How to tell if a particle is its own antiparticle

Outline

- * Lepton Number Violation: Why look for it?
- * Neutrinoless Double Beta Decay $(A,Z) \rightarrow (A,Z+2) + 2e^-$:
 - Standard Interpretation
 - Non-Standard Interpretations
- * $\Delta L = 2$ versus $\Delta L = 4$
- Self-conjugacy of dark matter

The Standard Model

Single energy scale! Interactions fixed by mathematical structure (gauge symmetry) and symmetry breaking (Higgs): Confirmed!

Contains 19 free parameters, leaves unexplained many observational facts,...

Neutrinos

INSPIRE: find title x and date y

Neutrinos do have mass!

$$P_{lpha
ightarrow eta, lpha
eq eta} = \sin^2(2 heta) \sin^2 \Bigg(1.27 rac{\Delta m^2 L}{E} rac{[\mathrm{eV}^2]\,[\mathrm{km}]}{[\mathrm{GeV}]} \Bigg).$$

Note: only mass (squared) differences can be measured!

- neutrino mass much much smaller than all other masses
- lepton mixing completely different from quark mixing (CKM)

Puzzles

neutrino mass much much smaller than all other masses

 lepton mixing completely different from quark mixing (CKM)

- * Most straightforward possibility: add N_R and obtain Dirac mass: $\overline{L} \Phi N_R \rightarrow m_D \overline{\nu_L} N_R$
- * <u>Gauge invariance</u> allows Majorana mass $M_R N_R N_R^c$
- * in total Majorana mass for SM neutrinos: $m_v v_L^c v_L$ with $m_v = m_D^2 / M_R = m_D \varepsilon$ with $\varepsilon = m_D / M_R = m_{SM} / M_R$

 m_{ν} inversely proportional to scale of origin!

- * Most straightforward possibility: add N_R and obtain Dirac mass: $\overline{L} \Phi N_R \rightarrow m_D \overline{\nu_L} N_R$
- Gauge invariance allows Majorana mass
 M_R N_R N_R^c
- * in total Majorana mass for SM neutrinos: $m_{\nu} \nu_L^c \nu_L$ with $m_{\nu} = m_D^2 / M_R = m_D \varepsilon$ with $\varepsilon = m_D / M_R = m_{SM} / M_R$

- mass term links LH and RH projection
- here RH projection is LH^c
- thus: $nu = LH + RH = LH + LH^c$
- and thus: $nu^c = LH^c + LH = nu$
- is its own antiparticle!

- * Most straightforward possibility: add N_R and obtain Dirac mass: $\overline{L} \Phi N_R \rightarrow m_D \overline{\nu_L} N_R$
- * <u>Gauge invariance</u> allows Majorana mass $M_R N_R N_R^c$
- * in total Majorana mass for SM neutrinos: $m_v v_L^c v_L$ with $m_v = m_D^2 / M_R = m_D \varepsilon$ with $\varepsilon = m_D / M_R = m_{SM} / M_R$

 m_{ν} inversely proportional to scale of origin!

- * Most straightforward possibility New particle $N_R \sim (1,0)$ d obtain Dirac mass
- * <u>Gauge invariance</u> allows Majorana mass $M_R N_R N_R^c$
- * in total Majorana mass for SM neutrinos: $m_{\nu} \nu_L^c \nu_L$ with $m_{\nu} = m_D^2 / M_R = m_D \varepsilon$ with $\varepsilon = m_D / M_R = m_{SM} / M_R$

 m_{ν} inversely proportional to scale of origin!

- * Most straightforward possibility New particle $N_R \sim (1,0)$ d obtain Dirac mass
- * <u>Gauge invariance</u> allows Majorana magnetic ma
- * in total Majorana mass for SM neutrinos: $m_{\nu} v_L^c v_L$ with $m_{\nu} = m_D^2 / M_R = m_D \varepsilon$ with $\varepsilon = m_D / M_R = m_{SM} / M_R$

 m_{ν} inversely proportional to scale of origin!

- Most straightforward possibility New particle $N_R \sim (1,0)$ d obtain Dirac mass
- Gauge invariance allows Majorana ma ** New energy scale beyond SM
- in total Majorana mass for SM neutrinos: New concept: lepton number violation M_{SM}/M_R

violates lepton number by two units: $\Delta L=2$

 $m_{\rm v} v_L^c v_L$ with m

 m_{ν} inversely proportional to scale of origin!

- * N_R could be TeV: colliders!
- * N_R could be keV: dark matter!
- * N_R could decay in early Universe: baryon asymmetry!
- * *N_R* couples to Higgs: vacuum stability, hierarchy problem!
- * N_R couples to lepton doublets: lepton flavor violation!

==> Use this to distinguish the many (many!) mechanisms for neutrino mass

GK, 2022

Why look for Lepton Number Violation?

* L and B accidentally conserved in SM

*
$$\mathcal{L} = \mathcal{L}_{SM} + 1/\Lambda \mathcal{L}_5 + 1/\Lambda^2 \mathcal{L}_6 + ...,$$

with $\mathcal{L}_5 = L^c \Phi \Phi L \rightarrow m_v v_L^c v_L$

- * Baryogenesis: *B* is violated
- * *B*, *L* often connected in BSM, GUTs
- * GUTs have seesaw and Majorana neutrinos
- * (*B* and *L* non-perturbatively violated by 3 units in SM...)

Why look for Lepton Number Violation?

- * L and B accidentally conserved in SM
- * $\mathcal{L} = \mathcal{L}_{SM} + 1/\Lambda \mathcal{L}_5 + 1/\Lambda^2 \mathcal{L}_6 + ...,$

^{WI}Lepton Number as important as Baryon Number

- * Baryogenesis: *B* is violated
- * *B*, *L* often connected in BSM, GUTs
- GUTs have seesaw and Majorana neutrinos
- * (*B* and *L* non-perturbatively violated by 3 units in SM...)

Lepton Number Conservation?

- * accidental lepton number conservation difficult in BSM...
- * need a symmetry to forbid $M_R N_R N_R$
 - can apply flavor symmetries with $(N_{R1}, N_{R2}, N_{R3}) \sim \underline{3}$, in groups that have no singlet in $\underline{3x3}$ (e.g. $\Delta(27)$)
 - still need to explain smallness, e.g. wave-function overlap in ED, 2HDM with one vev of order eV,...
- * global $U(1)_L$ or $U(1)_{B-L} \rightarrow$ expected to be broken by quantum gravity effects
- * gauge $U(1)_L$ or $U(1)_{B-L}$ without breaking? \rightarrow long range force, needs ultra-tiny charge

- * *V-A* makes things difficult: chirality vs. helicity
- * $v_D = (v_{\downarrow}, \overline{v}_{\downarrow}, v_{\uparrow}, \overline{v}_{\uparrow})$

* doesn't work

- * *V-A* makes things difficult: chirality vs. helicity
- * $v_M = (v_{\downarrow}, v_{\uparrow}) = \overline{v}_M$

* probability suppressed by $(m/E)^2$

- * probability suppressed by $(m/E)^2$:
 - $\Gamma(Z \rightarrow v_D \overline{v_D}) / \Gamma(Z \rightarrow v_M v_M) = 1 3 (m_v / m_Z)^2$
 - $BR(K^+ \rightarrow \pi^- e^+ \mu^+) = 10^{-30} (\langle m_{e\mu} \rangle / eV)^2$
 - $P(\nu_{\alpha} \rightarrow \overline{\nu_{\beta}}) = 1/E^2 |\Sigma U_{\alpha j} U_{\beta j} U_{\alpha i}^* U_{\beta i}^* m_i m_j e^{-i(E_i E_j)t}|$
- * Only way to beat *m*/*E*:

- * probability suppressed by $(m/E)^2$:
 - $\Gamma(Z \rightarrow v_D \overline{v_D}) / \Gamma(Z \rightarrow v_M v_M) = 1 3 (m_v / m_Z)^2$
 - $BR(K^+ \rightarrow \pi^- e^+ \mu^+) = 10^{-30} (\langle m_{e\mu} \rangle / eV)^2$
 - $P(\nu_{\alpha} \rightarrow \overline{\nu_{\beta}}) = 1/E^2 |\Sigma U_{\alpha j} U_{\beta j} U_{\alpha i}^* U_{\beta i}^* m_i m_j e^{-i(E_i E_j)t}|$
- Only way to beat *m*/*E*: Avogadro's number

Neutrinoless Double Beta Decay

 $(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$

22

Werner Rodejohann (MPIK)

Neutrinoless Double Beta Decay

$(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$

35 isotopes, 9 are useful

Current Limits

GERDA, 1909.02726

Experiment	Isotope	M_i	FWHM	$\mathcal{L}(\mathbf{T}_{1/2})$	$\mathcal{S}(T_{1/2})$	m_{etaeta}
		(kmol)	(keV)	$(10^{25} \mathrm{yr})$	$(10^{25} \mathrm{yr})$	(meV)
GERDA (this work)	⁷⁶ Ge	0.41	3.3	9	11	104 - 228
Majorana [22]	⁷⁶ Ge	0.34	2.5	2.7	4.8	157 - 346
CUPID-0 [23]	⁸² Se	0.063	23	0.24	0.23	394 - 810
CUORE [24]	¹³⁰ Te	1.59	7.4	1.5	0.7	162 - 757
EXO-200 [25]	¹³⁶ Xe	1.04	71	1.8	3.7	93 - 287
KamLAND-Zen [26]	¹³⁶ Xe	2.52	270	10.7	5.6	76 - 234

reached 10²⁶ years and 0.2 eV neutrino mass limits

Neutrinoless Double Beta Decay

$$(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$$

- * Master Formula: $\Gamma^{0\nu} = G_x(Q,Z) |\mathcal{M}_x(A,Z) \eta_x|^2$
 - $G_x(Q,Z)$: phase space factor, $\propto Q^5$
 - $M_x(A,Z)$: Nuclear Matrix Element (NME)
 - η_x : particle physics parameter

Neutrinoless Double Beta Decay

$$(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$$

- * Master Formula: $\Gamma^{0\nu} = G_x(Q,Z) |\mathcal{M}_x(A,Z)\eta_x|^2$
 - $G_x(Q,Z)$: phase space factor, $\propto Q^5$ calculable[#]
 - $M_x(A,Z)$: Nuclear Matrix Element (NME) problematic*
 - η_x : particle physics parameter

interesting

*#ignore here *ignore here even more*

Interpretations

- Standard Interpretation
 - Neutrinoless Double Beta Decay is mediated by light and massive Majorana neutrinos (the ones which oscillate) and all other mechanisms potentially leading to 0vββ give negligible or no contribution
- Non-Standard Interpretations
 - There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism

WR, 1106.1334

Standard Interpretation

 Neutrinoless Double Beta Decay is mediated by light and massive Majorana neutrinos (the ones which oscillate) and all other mechanisms potentially leading to 0vββ give negligible or no contribution

Werner Rodejohann (MPIK)

The usual plot

Lindner, Merle, WR, PRD73

Werner Rodejohann (MPIK)

Lindner, Merle, WR, PRD73

The usual plot

Method	Observable	current	near	far	pro	con
Kurie	$\Sigma U_{ei} ^2 m_i^2$	0.8 eV	0.3 eV	0.1 eV?	model-indep.; clean	final; weakest
cosmo	Σm_i	0.5 eV	0.1 eV	0.05 eV?	best; NH/IH	model-dep.; systematics
0νββ	$\Sigma U_{ei^2} m_i$	0.2 eV	0.05 eV	0.01 eV?	fundamental; NH/IH	model-dep.; NMEs

Neutrino Mass Observables

near	future

Neutrino Mass Observables

far future

Sterile Neutrinos

- * are there sterile states (LSND/reactor/MiniBooNE, etc.) with mass $\Delta m^2 \simeq eV^2$ and mixing $U_{e4} \simeq 0.1$?
- * would make m_{ee} sum of 4 terms with sterile contribution $|U_{e4}|^2 \sqrt{\Delta m^2}$ that can cancel almost completely contribution of IH!
- * usual pheno completely turned around!

Barry, WR, Zhang, JHEP1107

 There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism

 There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism

 $\Rightarrow 0\nu\beta\beta$ is not a neutrino mass experiment!

 There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism

 \Rightarrow need to solve the "inverse problem"

mechanism	physics parameter	current limit	test
light neutrino exchange	$\left U_{ei}^2 m_i \right $	$0.2 \ \mathrm{eV}$	oscillations, cosmology, neutrino mass
heavy neutrino exchange	$\left rac{S_{ei}^2}{M_i} ight $	$2\times 10^{-8}~{\rm GeV^{-1}}$	LFV, collider
heavy neutrino and RHC	$\left \frac{V_{ei}^2}{M_iM_{W_R}^4}\right $	$4\times 10^{-16}~{\rm GeV^{-5}}$	flavor, collider
Higgs triplet and RHC	$\frac{(M_R)_{ee}}{m_{\Delta_R}^2 M_{W_R}^4}$	$10^{-15} \text{ GeV}^{-1}$	flavor, collider e^- distribution
$\lambda\text{-mechanism}$ with RHC	$\left \frac{U_{ei}\tilde{S}_{ei}}{M_{W_R}^2}\right $	$1.4 \times 10^{-10} \text{ GeV}^{-2}$	flavor, collider, e^- distribution
$\eta\text{-mechanism}$ with RHC	$\tan\zeta \left U_{ei} \tilde{S}_{ei} \right $	6×10^{-9}	flavor, collider, e^- distribution
short-range R	$\Lambda_{\text{SUSY}} = f(m_{\tilde{g}}, m_{\tilde{u}_L}, m_{\tilde{d}_R}, m_{\chi_i})$	$7 \times 10^{-18} \text{ GeV}^{-5}$	collider, flavor
long-range 	$\left \sin 2\theta^b \lambda_{131}' \lambda_{113}' \left(\frac{1}{m_{\tilde{b}_1}^2} - \frac{1}{m_{\tilde{b}_2}^2} \right) \right \\ \sim \frac{G_F}{q} m_b \frac{\left \lambda_{131}' \lambda_{113}' \right }{\Lambda_{\text{surgent}}^3}$	$2 \times 10^{-13} \text{ GeV}^{-2}$ $1 \times 10^{-14} \text{ GeV}^{-3}$	flavor, collider
Majorons	$ \langle g_{\chi} \rangle $ or $ \langle g_{\chi} \rangle ^2$	$10^{-4} \dots 1$	spectrum, cosmology

decouples double beta decay from cosmology and KATRIN

$$\mathcal{A}_{\text{Standard}} = G_F^2 \frac{\langle m \rangle}{q^2} \text{ versus } \mathcal{A}_{\text{Non-Standard}} = \frac{c}{M_X^5}$$

* decouples double beta decay from cosmology and KATRIN

$$\mathcal{A}_{\text{Standard}} = G_F^2 \frac{\langle m \rangle}{q^2} \text{ versus } \mathcal{A}_{\text{Non-Standard}} = \frac{c}{M_X^5}$$

Therefore:
$$T(\text{eV}) = T(\text{TeV})$$

GK, 2022

decouples double beta decay from cosmology and KATRIN

$$\mathcal{A}_{\text{Standard}} = G_F^2 \frac{\langle m \rangle}{q^2} \text{ versus } \mathcal{A}_{\text{Non-Standard}} = \frac{c}{M_X^5}$$

Therefore:
$$\Rightarrow \text{Tests with LHC LEV}$$

T(eV) = T(IeV)

Black Box Theorem

Whatever the mechanism, observation of 0vββ implies
 Majorana neutrinos (*Schechter-Valle*, '82)

- * is 4-loop diagram \Rightarrow tiny mass (Dürr, Lindner, Merle, 1105.0901)
- if you see 0vββ: neutrinos are Majorana. If you don't, you can't tell...

simultaneous presence/interference/...

Type II dominance:

$$m_{
u} = m_L - M_D^2/M_R
ightarrow m_L$$
 with $m_L \propto M_R$

⇒ right-handed neutrinos diagonalized by PMNS matrix!

GK, 2022

again, NH/IH turned around...

Senjanovic et al., 1011.3522

- * add Standard and LR-diagram
- * $T_{\rm St} \propto 1/m_{\rm v}^2$ and $T_{\rm LR} \propto m_{\rm v}^2$

Barry, W.R., JHEP1309 Dev, Goswami, Mitra, WR, PRD88

Leptogenesis

$$\epsilon_{\Delta} = -\frac{1}{8\pi} \sum_{i} M_{i} \frac{\operatorname{Im}\left[\mu \left(y^{*} f y^{\dagger}\right)_{ii}\right]}{M_{\Delta}^{2} \operatorname{Tr}\left[f f^{\dagger}\right] + |\mu|^{2}} \ln\left(1 + \left(\frac{M_{\Delta}}{M_{i}}\right)^{2}\right)$$

becomes proportional to:

$$\sum_{i,j} \frac{m_i}{m_j} \operatorname{Im}\left[\left(U_{\tau i} U_{\tau j}^* \right)^2 \right]$$

Rink, WR, Schmitz, NPB972

Leptogenesis

Rink, WR, Schmitz, NPB972

Colliders and Double Beta Decay

LHC and Double Beta Decay

Biwal, Bhupal Dev, 1701.08751 Lindner, Queiroz, WR, Yaguna, JHEP1606

Complementarity of LHC and 0vBB

- * LHC prefers $M_S > M_{\psi}$
- * LHC has low sensitivity for small M_{ψ}
- include jet-fake rate, charge mis-ID,
 QCD corrections in 0vββ, etc.
- $* \Rightarrow$ complementary

TeV-scale LNV and Baryogenesis

- * Example TeV-scale W_R : leads to washout in early Universe via $e_R e_R \leftrightarrow W_R W_R$ and $e_R W_R \leftrightarrow W_R e_R$; processes stay long in equilibrium (*Frere*, *Hambye*, *Vertongen*; *Dev*, *Mohapatra*; *Sarkar et al.*)
- * more model-independent (*Deppisch, Harz, Hirsch*):

wash-out:

$$\log_{10} \frac{\Gamma_W(qq \to \ell^+ \ell^+ qq)}{H} \gtrsim 6.9 + 0.6 \left(\frac{M_X}{\text{TeV}} - 1\right) + \log_{10} \frac{\sigma_{\text{LHC}}}{\text{fb}}$$

would need electroweak, resonant, ARS, post-sphaleron baryogenesis

TeV-scale LNV and Baryogenesis

- when * Example TeV-scale *W_R*: leads to w early Jard Leptosenesis Universe via $e_R e_R \leftrightarrow W_R W_R$ and NRer; processes stay long in equili ere, Hambye, Vertongen; Dev, Mohapatra;
- pisch, Harz, Hirsch): more model-indepen

tot standar ut: $\log_{10} \frac{\Gamma_W(qq \rightarrow \ell^+ \ell^+ \, qq)}{H} \gtrsim 6.9 + 0.6 \left(\frac{M_X}{\text{TeV}} - 1\right) + \log_{10} \frac{\sigma_{\text{LHC}}}{\text{fb}}$

would need electroweak, resonant, ARS, post-sphaleron baryogenesis

GK, 2022

Two Kinds of Double Beta Decay

Inevitable Background

$(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$

Hubble tension and new neutrino self-interactions

 $\mathcal{L}_{\nu\mathrm{SI}}^{\mathrm{LNC}} = G_S(\nu_e \nu_e)(\overline{\nu}_{\alpha} \overline{\nu}_{\beta}),$ $\mathcal{L}_{\nu\mathrm{SI}}^{\mathrm{LNV}} = G_S(\nu_e \nu_e)(\nu_{\alpha} \nu_{\beta}),$

can resolve tension for strongly and "moderately" interacting *v*:

$$G_{\rm eff} = \begin{cases} (4.7^{+0.4}_{-0.6} \,\mathrm{MeV})^{-2} & (\mathrm{SI}\nu) \\ (89^{+171}_{-61} \,\mathrm{MeV})^{-2} & (\mathrm{MI}\nu) \end{cases}$$

Kreisch et al., 1902.00534

(extra radiation to modify *H*, delays matter-radiation equality, then νSI to compensate resulting CMB modifications)

2-neutrino double beta decay only direct probe of 4-nu interactions:

 Strong interactions ruled out by lab experiments, including double beta decay:

Werner Rodejohann (MPIK)

Deppisch, Graf,

WR, Xu,

PRD102

 Strong interactions ruled out by lab experiments, including double beta decay:

Deppisch, Graf, WR, Xu, PRD102

Lepton Number Violation with Dirac Neutrinos

- * Many models based on gauged *B*-*L*, broken by 2 units, hence Majorana masses and $\Delta L = 2$
- * can break it also by 4 units, hence $\Delta L = 2$ forbidden, but $\Delta L = 4$ allowed!
- * example: 3 RH nus with charge -1, an <u>inert</u> scalar χ with charge -2 and a scalar ϕ with charge +4

Werner Rodejohann (MPIK)

Heeck, WR, EPL103

Lepton Number Violation with Dirac Neutrinos

Phenomenology: Neutrinoless Quadruple Beta Decay 0νββββ

Candidates	$Q_{0\nu4\beta}$	Other decays	NA
${}^{96}_{40}\mathrm{Zr} \rightarrow {}^{96}_{44}\mathrm{Ru}$	0.629	$\tau_{1/2}^{2\nu 2\beta}\simeq 2\times 10^{19}$	2.8
$^{136}_{54}{\rm Xe} \rightarrow {}^{136}_{58}{\rm Ce}$	0.044	$\tau_{1/2}^{2\nu 2\beta} \simeq 2 \times 10^{21}$	8.9
$^{150}_{60}\mathrm{Nd} \rightarrow ^{150}_{64}\mathrm{Gd}$	2.079	$\tau_{1/2}^{2\nu 2\beta}\simeq 7\times 10^{18}$	5.6

Heeck, WR, EPL103

Lepton Number Violation with Dirac Neutrinos

D vs. M with general interactions

* most general neutrino charged lepton interaction:

$$\mathcal{L} \supset \frac{G_F}{\sqrt{2}} \sum_{a} \overline{\nu} \Gamma^a \nu \left[\overline{\ell} \Gamma^a (C_a + \overline{D}_a i \gamma^5) \ell \right] \qquad \text{Rosen, PRL48}$$

* with usual five possible terms:

$$\Gamma^{a} = \left\{ I, i\gamma^{5}, \gamma^{\mu}, \gamma^{\mu}\gamma^{5}, \sigma^{\mu\nu} \equiv \frac{i}{2}[\gamma^{\mu}, \gamma^{\nu}] \right\}$$

* <u>there can be sizable differences for Dirac and</u> <u>Majorana neutrinos!</u>

D vs. M with general interactions

$$\mathcal{L} \supset \frac{G_F}{\sqrt{2}} \sum_{a} \overline{\nu} \Gamma^a \nu \left[\overline{\ell} \Gamma^a (C_a + \overline{D}_a i \gamma^5) \ell \right]$$

* in general, cross section for elastic neutrino electron scattering:

$$\frac{d\sigma}{dT}(\nu+\ell) = \frac{G_F^2 M}{2\pi} \left[A + 2B\left(1 - \frac{T}{E_{\nu}}\right) + C\left(1 - \frac{T}{E_{\nu}}\right)^2 \right]$$
$$\frac{d\sigma}{dT}(\overline{\nu}+\ell) = \frac{G_F^2 M}{2\pi} \left[C + 2B\left(1 - \frac{T}{E_{\nu}}\right) + A\left(1 - \frac{T}{E_{\nu}}\right)^2 \right]$$
$$with:$$
$$A = \frac{1}{4}(C_A - D_A + C_V - D_V)^2 + \frac{1}{2}C_P C_T + \frac{1}{8}(C_P^2 + C_S^2 + D_P^2 + D_S^2) - \frac{1}{2}C_S C_T + C_T^2 + \frac{1}{2}D_P D_T - \frac{1}{2}D_S D_T + D_T^2$$

$$B \equiv -\frac{1}{8} \left(C_P^2 + C_S^2 + D_P^2 + D_S^2 \right) + C_T^2 + D_T^2 \,,$$

$$C \equiv \frac{1}{4} \left(C_A + D_A - C_V - D_V \right)^2 - \frac{1}{2} C_P C_T + \frac{1}{8} \left(C_P^2 + C_S^2 + D_P^2 + D_S^2 \right) + \frac{1}{2} C_T C_S + C_T^2 - \frac{1}{2} D_P D_T + \frac{1}{2} D_S D_T + D_T^2 + \frac{1}{2} D_S D_T + D_T^2 + \frac{1}{2} D_S D_T + \frac{1}$$

* For Majorana neutrinos: $C_V = D_V = C_T = D_T = 0$

Dvs. M with general interactions

$$\frac{d\sigma}{dT}(\nu+\ell) = \frac{G_F^2 M}{2\pi} \left[A + 2B\left(1 - \frac{T}{E_\nu}\right) + C\left(1 - \frac{T}{E_\nu}\right)^2 \right]$$
$$\frac{d\sigma}{dT}(\overline{\nu}+\ell) = \frac{G_F^2 M}{2\pi} \left[C + 2B\left(1 - \frac{T}{E_\nu}\right) + A\left(1 - \frac{T}{E_\nu}\right)^2 \right]$$

* *Rosen* introduced a measurable ratio:

$$R_{\rho} \equiv \frac{2(A+2B+C)}{A+C}$$

* differs for Dirac and Majorana neutrinos!

$$0 \le R_{\rho} \le 4 \text{ (Dirac)}, \qquad (R_{\rho} = 2 \text{ in SM})$$
$$0 \le R_{\rho} \le 2 \text{ (Majorana)}$$
D vs. M with general interactions

 $0 \le R_{\rho} \le 4 \text{ (Dirac)},$ $0 \le R_{\rho} \le 2 \text{ (Majorana)}$

- * measure between 0 and 2: can't tell
- * measure between 2 and 4: Dirac!
- \Rightarrow *can only show Dirac nature!*
- * actually, slightly more complicated than just R_{ρ}

WR, Xu, Yaguna, JHEP1705

Dvs. M with general interactions

WR, Xu, Yaguna, JHEP1705

Werner Rodejohann (MPIK)

Weizmann, 2020

Is Dark Matter its own Antiparticle?

- Dark Matter probably a particle
- * natural, yet hardly asked question: is it self-conjugate?
- determining nature of DM particle turns out to be possible with direct detection only

(However, very difficult....)

Queiroz, WR, Yaguna, PRD95

- * difficult task, need:
 - isospin violating DM
 - non-zero coupling with *p* and *n* of DM particle and antiparticle
 - close density of DM particle and antiparticle
 - scalar and vector interactions
 - non-zero cross section with *p* and *n*
 - different ratio of (*p*,*n*)-coupling to DM particle and antiparticle

Queiroz, WR, Yaguna, PRD95

How it works:

- * If χ is Dirac fermion: χ^D and anti- χ^D in principle both present \Rightarrow Dirac-DM has 4 possible interactions:
 - χ^D talking to p, χ^D talking to n, anti- χ^D talking to p, anti- χ^D talking to n
- * If χ is Majorana fermion: $\chi^M = \text{anti-}\chi^M \Rightarrow Majorana-DM$ has 2 possible interactions:
 - χ^M talking to p, χ^M talking to n
- ★ ⇒ Need to show that 4 interactions are present!

 \Rightarrow can only show Dirac nature!

Werner Rodejohann (MPIK)

* most general SI interaction of fermion χ (N = p,n):

$$\mathscr{L}_{SI}^F = \lambda_{N,e} \,\bar{\psi}_{\chi} \psi_{\chi} \,\bar{\psi}_N \psi_N + \lambda_{N,o} \,\bar{\psi}_{\chi} \gamma_{\mu} \psi_{\chi} \,\bar{\psi}_N \gamma^{\mu} \psi_N$$

- * For Majorana: no vector interactions: $\sigma_{SI}^{M} = \frac{4\mu_{\chi}^{2}}{\pi} \left[\lambda_{p}^{M} Z + \lambda_{n}^{M} (A - Z)\right]^{2}$
- * For Dirac: particle and antiparticle:

$$\sigma_{SI}^{D} = \frac{4\mu_{\chi}^{2}}{\pi} \frac{1}{2} \left(\left[\lambda_{p}^{D} Z + \lambda_{n}^{D} \left(A - Z \right) \right]^{2} + \left[\lambda_{p}^{\bar{D}} Z + \lambda_{n}^{\bar{D}} \left(A - Z \right) \right]^{2} \right)$$

$$\lambda_N^D \equiv (\lambda_{N,e} + \lambda_{N,o})/2 \text{ and } \lambda_N^{\overline{D}} \equiv (\lambda_{N,e} - \lambda_{N,o})/2$$

 suppose we have measured DM cross section with isotopes X and Y. Interpreted in terms of Majorana, we have:

$$\begin{bmatrix} \lambda_p^M Z_X + \lambda_n^M (A_X - Z_X) \end{bmatrix}^2 = \frac{\pi \tilde{\sigma}_X}{4\mu_\chi^2},$$
$$\begin{bmatrix} \lambda_p^M Z_Y + \lambda_n^M (A_Y - Z_Y) \end{bmatrix}^2 = \frac{\pi \tilde{\sigma}_Y}{4\mu_\chi^2}.$$

extract $(\lambda_p^M, \lambda_n^M)$: two parallel lines each, with slopes $m_X = Z_X/(A_X - Z_X)$ and $m_Y = Z_Y/(A_Y - Z_Y)$

- * suppose we have measured DM cross section with isotopes X and Y. Interpreted in terms of Majorana, extract $(\lambda_p^M, \lambda_n^M)$: two parallel lines with slopes $m_X = Z_X/(A_X - Z_X)$ and $m_Y = Z_Y/(A_Y - Z_Y)$
- * if m_X ≠ m_Y: lines intersect at 4 different points
 ⇒ always consistent with Majorana case!
 ⇒ need third isotope V:
 - hit one of the crossing points of X and Y: can't tell Dirac from Majorana
 - miss all crossing points of *X* and *Y*: DM is Dirac particle!

- red and blue lines for Xe
 and Ar: cross each other 4
 times
- green line for Si: does not cross other lines in one point
 - ⇒ Majorana interpretation does not work
 - \Rightarrow DM must be Dirac

particle

Experimental Aspects

- * need isotopes with different Z and N = A Z
- Z/N between 0.65 and 1 for stable nuclei
- Ar, Xe, Ge too close to each other
- Ar, Xe and Si or Ca or O would be nice...

isotope	Ζ	N	Z/N	
Ar	18	22	0.82	
Xe	54	77	0.70	
Ge	32	40	0.80	
Si	14	14	1.00	
Na	11	12	0.92	
F	9	10	0.90	
Ca	20	20	1.00	
Ο	8	8	1.00	
W	74	110	0.67	
I	53	74	0.72	

Statistical Analysis

(do "realistic" analysis with proper event numbers, experimental details, etc.)

Target	$E_{\min} [\text{keV}]$	$E_{\rm max}$ [keV]] Exposur	e [ton yr]	Ensemble A: $Xe + Ar + Si$
$egin{arrl} Xe & \ Ar & \ Si & \ Ge & \ CaWO_4 & \ \end{array}$	$5 \\ 30 \\ 7 \\ 5 \\ 10$	40 200 100 100 100	20 150 3 3 3		 Ensemble B: Xe + Ar + Ge Ensemble C: Xe + Ar + CaWO₄ Ensemble D: Xe + Ar + 50% Ge + 50% CaWO₄
		=			
$1.1^{30 \ 10}$ $1.0^{$	$\frac{ \lambda_n^D/\lambda_n^T }{5}$	σ σ 7 -0.96 -0.95	GeV \overline{Si} \overline{Ar} \overline{Ar} \overline{Ar} \overline{Ar} $\overline{2}$ \overline{Xe} $\overline{2}$ 1	1.1 ^{30 10} 1.0 0.9 0.8 0.7 0.6 0.6 - Max. signific	$\frac{5}{4}$ $\frac{4}{8}$ $\frac{5}{4}$ $\frac{3}{1}$ $\frac{5}{4}$ $\frac{3}{1}$ $\frac{5}{1}$ $\frac{5}{4}$ $\frac{3}{1}$ $\frac{5}{1}$ $\frac{5}$
$f = (\lambda$	$\lambda_p^{\ \ D} \lambda_n^{\ \ D} + \lambda_p^{\ \ D} \lambda_n^{\ \ D}) / \sqrt{(\lambda_p^{\ \ L})}$	$(\lambda_p^{D2} + \lambda_p^{D2})(\lambda_n^{D2} + \lambda_n^{D2})$)	$f = (\lambda_p^D \lambda_n^D \cdot$	$+\lambda_p^D \lambda_n^D)/\sqrt{(\lambda_p^{D2} + \lambda_p^{D2})(\lambda_n^{D2} + \lambda_n^{D2})}$

Werner Rodejohann (MPIK)

Kavanagh, Queiroz, WR, Yaguna, JHEP1710

Statistical Analysis

DM Mass [GeV]	25	50	300	1000
A (Xe+Ar+Si)	2.8σ	4.0σ	4.9σ	5.0σ
B (Xe+Ar+Ge)	1.7σ	2.2σ	2.7σ	2.8σ
$C (Xe+Ar+CaWO_4)$	2.0σ	2.4σ	3.0σ	2.9σ
$D (Xe+Ar+Ge/CaWO_4)$	3.2σ	2.6σ	2.9σ	3.2σ

Werner Rodejohann (MPIK)

Kavanagh, Queiroz, WR, Yaguna, JHEP1710

Scalar and Vector Dark Matter

- * Scalar particle ϕ_{χ} also possible. If complex: $\mathscr{L}_{SI}^{S} = 2\lambda_{N,e}M_{\chi}\phi_{\chi}^{\dagger}\phi_{\chi}\bar{\psi}_{N}\psi_{N}$ $+ i\lambda_{N,o}\left[\phi_{\chi}^{\dagger}(\partial_{\mu}\phi_{\chi}) - (\partial_{\mu}\phi_{\chi}^{\dagger})\phi_{\chi}\right]\bar{\psi}_{N}\gamma^{\mu}\psi_{N}$
- * if real: $\lambda_{N,o} = 0$
- * Again, 4 parameters for complex DM, two for real
- Works similarly with vector DM

Summary

Chi l'ha visto?

Ettore Majorana. ordinario di fisica teorica all' Università di Napoli, è misteriosamente scomparso dagli ultimi di marzo. Di anni 31, alto metri 1.70, snello, con capelli neri, occhi scuri, una lunga cicatrice sul dorso di una mano. Chi ne sapesse qualcosa è pregato di scrivere al R. P. E. Maria-

necci, Viale Regina Margherita 66 -Roma.

Expectations of lifetimes

Bayesian discovery probability: discovery sensitivity (value of m_{ee} for which expt. has 50% chance to see it at 3 σ) folded with probability distribution of m_{ee}

Agostini et al, 1705.02996; also Caldwell et al., 1705.01945; also Zhang, Zhou, 1508.05472

Werner Rodejohann (MPIK)

Expectations of lifetimes

Expectations for half-lifes

Ge, WR, Zuber, 1707.07904

However, most alternative mechanisms unrelated to neutrino parameters... ...thus decoupled from cosmology (and direct experiments)!

Werner Rodejohann (MPIK)

Weizmann, 2020

Nuclear Matrix Elements

Werner Rodejohann (MPIK)

Nuclear Matrix Elements

QUENCHING??

$$T^{0\nu}_{\frac{1}{2}} \propto g_A^{-4}$$

- * fact in β and $2\nu\beta\beta$
- * truncation of model-space?
- also in 0vββ??
 - $q = 10^2$ vs. 10^0 MeV?
 - higher multipolarities?
 - two-body currents?
 - muon capture?
 - SM vs. QRPA

Comparison of Limits

Limit from Xenon is better than limit from Germanium if:

$$T_{\rm Xe} > T_{\rm Ge} \frac{G_{\rm Ge}}{G_{\rm Xe}} \left| \frac{\mathcal{M}_{\rm Ge}}{\mathcal{M}_{\rm Xe}} \right|^2 \, {
m yrs}$$

Best chance: Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay

$$(T_{1/2}^{0\nu})^{-1} \propto \begin{cases} a \, M \, \varepsilon \, t & \text{without background} \\ a \, \varepsilon \, \sqrt{\frac{M \, t}{B \, \Delta E}} & \text{with background} \end{cases}$$

first background free result

current limits: $T_{\frac{1}{2}} \gtrsim 10^{26}$ years with exposure of about 100 kg \cdot years

Werner Rodejohann (MPIK)

Neutrinoless Double Beta Decay

				isotope mass [kg] in FV	FWHM [keV]	background [(FWHM ε t _{isotope} yr) ⁻¹]	T _{1/2} sensitivity after 4yr [10 ²⁵ yr]	upper m_β limit [meV (lowest NME
Ge detectors	GERDA		Ge	27	3	5	15	190
	Majorana-	D	Ge	24	3	5	15	190
		200 kg	Ge	155	3	1	100	75
	LEGEND 1	000 kg	Ge	780	3	0.2	1000	24
liquid noble gas	EXO		Xe	80	88	220	6	240
	nEXO		Xe	4300	58	5	600	24
loaded liquid scintillator		400 kg	Xe	88	250	90	6	240
	KamLANL	300 kg	Xe	~180	250	~10	50	90
	SNO+		Те	260	190	60	17	160
cryo bolometers	CUORE		Те	206	5	180	9	210

New Idea

assume RH neutrinos with mass less than *m*_W(*Dib*, *Kim*, 1509.05981):

$$W^+ \rightarrow e^+ \mu^- e^+ \nu_e$$

Werner Rodejohann (MPIK)

GK, 2022

New Idea

(solid is mult-variate; dashed is cut-and-count) $s \equiv 2 \times 10^{6} \frac{|U_{Ne}U_{N\mu}|^{2}}{|U_{Ne}|^{2} + |U_{N\mu}|^{2}}, \quad r \equiv \frac{|U_{Ne}|^{2}}{|U_{N\mu}|^{2}}.$ Dib, Kim, Wang, 1703.01936

Werner Rodejohann (MPIK)

Cosmological Mass Limits

GK, 2022

Neutrinoless Double Beta Decay

Unexpected Correlations with other Experiments

Werner Rodejohann (MPIK)

D vs. M with general interactions

$$\frac{d\sigma}{dT}(\nu+\ell) = \frac{G_F^2 M}{2\pi} \left[A + 2B\left(1 - \frac{T}{E_\nu}\right) + C\left(1 - \frac{T}{E_\nu}\right)^2 \right]$$
$$\frac{d\sigma}{dT}(\overline{\nu}+\ell) = \frac{G_F^2 M}{2\pi} \left[C + 2B\left(1 - \frac{T}{E_\nu}\right) + A\left(1 - \frac{T}{E_\nu}\right)^2 \right]$$

* SM: same cross sections for Dirac and Majorana $(A, B, C)^{\text{SM}} = ((1 + 2s_W^2)^2, 0, 4s_W^4) (\text{NC} + \text{CC})$

* not the same if other interactions are present!

- * can extract A, B, C due to different E-dependence
- can also combine neutrino and antineutrino data

Experimental Constraints

- Data available from CHARM, <u>CHARM-II</u>, LAMPF, MINERvA, LSND, <u>TEXONO</u>,...
- * take data from expt. with best measurement of $\sin^2 \Theta_W$

Experimental Constraints: CHARM-II

* CHARM-II: highly relativistic $E_v \approx 20$ GeV and provide unfolded differential cross sections:

$$\chi^2(A_{\mu e}, B_{\mu e}, C_{\mu e}) = \sum_{i=T \text{ bins}} \frac{\left[\left(\frac{d\sigma}{dT}\right)_i - s_i \right]^2}{\sigma_{s,i}^2} + (\nu_\mu \to \overline{\nu}_\mu)$$

* fit $A_{\mu e}$, $B_{\mu e}$, $C_{\mu e}$ and translate into $X_{\mu e}$, $Y_{\mu e}$ for normalization $R_{\mu e}$ fixed to SM-value

Experimental Constraints: TEXONO

- reactor neutrinos, thus non-relativistic
- * provide event numbers: $N_{i} = \int_{T_{i}}^{T_{i}+\Delta T} dT \int_{0}^{8 \operatorname{MeV}} dE_{\nu} \Phi(E_{\nu}) \frac{d\sigma}{dT}(T, E_{\nu})$ $\chi^{2}(A_{ee}, B_{ee}, C_{ee}, D_{ee}) = \sum_{i=T \operatorname{bins}} \frac{\left[N_{i} - N_{i}^{0}\right]^{2}}{\sigma_{N,i}^{2}}$
- * fit A_{ee} , B_{ee} , C_{ee} , D_{ee} and translate into X_{ee} , Y_{ee} for normalization R_{ee} and D_{ee} fixed to SM-value

Experimental Constraints

* Individual Parameters (assuming Dirac):

- * weak limits on *P* and *S*
- * *T*, *V* and *A* well constrained

TEXONO

anti-v_e e scattering

2

0

D vs. M with general interactions

WR, Xu, Yaguna, 1702.05721

Future Constraints

 choose points in allowed 90% range, assume uncertainty reduced by factor 3 and 4, respectively:

Analysis

Assume Dirac DM and find values of the four interaction parameters such that data <u>can not</u> be explained in Majorana interpretation

Minimal Uncertainty to exclude Majorana particle: larger than 10% between 1% and 10% between 0.1% and 1%

Werner Rodejohann (MPIK)

 $\lambda_n D / \lambda_p D < 0$

 \Rightarrow need partial cancellation between proton and neutron contributions to σ_{tot} of either particle or antiparticle

Predicting the effective mass

Flavor Symmetry models can not predict masses, but relations between them:

Werner Rodejohann (MPIK)

Scales

- * $0\nu\beta\beta$ standard mechanism: $T_{\frac{1}{2}} \propto 1/(m_{\nu}^2)$
- * $0\nu\beta\beta$ standard and Weinberg: $T_{\frac{1}{2}} \propto \Lambda^2$
- * $0\nu\beta\beta$ and heavy Physics: $T_{\frac{1}{2}} \propto \Lambda^{10}$
- * cf. to proton decay with $T_{\frac{1}{2}} \propto \Lambda^4$
- * cf. to neutron-antineutron oscillation $P \propto \Lambda^{10}$

Scales

- * $0\nu\beta\beta$ standard mechanism: $T_{\frac{1}{2}} \propto 1/(m_{\nu}^2)$
- * 0vββ standard and Weinberg: 104-14 GeV
- * $0\nu\beta\beta$ and heavy Physics: $T_{\frac{1}{2}} \propto \Lambda^{10}$ 10³ GeV
- * cf. to proton decay with $T_{\frac{1}{2}} \propto \Lambda^4$ 10¹⁶ GeV
- * cf. to neutron-antineutron oscillation *P* ° 10⁶ GeV

LFV and Double Beta Decay

Barry, WR, 1303.6324

Werner Rodejohann (MPIK)

QCD Corrections

* naive size $(\alpha_s/4\pi) \ln (M_W/100 \text{ MeV})^2 \approx 10\%$, true for standard diagram

- * creates in non $(V-A) \otimes (V-A)$ short-range mechanisms color non-singlets, Fierzing to singlets gives different operators with vastly different NMEs
- * \Rightarrow can give effect exceeding NME uncertainty...

Mahajan, PRL 112; Gonzalez, Kovalenko, Hirsch, PRD 93; Peng, Ramsey-Musolf, Winslow, PRD 93

Werner Rodejohann (MPIK)

Connections to Oscillation Experiments

Factor 2 uncertainty of minimal m_{ee} in IH, mostly from Θ_{12}

JUNO will fix Θ_{12} and remove uncertainty in value of minimal m_{ee} in IH

Dueck, WR, Zuber, 1103.4152; Ge, WR, 1507.05514

LHC and Double Beta Decay

Lindner, Queiroz, WR, Yaguna, JHEP1606

LHC and Double Beta Decay

displaced vertices for low masses

Nemevsek, Nesti, Popara, 1801.05813

Neutrinos do have mass!

GK, 2022

Experiment	Isotope	Techinique	Total mass	Exposure	FWHM $@Q_{\beta\beta}$	Background	$S^{0 u}$ (90% (
			[kg]	$[\mathrm{kgyr}]$	$[\mathrm{keV}]$	$[\rm counts/keV/kg/yr]$	$[10^{25}\mathrm{yr}]$
Past					Dell'Oro e	et al., 1601.07512	
Cuoricino, [179]	$^{130}\mathrm{Te}$	bolometers	$40.7 (TeO_2)$	19.75	5.8 ± 2.1	0.153 ± 0.006	0.24
CUORE-0, [180]	$^{130}\mathrm{Te}$	bolometers	39 (TeO ₂)	9.8	5.1 ± 0.3	0.058 ± 0.006	0.29
Heidelberg-Moscow, [181]	$^{76}\mathrm{Ge}$	Ge diodes	11 (^{enr} Ge)	35.5	4.23 ± 0.14	0.06 ± 0.01	1.9
IGEX, [182, 183]	$^{76}\mathrm{Ge}$	Ge diodes	8.1 (^{enr} Ge)	8.9	~ 4	$\lesssim 0.06$	1.57
GERDA-I, [167, 184]	$^{76}\mathrm{Ge}$	Ge diodes	17.7 (enrGe)	21.64	3.2 ± 0.2	~ 0.01	2.1
NEMO-3, [185]	$^{100}\mathrm{Mo}$	tracker + calorimeter	6.9 (¹⁰⁰ Mo)	34.7	350	0.013	0.11
Present	_						
EXO-200, [186]	¹³⁶ Xe	LXe TPC	175 (^{enr} Xe)	100	89 ± 3	$(1.7 \pm 0.2) \cdot 10^{-3}$	1.1
KamLAND-Zen, [187, 188]	136 Xe	loaded liquid scintillator	348 (^{enr} Xe)	89.5	244 ± 11	~ 0.01	1.9
Future							
CUORE, [189]	$^{130}\mathrm{Te}$	bolometers	741 (TeO ₂)	1030	5	0.01	9.5
GERDA-II, [174]	$^{76}\mathrm{Ge}$	Ge diodes	37.8 (^{enr} Ge)	100	3	0.001	15
LUCIFER, [190]	$^{82}\mathrm{Se}$	bolometers	$17 (Zn^{82}Se)$	18	10	0.001	1.8
MAJORANA D., [191]	$^{76}\mathrm{Ge}$	Ge diodes	$44.8 \ (enr/natGe)$	100^{a}	4	0.003	12
NEXT, [192, 193]	136 Xe	Xe TPC	100 (^{enr} Xe)	300	12.3 - 17.2	$5 \cdot 10^{-4}$	5
AMoRE, [194]	$^{100}\mathrm{Mo}$	bolometers	200 ($Ca^{enr}MoO_4$)	295	9	$1 \cdot 10^{-4}$	5
nEXO, [195]	$^{136}\mathrm{Xe}$	LXe TPC	4780 (^{enr} Xe)	$12150^{\rm b}$	58	$1.7 \cdot 10^{-5 \text{ b}}$	66
PandaX-III, [196]	$^{136}\mathrm{Xe}$	Xe TPC	1000 (^{enr} Xe)	$3000^{\rm c}$	12 - 76	0.001	11 ^c
SNO+, [197]	$^{130}\mathrm{Te}$	loaded liquid scintillator	2340 (^{nat} Te)	3980	270	$2 \cdot 10^{-4}$	9
SuperNEMO, [198, 199]	82 Se	tracker +	$100 (^{82}Se)$	500	120	0.01	10

Nuclear Matrix Elements

Nuclear Matrix Elements

QUENCHING??

$$T^{0\nu}_{\frac{1}{2}} \propto g_A^{-4}$$

- * fact in β and $2\nu\beta\beta$
- * truncation of model-space?
- also in 0νββ??
 - $q = 10^2$ vs. 10^0 MeV?
 - higher multipolarities?
 - two-body currents?
 - muon capture?
 - SM vs. QRPA

Cosmological Mass Limits

140

Neutrinoless Double Beta Decay

