the PMNS matrix

•   

• V commutes with Ul (makes mE diagonal, mν diagonal or Dirac blocks) 

• D maximal rotation, if Ul contains conjugated complex irreps (Dirac blocks) 

• P permutations possibly needed to bring mass eigenvalues in standard 
ordering 

• H rotations up to which U is defined in the symmetric limit 

• (…) Hν = H*ν(…) for generic neutrino mass pattern (…)  

• (…) HE = HE (…) for generic charged lepton mass pattern (…) 

• No need to write down any mass matrix, texture explicitly
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U = HEPEV D
�1

P
�1
⌫ H

�1
⌫



Example

• Ul = 1 + 1 + 1*		 Uec = 1* + r ⊉ 1, 1* 

• Charged lepton masses: (A 0 0) 

• Neutrino masses: (0 a a) 

• In 

• V = V23 

• D = D12 

• P not needed 

• HE = (HE)12		 Hν = (Rν)12 (equivalent to phase redefinition) 

• No zeros or an (approximate) zero in 13 if (HE)12 is (approximate) identity

U = HEPEV D
�1

P
�1
⌫ H

�1
⌫
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Q2: is studying the flavour symmetry at low-scale 
equivalent to studying it at high-scale?

[to appear]
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Origin of lepton masses (high-scale)

from

Flavour representation

high scale

8
><

>:

li ! Ul(g)ij lj

eci ! Uec(g)ij e
c
j

⌫ci ! U⌫c(g)ij ⌫
c
j

Equivalent, at least in the symmetric limit?

�
low scale version
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Llow-scale = �E
ije

c
i ljh

⇤ +
cij
2⇤

liljhh

Lhigh-scale = �E
ije

c
i ljh

⇤ + �N
ij⌫

c
i ljh+

Mij

2
⌫ci ⌫

c
j



Equivalence of high and low-scale representations 
(in the symmetric limit)

• By definition, when for each invariant mν there exists invariant mN 
and M such that mν = - mNT M-1 mN (converse is always true) 

• Given a low-scale representation does an equivalent high-scale 
version always exists? 

• Is the low-scale version of a representation always equivalent to the 
high-scale version? 

• Necessary and sufficient conditions for LS to be equivalent to HS: 

1. Uνc vectorlike  

2. The vectorlike part of Ul is contained in Uνc

YES

NO

�32

real, or pairs of complex conjugated, 
or pairs of equivalent pseudoreal  



1. Uνc is not vectorlike 

• Uνc not vectorlike ⇔ M forced to be singular in the symmetric limit:  
the see-saw formula does not apply 

• Example: 	 	 	 low-scale	 	 	 	 	 	 high-scale 

Ul   = 1+1+1	 	 	 mei = (A 0 0)	 	 	 	 	 	 mei = (A 0 0)	 	  

Uec = 1+1+1	 	 	 mνi = (a 0 0)	 	 	 	 	 	 mνi = (a 0 0) 

Uνc = 1+ real	 	 	  	 	 	 	 	 	 	 	  

det = 0single RH neutrino 
dominance

_

_
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1

A U =

0

@
X X ?
X X X
X X X

1

A

mE =
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@
X X

1

A

m⌫ =

0

@
X

1

A

mN =

0

@
X X

1

A mE =

0

@
X X

1

A

M =

0

@
X X
X X

1

A m⌫ =

0

@ X X
X X

1
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2. Uνc is vectorlike but the vectorlike part of Ul is 
not contained in Uνc 

• Example: 	 	 	 low-scale	 	 	 	 	 	 high-scale 

Ul   = 1+1+1	 	 	 mei = (A 0 0)	 	 	 	 	 	 mei = (A 0 0)	 	  

Uec = 1+1+1	 	 	 mνi = (a b 0)	 	 	 	 	 	 mνi = (a 0 0) 

Uνc = 1+1+1	 	 	
_

V =

0

@
X X ?
X X X
X X X

1

A

det = 0

V =

0

@
X ? ?
? X X
0 X X

1

A or

0

@
? ? X
X X ?
X X 0

1

A
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1

A

m⌫ =
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@ X X
X X
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@X
X X

1
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0

@
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1
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M =

0

@
X

X
X

1

A m⌫ =

0

@ X X
X X
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Q3: can a flavour symmetry acting on a see-saw 
lagrangian provide an approximate description of lepton 
flavour in the symmetric limit?
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• If Uνc vectorlike and the vectorlike part of Ul is 
contained in Uνc: yes, at the same conditions as in the 
low-scale analysis 

• If instead the low- and high-scale analyses are not 
equivalent, predictive (non-unconstrained) cases 
corresponding to NH can be found 

• The complete list of solutions can be again found 
based only on the structure of the irrep decompositions
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Conclusions

• The complete set of lepton flavour predictions of any flavour group and representation 
in the symmetric limit has been found, both at low scale (Weinberg operator) and high 
scale (see-saw). The predictions only depend on the type, dimension, and equivalence of 
the irrep decompositions. 

• In the low-scale case: the symmetric limit is close to what observed only if neutrinos are 
unconstrained (anarchical) or inverted hierarchical.  

• If the present hint for normal hierarchy was confirmed, we would conclude that symmetry 
breaking plays a leading order role in constraining lepton flavour observables at low scale. 

• In the high-scale case: the results do not change, except when the low- and high-scale 
analyses are not equivalent. The conditions for equivalence have been found. 

• The complete set of additional predictions in the symmetric limit that can obtained at high-
scale has been found. A normal hierarchy for the neutrinos can be obtained.  

• If the present hint for normal hierarchy was confirmed, a predictive symmetric limit 
could be close to what observed only because the low- and high-scale actions of 
the flavour symmetry are not equivalent. Otherwise, symmetry breaking effects 
necessary play a leading order role in determining lepton flavour observables. 

�37


