Exploring the phase structure and dynamics of QCD

Jan M. Pawlowski

Universität Heidelberg & ExtreMe Matter Institute

MPI Heidelberg, January 11th 2016

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

European Research Council Established by the European Commission

Outline

Introduction

• Phase structure of QCD

Hadron spectrum & QCD transport

Outlook

Outline

• Phase structure of QCD

Hadron spectrum & QCD transport

Outlook

Heavy ion collisions

Heavy ion collisions

*1 fm/c $\simeq 3 \times 10^{-24}$ seconds

Phase diagrams & order parameters

Phases in QCD

quarks massless - massive

chiral condensate

$$\int_{\vec{\mathbf{x}}} < \bar{\mathbf{q}}(\mathbf{x}) \mathbf{q}(\mathbf{x}) >$$

quarks confined - deconfined

Polyakov loop $~~\Phi~~~e^{-rac{1}{2}F_{ar{\mathbf{q}}\mathbf{q}}}$

 $\label{eq:free energy} \quad \mathbf{F}_{\mathbf{\bar{q}}\mathbf{q}} = \lim_{|\mathbf{\vec{x}} - \mathbf{\vec{y}}| \to \infty} \mathbf{F}_{\mathbf{\bar{q}}(\mathbf{x})\mathbf{q}(\mathbf{y})}$

Phase diagrams & order parameters

Phases in QCD

quarks massless - massive

chiral condensate

$$\int_{\mathbf{x}} < \mathbf{\bar{q}}(\mathbf{x}) \mathbf{q}(\mathbf{x}) >$$

quarks confined - deconfined

Polyakov loop
$$\Phi ~=~ rac{1}{
m N_c} \langle {
m tr}\, {\cal P} {
m e}^{{
m i}\, {
m g}} \, \int_0^eta \, {
m A_0}({
m x})
angle$$

free energy $\mathbf{F}_{ar{\mathbf{q}}\mathbf{q}} = \prod_{|\mathbf{x}| \in \mathbf{x}}$

$$= \lim_{ert \mathbf{x} - \mathbf{y} ert
ightarrow \infty} \mathbf{F}_{\mathbf{ar{q}}(\mathbf{x})\mathbf{q}(\mathbf{y})}$$

70 - Hatter in unusual conditions 70 a L 35 12 Election proton gas 10 Non deg. electron gas Relativ Degenerate electron gas degenerate 1953 Enrico Fermi election and deuse state 24 26 28 30 32 Kg / lad 14 22 12 7 14 Start from ordinary condensed matter with chemical forces a) Increase pressure at T < 1000 Mutil deg. electron energies exceeds 20 eV - $\overline{w} = \frac{3}{40} \left(\frac{6}{\pi}\right)^{\frac{3}{2}} \frac{h^2 n^{\frac{2}{3}}}{2^{\frac{2}{3}}} p = \frac{2}{3} \overline{w} n$ Condition W= 35× 10-27 m2/3= 3.2× 10-11 n ~ 10 10 24 p= 2 3.2×10 4 20 1024 = 2×10 \$ 2×10 atu as pressure increases beyond this point $p = 3.6 \times 10^{-27} m^{2/3} m \times \frac{2}{3} = 2.4 \times 10^{-27} m^{5/3}$ $m = 6 \times 10^{23} \frac{\rho}{R} Z$ $p = 10^{13.01} \left(\frac{\rho Z}{R}\right)^{5/3} \approx 3.2 \times 10^{12} \frac{\rho^{13}}{R}$

1983 US long range plan, Gordon Baym

Larry McLerran '09

Outline

• Functional Approaches to QCD & the FRG

Phase structure of QCD

Hadron spectrum & QCD transport

JMP, AIP Conf.Proc. 1343 (2011) Nucl.Phys. A931 (2014) 113

JMP, AIP Conf.Proc. 1343 (2011) Nucl.Phys. A931 (2014) 113

JMP, AIP Conf.Proc. 1343 (2011) Nucl.Phys. A931 (2014) 113

Glue sector

Glue sector

Fister, JMP, arXiv:1112.5440

Confinement

FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010

$$T_c/\sqrt{\sigma} = 0.658 \pm 0.023$$

lattice : $T_c/\sqrt{\sigma} = 0.646$

$$\begin{aligned} \boxed{L[A_0] = \frac{1}{\mathbf{N}_c} \operatorname{tr} \mathcal{P} \mathbf{e}^{\mathbf{i} \, \mathbf{g} \, \int_0^\beta \mathbf{A}_0(\mathbf{x})} } \end{aligned}$$

Confinement

FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010

fluctuations

lattice : $T_c/\sqrt{\sigma} = 0.646$

Braun, Gies, JMP '07 Marhauser, JMP '08 Fister, JMP '13

Confinement

FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010

fQCD collaboration: J. Braun, A. Cyrol, L. Fister, W.-j. Fu, M. Mitter, N. Mueller, JMP, F. Rennecke, S. Rechenberger, N. Strodthoff

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

Braun, Fister, Haas, JMP, Rennecke, arXiv:1412.1045

fQCD collaboration: J. Braun, A. Cyrol, L. Fister, W.-j. Fu, M. Mitter, N. Mueller, JMP, F. Rennecke, S. Rechenberger, N. Strodthoff

hardQCD:	Mitter, JMP, Strodthoff, PRD 91 (2015) 054035
easyQCD:	Braun, Fister, Haas, JMP, Rennecke, arXiv:1412.1045

fQCD: workflow

European Research Council Established by the European Commission

fQCD: workflow

European Research Council Established by the European Commission

Expansion of effective action in 1PI correlators

- full mom. dep.
- via effective potential

- full tensor structure
- mom. dep. (sym. channel)

Expansion of effective action in 1PI correlators

Confinement & symmetry breaking

Confinement & symmetry breaking

FRG-quenched QCD vs lattice-quenced QCD

 $N_f = 2$

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

FRG-quenched QCD vs lattice-quenced QCD

FRG-quenched QCD vs lattice-quenced QCD

systematic error estimate: ~10% JMP

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

FRG-quenched QCD vs lattice-quenced QCD

 $N_f = 2$

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

FRG-quenched QCD vs lattice-quenced QCD

 $N_f = 2$

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

Sequential decoupling of gluon, quark, sigma, pion fluctuations

19

Thermodynamics

2+1 flavor QCD - enhanced PQM-model

Fluctuations

Fluctuations

Phase diagram of quantised 2-flavor PQM-model

Herbst, JMP, Schaefer, PLB 696 (2011) 58-67 PRD 88 (2013) 1, 014007

FRG QCD results at finite density

Haas, Braun, JMP '09, unpublished

Herbst, JMP, Schaefer, PLB 696 (2011) 58-67 PRD 88 (2013) 1, 014007

FRG QCD results at finite density

Haas, Braun, JMP '09, unpublished

Fischer, Fister, Luecker, JMP, PLB732 (2014) 248 Fischer, Luecker, Welzbacher, PRD 90 (2014) 034022

Fister, JMP, PRD 88 (2013) 045010

Fischer, Fister, Luecker, JMP, PLB732 (2014) 248 Fischer, Luecker, Welzbacher, PRD 90 (2014) 034022

Fister, JMP, PRD 88 (2013) 045010

Outline

• Functional Approaches to QCD & the FRG

Phase structure of QCD

Hadron spectrum & QCD transport

preliminary

four-fermi scattering amplitude at pion pole

$$\langle \bar{q}\vec{\sigma}\gamma_5 q(p) \ \bar{q}\vec{\sigma}\gamma_5 q(-p) \rangle \rightarrow \frac{\chi_{\bar{q}\pi q}\bar{\chi}_{\bar{q}\pi q}}{p^2 - m_\pi^2} + \text{ finite terms}$$

... and now for something completely different ...

Real time correlation functions & transport

Gluon spectral function at finite T

Haas, Fister, JMP, PRD 90 (2014) 9, 091501

Gluon spectral function at finite T

gluon spectral functions

pion and sigma spectral functions

analytic complex FRG

Tripolt, Strodthoff, von Smekal, Wamach, PRD 89 (2014) 034010 Kamikado, Strodthoff, von Smekal, Wambach, EPJ C74 (2014) 2806

gluon spectral functions

pion and sigma spectral functions

Tripolt, Strodthoff, von Smekal, Wamach, PRD 89 (2014) 034010 Kamikado, Strodthoff, von Smekal, Wambach, EPJ C74 (2014) 2806

transport coefficients

Kubo relation

$$\eta = \frac{1}{20} \left. \frac{d}{d\omega} \right|_{\omega=0} \rho_{\pi\pi}(\omega, 0)$$

Haas, Fister, JMP, PRD 90 (2014) 9, 091501

Christiansen, Haas, JMP, Strodthoff, PRL 115 (2015) 11, 112002

QCD - estimate for viscosity over entropy ratio

Christiansen, Haas, JMP, Strodthoff, PRL 115 (2015) 11, 112002

QCD - estimate for viscosity over entropy ratio

Christiansen, Haas, JMP, Strodthoff, PRL 115 (2015) 11, 112002

preliminary

four-fermi scattering amplitude at pion pole

$$\langle \bar{q}\vec{\sigma}\gamma_5 q(p) \ \bar{q}\vec{\sigma}\gamma_5 q(-p) \rangle \rightarrow \frac{\chi_{\bar{q}\pi q}\bar{\chi}_{\bar{q}\pi q}}{p^2 - m_\pi^2} + \text{ finite terms}$$

preliminary

four-fermi scattering amplitude at pion pole

preliminary

four-fermi scattering amplitude at pion pole

pion decay constant f_π via normalisation of $\Gamma^{(3)}_{ar{f q}\pi{f q}}$

aka BSE wave function

recent mini-review on DSE-BSE Sanchis-Alepuz, Williams, arXiv:1503.05896

preliminary

four-fermi scattering amplitude at pion pole

pion decay constant $f_\pi~$ via normalisation of $~\Gamma^{(3)}_{\bar{\mathbf{q}}\pi\mathbf{q}}$

 ${f f}_{\pi}\simeq 99\,{
m MeV}$ quenched QCD

preliminary

four-fermi scattering amplitude at pion pole

lattice Davies et al., PRL 92 (2004) 022001 ${f_\pi^{
m quenched}\over f_\pi^{
m unquenched}}\simeq 1.1$

auenched OCD

preliminary

four-fermi scattering amplitude at pion pole

pion decay constant $f_\pi~$ via normalisation of $\Gamma^{(3)}_{\bar{\mathbf{q}}\pi\mathbf{q}}$

 ${f f}_{\pi}\simeq 99\,{
m MeV}$ guenched QCD

 ${f f}_{\pi}\simeq 89\,{
m MeV}$ unquenched QCD

lattice Davies et al., PRL 92 (2004) 022001

unquenched e.g. Horsley et al., PLB 732, 41 (2014) ${
m f}_{\pi}^{
m lattice}\simeq 89\,{
m MeV}$

Outline

Functional Approaches to QCD & the FRG

• Vacuum QCD: confinement & chiral symmetry breaking

Hadron spectrum & QCD transport

Phase structure of QCD

Summary & Outlook

= 0.99

Summary & Outlook

Phase structure and Transport

Summary & Outlook

Chiral Symmetry Breaking and Confinement

Phase Structure and Transport

- Towards quantitative precision
- Baryons, high density regime & CEP, dynamics
- Hadronic properties
 - hadron spectrum & in medium modifications
 - Iow energy constants