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Dark Side: Overview
Precise measurements on CMB, BBN, LSS, etc...

Planck reveals an almost perfect Universe
⌦tot = ⌦⇤ + ⌦M + ⌦� ' 1 ⌦M = ⌦b + ⌦DM

⌦� ' 10�5 ⌦⇤ ' 0.68

⌦b ' 0.05 ⌦DM ' 0.27

 DARK Sector: ⌦b + ⌦DM ' 0.95



DM Open Questions
There are compelling and strong evidence of non-baryonic 

Matter in the Universe: from Galactic to Cosmo scale    

BUT !!
The DM microphysics is still unknownMain added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation

Advertisement
You want to compute all signatures of your DM model in 
positrons, electrons, neutrinos, gamma rays...
but you don’t want to mess around with astrophysics?

www.marcocirelli.net/PPPC4DMID.html

Ciafaloni, Riotto et al., 1009.0224
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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DM candidate: axions, WIMP, wimpzillas, primordial BH, etc…

Underlying theory: supersymmetry, technicolor, mirror DM, etc...

DM density profile: cuspy profile (NFW, Einasto), cored profile (isothermal) 
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Direct searches aim at detecting the nuclear recoil possibly induced by:

the detectors must work deeply underground in order to reduce 
the background of cosmic rays
the detectors must use active shields and very clean materials 
against the residual radioactivity in the tunnel (        and neutrons)
the detectors must discriminate multiple scattering (DM particles 
do not scatter twice in the detector)

Experimental priorities

�,↵

DM signals are very rare events (less then one cpd/kg/keV)
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Phase-space structure in the local dark matter distribution 3

for all six halos with about 200 million particles within R200. Fur-
ther details of the halos and their characteristics can be found in
Springel et al. (2008).

In the following analysis we will often compare the six level-2
resolution halos, Aq-A-2 to Aq-F-2. To facilitate this comparison,
we scale the halos in mass and radius by the constant required to
give each a maximum circular velocity of Vmax = 208.49 km/s,
the value for Aq-A-2. We will also sometimes refer to a coordi-
nate system that is aligned with the principal axes of the inner halo,
and which labels particles by an ellipsoidal radius rell defined as
the semi-major axis length of the ellipsoidal equidensity surface on
which the particle sits. We determine the orientation and shape of
these ellipsoids as follows. For each halo we begin by diagonal-
ising the moment of inertia tensor of the dark matter within the
spherical shell 6 kpc < r < 12 kpc (after scaling to a com-
mon Vmax). This gives us a first estimate of the orientation and
shape of the best fitting ellipsoid. We then reselect particles with
6 kpc < rell < 12 kpc, recalculate the moment of inertia tensor
and repeat until convergence. The resulting ellipsoids have minor-
to-major axis ratios which vary from 0.39 for Aq-B-2 to 0.59 for
Aq-D-2. The radius restriction reflects our desire to probe the dark
matter distribution near the Sun.

3 SPATIAL DISTRIBUTIONS

The density of DM particles at the Earth determines the flux of
DM particles passing through laboratory detectors. It is important,
therefore, to determine not only the mean value of the DM density
8 kpc from the Galactic Centre, but also the fluctuations around this
mean which may result from small-scale structure.

We estimate the local DM distribution at each point in our
simulations using an SPH smoothing kernel adapted to the 64
nearest neighbours. We then fit a power law to the resulting dis-
tribution of ln ρ against ln rell over the ellipsoidal radius range
6 kpc < rell < 12 kpc. This defines a smooth model density
field ρmodel(rell). We then construct a density probability distribu-
tion function (DPDF) as the histogram of ρ/ρmodel for all particles
in 6 kpc < rell < 12 kpc, where each is weighted by ρ−1 so that
the resulting distribution refers to random points within our ellip-
soidal shell rather than to random mass elements. We normalise the
resulting DPDFs to have unit integral. They then provide a prob-
ability distribution for the local dark matter density at a random
point in units of that predicted by the best fitting smooth ellipsoidal
model.

In Fig. 1 we show the DPDFs measured in this way for all
resimulations of Aq-A (top panel) and for all level-2 halos after
scaling to a common Vmax (bottom panel). Two distinct compo-
nents are evident in both plots. One is smoothly and log-normally
distributed around ρ = ρmodel, the other is a power-law tail to high
densities which contains less than 10−4 of all points. The power-
law tail is not present in the lower resolution halos (Aq-A-3, Aq-
A-4, Aq-A-5) because they are unable to resolve subhalos in these
inner regions. However, Aq-A-2 and Aq-A-1 give quite similar re-
sults, suggesting that resolution level 2 is sufficient to get a reason-
able estimate of the overall level of the tail. A comparison of the six
level 2 simulations then demonstrates that this tail has similar shape
in different halos, but a normalisation which can vary by a factor
of several. In none of our halos does the fraction of the distribu-
tion in this tail rise above 5× 10−5. Furthermore, the arguments of
Springel et al (2008) suggest that the total mass fraction in the in-
ner halo (and thus also the total volume fraction) in subhalos below
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Figure 2. Top four panels: Velocity distributions in a 2 kpc box at the Solar
Circle for halo Aq-A-1. v1, v2 and v3 are the velocity components parallel
to the major, intermediate and minor axes of the velocity ellipsoid; v is the
modulus of the velocity vector. Red lines show the histograms measured
directly from the simulation, while black dashed lines show a multivari-
ate Gaussian model fit to the individual component distributions. Residuals
from this model are shown in the upper part of each panel. The major axis
velocity distribution is clearly platykurtic, whereas the other two distribu-
tions are leptokurtic. All three are very smooth, showing no evidence for
spikes due to individual streams. In contrast, the distribution of the velocity
modulus, shown in the upper left panel, shows broad bumps and dips with
amplitudes of up to ten percent of the distribution maximum. Lower panel:
Velocity modulus distributions for all 2 kpc boxes centred between 7 and
9 kpc from the centre of Aq-A-1. At each velocity a thick red line gives the
median of all the measured distributions, while a dashed black line gives
the median of all the fitted multivariate Gaussians. The dark and light blue
contours enclose 68% and 95% of all the measured distributions at each ve-
locity. The bumps seen in the distribution for a single box are clearly present
with similar amplitude in all boxes, and so also in the median curve. The
bin size is 5 km/s in all plots.

“Phase Space Structure in the Local DM Distribution”, Mon.Not.Roy.Astrom.Soc. (2009) 395, 797

Maxwell-BoltzmannNumerical Simulations

Maxwell-Boltzmann-like 
configuration confirmed:

Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation

Advertisement
You want to compute all signatures of your DM model in 
positrons, electrons, neutrinos, gamma rays...
but you don’t want to mess around with astrophysics?

www.marcocirelli.net/PPPC4DMID.html

Ciafaloni, Riotto et al., 1009.0224

e±

�

10�7 10�6 10�5 10�4 10�3 10�2 10�1 1
10�4

10�3

10�2

10�1

1

10

102

x ⇥ K�MDM

dN
�dlogx

DM DM ⇤ qq at MDM ⇥ 1 TeV

10�7 10�6 10�5 10�4 10�3 10�2 10�1 1
10�4

10�3

10�2

10�1

1

10

102

x ⇥ K�MDM

dN
�dlogx

DM DM ⇤ gg at MDM ⇥ 1 TeV

10⇥7 10⇥6 10⇥5 10⇥4 10⇥3 10⇥2 10⇥1 1
10⇥4

10⇥3

10⇥2

10⇥1

1

10

102

x ⇤ K�MDM

dN
�dlogx

DM DM ⇧ ⌅�⌅⇥ at MDM ⇤ 1 TeV

10⇥7 10⇥6 10⇥5 10⇥4 10⇥3 10⇥2 10⇥1 1
10⇥4

10⇥3

10⇥2

10⇥1

1

10

102

x ⇤ K�MDM

dN
�dlogx

DM DM ⌅W�W⇥ at MDM ⇤ 1 TeV

Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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amplitude will then be a rotationally invariant function of these variables; invariance un-
der Galilean boosts is ensured by the fact that these vectors are by themselves invariant
under Galileo velocity transformations, and translational symmetry is also respected given
the absence of a reference frame/point in space. In this regard, a basis of 16 rotationally
invariant operators can be constructed with ⇣v, ⇣q, ⇣sN , and ⇣s� [5], which include all possible
spin configurations. The scattering amplitude can then be written as a linear combination
of these operators, with coe⌅cients that may depend on the momenta only through the q2

or v2 scalars (⇣q · ⇣v = �q2/2µN by energy conservation, with µN the DM-nucleon reduced
mass). Before introducing these NR operators, however, let us notice that, instead of ⇣v, the
variable ⇣v� ⇧ ⇣v+⇣q/2µN is somehow more suitable to write the amplitude. ⇣v� is Hermitian,
in a sense explained in Ref. [3], while ⇣v is not, and moreover one has ⇣v� · ⇣q = 0. Following
Ref. [3] we will therefore use, in the description of the NR operators, ⇣v� instead of ⇣v. The
NR operators considered in this work are

ONR
1 = ,

ONR
3 = i⇣sN · (⇣q ⇤ ⇣v�) , ONR

4 = ⇣s� · ⇣sN ,

ONR
5 = i⇣s� · (⇣q ⇤ ⇣v�) , ONR

6 = (⇣s� · ⇣q)(⇣sN · ⇣q) ,

ONR
7 = ⇣sN · ⇣v� , ONR

8 = ⇣s� · ⇣v� ,

ONR
9 = i⇣s� · (⇣sN ⇤ ⇣q) , ONR

10 = i⇣sN · ⇣q ,

ONR
11 = i⇣s� · ⇣q , ONR

12 = ⇣v� · (⇣s� ⇤ ⇣sN) .

(1)

As in [3], we do not consider the full set of independent operators (for instance, as apparent,
we do not consider the operator labeled ONR

2 in [3], nor those above the 12th); however,
as we will see in Sec. 5, the operators listed above are enough to describe the NR limit
of many of the relativistic operators often encountered in the literature. We obtained the
form factor for the operator ONR

12 from the authors of [3] (private communication / cite
a paper not out yet). •

Given a model for the interaction of DM with the fundamental particles of the SM, we
can build the non-relativistic e⇥ective Lagrangian describing DM-nucleon interactions as
follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
process at the nucleon level 1 can be expressed as a linear combination of the operators (1):

MN =
12�

i=1

cN
i (�, m�) ONR

i . (2)

The coe⌅cients cN
i , where N = p, n can be proton or neutron, are function of the parameters

of the model, such as couplings, mediator masses and mixing angles, (collectively denoted)
�, the DM mass m� and the nucleon mass mN . For example, if the scattering between
a fermonic DM ⇤ and the nucleon N is described by the (high-energy) scalar operator
gN/�2 ⇤̄⇤ N̄N , the only non-relativistic operator involved is ONR

1 , and its coe⌅cient is
cN
1 = 4 gNm�mN/�2. The general way to determine the coe⌅cients entering the matrix

element (2), starting from high-energy e⇥ective operators, is described explicitly in Sec. 5.
As anticipated above, the cN

i can in principle also depend on the exchanged momentum
squared q2; in this case we factorize the momentum dependence outside of the coe⌅cients

1Note that this quantity coincides with what is denoted as a Lagrangian L in [3,4], e.g. in eq. (55) of [3].
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the specific form that the integrated form factors take for each one of them. In section 5 we
discuss the reduction from the set of high-energy e↵ective operators to the low-energy NR
operators. In section 6 we illustrate all the formalism with some explicit examples. Finally
in section 7 we conclude.

2 Phenomenology: from the NR operators formalism to the experimental
observables

In this section we introduce the formalism of NR operators, following [2, 3], and we describe
how to compute the experimental observables (essentially the number of events in the energy
bins of a certain experiment) in terms of it. More precisely, we will write the di↵erential

event rate as a linear function of a manipulation of the form factors F (N,N 0
)

i,j (provided
by [3]), which take into account the non-relativistic physics of the DM-nucleus interaction,
and encode all the nuclear information as well as the dynamics of the DM-nucleus interaction.

In a NR description of the elastic scattering of a DM particle � with a nucleon N , the
relevant degrees of freedom are the DM-nucleon relative velocity ~v, the exchanged momentum
~q, the nucleon spin ~sN and the DM spin ~s� (if di↵erent from zero). The scattering amplitude
will then be a rotationally invariant function of these variables; invariance under Galilean
boosts is ensured by the fact that these vectors are by themselves invariant under Galileo
velocity transformations, and translational symmetry is also respected given the absence of a
reference frame/point in space. In this regard, a basis of 16 rotationally invariant operators
can be constructed with ~v, ~q, ~sN , and ~s� [5], which include all possible spin configurations.
The scattering amplitude can then be written as a linear combination of these operators, with
coe�cients that may depend on the momenta only through the q2 or v2 scalars (~q ·~v = q2/2µN

by energy conservation, with µN the DM-nucleon reduced mass). Before introducing these
NR operators, however, let us notice that, instead of ~v, the variable ~v? ⌘ ~v � ~q/2µN is
somehow more suitable to write the amplitude. ~v? is Hermitian, in a sense explained e.g.
in [3], while ~v is not, and moreover one has ~v? · ~q = 0. Following [3] we will therefore use, in
the description of the NR operators, ~v? instead of ~v. The NR operators considered in this
work are

O
NR

1 = ,

O
NR

3 = i~sN · (~q ⇥ ~v?) , O
NR

4 = ~s� · ~sN ,

O
NR

5 = i~s� · (~q ⇥ ~v?) , O
NR

6 = (~s� · ~q)(~sN · ~q) ,
O
NR

7 = ~sN · ~v? , O
NR

8 = ~s� · ~v? ,

O
NR

9 = i~s� · (~sN ⇥ ~q) , O
NR

10 = i~sN · ~q ,
O
NR

11 = i~s� · ~q , O
NR

12 = ~v? · (~s� ⇥ ~sN ) ,

(2.1)

where we follow the numbering adopted in [3, 4]. As in [3], we do not consider the full set
of independent operators (for instance, as apparent, we do not consider the operator labeled
O
NR
2

in [3], nor those above the 12th); however, as we will see in section 5, the operators
listed above are enough to describe the NR limit of many of the relativistic operators often
encountered in the literature. The form factor for the operator ONR

12
was obtained from the

authors of [3].
Given a model for the interaction of DM with the fundamental particles of the SM,

we can build the non-relativistic e↵ective Lagrangian describing DM-nucleon interactions
as follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
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of independent operators (for instance, as apparent, we do not consider the operator labeled
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in [3], nor those above the 12th); however, as we will see in section 5, the operators
listed above are enough to describe the NR limit of many of the relativistic operators often
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NR Nuclear Resposes
|MN |2 =

m2
N

m2
N

12X

i,j=1

X
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cNi cN
0

j F (N,N 0)
i,j (v, q2)

and redefine the cN
i as independent from q. The most notable cases of q dependence is

featured perhaps in long range interactions, where the exchange of a massless mediator
is responsible for the interaction between the DM and the nucleons. The di�erential cross
section displays in this case negative powers of q, thus enhancing the scattering rate at lower
exchanged momenta. Assuming that the massless mediator responsible for the interaction
is the Standard Model photon2, the most relevant cases are a DM with small but nonzero
electric charge, electric dipole moment or magnetic dipole moment. As we shall see in more
detail in Sec. 5, these interactions feature all a 1/q2-dependence [4]. In addition to those in
eq. (1), we will therefore consider also the following long range operators:

Olr
1 =

1

q2
ONR

1 , Olr
5 =

1

q2
ONR

5 ,

Olr
6 =

1

q2
ONR

6 , Olr
11 =

1

q2
ONR

11 .
(3)

According to Eq. (55) of [3] we can then write the spin-averaged amplitude squared for
scattering o� a target nucleus T with mass mT as

|MT |2 =
m2

T

m2
N

12⇥

i,j=1

⇥

N,N �=p,n

cN
i cN �

j F (N,N �)
i,j . (4)

The F (N,N �)
i,j (v, ER, T ) are the form factors provided in the appendices of [3], and depend

critically on the type of scattering nucleus T ; they are also function of m�, v and the nuclear
recoil energy ER = q2/2mT .
We can then construct the di�erential scattering cross section, which reads, in the non-
relativistic case,

d⇧T

dER
(v, ER) =

1

32⇤

1

m2
�mT

1

v2
|MT |2 . (5)

To write the scattering rate we need to take into account the general case in which the
detector is composed of di�erent nuclides (these can be di�erent isotopes of the same
specie, as well as di�erent kind of nuclei). We take the numeric abundances of di�erent
nuclides used in Direct Detection searches from Table II of [6], and convert them into mass
fractions3 ⇥T for each type of target nucleus T , with mass number AT , in the detector. The
di�erential rate for DM scattering o� a specific target, expressed in cpd (counts per day)
per kilogram per keV, is then

dRT

dER
=

⇥T

mT

⌅�
m�

⇤

vmin(ER)

d3v v fE(✓v)
d⇧T

dER
(v, ER) , (6)

where ⌅� ⇤ 0.3 GeV/cm3 is the DM energy density at the Earth’s location and fE(✓v) is
the DM velocity distribution in the Earth’s frame. vmin(ER), the minimum velocity with
which a DM particle can scatter o� a nucleus with a given recoil energy ER, also depends
on the target nucleus via the relation vmin =

⌅
mT ER/2µ2

T (for elastic scattering), where

2As we shall see in Sec. 5, gluons behave di�erently and need separate treatment.
3⇥T = 103NAmT �T /Ā, where NA = 6.022� 1023 is Avogadro’s number, �T are the numeric abundances

and Ā ⇥
�

T �T AT .
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amplitude will then be a rotationally invariant function of these variables; invariance un-
der Galilean boosts is ensured by the fact that these vectors are by themselves invariant
under Galileo velocity transformations, and translational symmetry is also respected given
the absence of a reference frame/point in space. In this regard, a basis of 16 rotationally
invariant operators can be constructed with ⇣v, ⇣q, ⇣sN , and ⇣s� [5], which include all possible
spin configurations. The scattering amplitude can then be written as a linear combination
of these operators, with coe⌅cients that may depend on the momenta only through the q2

or v2 scalars (⇣q · ⇣v = �q2/2µN by energy conservation, with µN the DM-nucleon reduced
mass). Before introducing these NR operators, however, let us notice that, instead of ⇣v, the
variable ⇣v� ⇧ ⇣v+⇣q/2µN is somehow more suitable to write the amplitude. ⇣v� is Hermitian,
in a sense explained in Ref. [3], while ⇣v is not, and moreover one has ⇣v� · ⇣q = 0. Following
Ref. [3] we will therefore use, in the description of the NR operators, ⇣v� instead of ⇣v. The
NR operators considered in this work are

ONR
1 = ,

ONR
3 = i⇣sN · (⇣q ⇤ ⇣v�) , ONR

4 = ⇣s� · ⇣sN ,

ONR
5 = i⇣s� · (⇣q ⇤ ⇣v�) , ONR

6 = (⇣s� · ⇣q)(⇣sN · ⇣q) ,

ONR
7 = ⇣sN · ⇣v� , ONR

8 = ⇣s� · ⇣v� ,

ONR
9 = i⇣s� · (⇣sN ⇤ ⇣q) , ONR

10 = i⇣sN · ⇣q ,

ONR
11 = i⇣s� · ⇣q , ONR

12 = ⇣v� · (⇣s� ⇤ ⇣sN) .

(1)

As in [3], we do not consider the full set of independent operators (for instance, as apparent,
we do not consider the operator labeled ONR

2 in [3], nor those above the 12th); however,
as we will see in Sec. 5, the operators listed above are enough to describe the NR limit
of many of the relativistic operators often encountered in the literature. We obtained the
form factor for the operator ONR

12 from the authors of [3] (private communication / cite
a paper not out yet). •

Given a model for the interaction of DM with the fundamental particles of the SM, we
can build the non-relativistic e⇥ective Lagrangian describing DM-nucleon interactions as
follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
process at the nucleon level 1 can be expressed as a linear combination of the operators (1):

MN =
12�

i=1

cN
i (�, m�) ONR

i . (2)

The coe⌅cients cN
i , where N = p, n can be proton or neutron, are function of the parameters

of the model, such as couplings, mediator masses and mixing angles, (collectively denoted)
�, the DM mass m� and the nucleon mass mN . For example, if the scattering between
a fermonic DM ⇤ and the nucleon N is described by the (high-energy) scalar operator
gN/�2 ⇤̄⇤ N̄N , the only non-relativistic operator involved is ONR

1 , and its coe⌅cient is
cN
1 = 4 gNm�mN/�2. The general way to determine the coe⌅cients entering the matrix

element (2), starting from high-energy e⇥ective operators, is described explicitly in Sec. 5.
As anticipated above, the cN

i can in principle also depend on the exchanged momentum
squared q2; in this case we factorize the momentum dependence outside of the coe⌅cients

1Note that this quantity coincides with what is denoted as a Lagrangian L in [3,4], e.g. in eq. (55) of [3].
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Figure 1: Nuclear responses of the fluorine (a) and the iodine (b) targets considering two completely different types of interactions. On a
more specific level, we show, in red, the nuclear responses for the “standard” SI contact interaction, while in blue those for another kind of
interaction described in the nonrelativistic limit by the operator ONR6 = ( ⃗"! ⋅ ⃗$)( ⃗"" ⋅ ⃗$). The different hatching refers instead to the possible
choices of nucleon pairs in the nucleus. In particular, the solid, dashed, and dotted lines are for (%,%), (&, &), and (%, &) pairs, while the thick
ones are obtained by summing over all of them (total nuclear responses). Notice that the total nuclear responses for the “standard” SI contact
interaction (thick red lines) reduce to '2N(2Helm($), where (2Helm($) is the customary Helm form factor [33].

where we define the total SI nuclear response as(totN (*#) = ∑","!=$,%((","!)1,1 (*#,N) . (17)

Here, since -$SI = -%SI, the total nuclear response reduces to
the square of the customary Helm form factor [33] multiplied
by the coherent enhancement of the cross section '2N. In
particular it reads (totN (*#) = '2N(2Helm(*#). The function
I(*#) = ∫VescVmin

d3 V/&(V⃗ + V⃗'(0))/V is instead the velocity
integral encountered many times in the literature. It is worth
noticing thatI(*#) can be written in this way because in the
“standard” SI interaction the operator that the describes the
nonrelativistic limit of the effective Lagrangian does not carry
any dependences on the relative velocity V⃗. In Section 3.2
the interpretation of the experimental results in terms of the
“standard” SI interaction is briefly reviewed.

2.3. Experimental Observables. Since, as already stated, the
Earth’s orbital velocity projected in the galactic plane is
relatively small compared to the drift velocity of the Sun, we
can then expand the recoil rate (11), assuming that the velocity

distribution is not strongly anisotropic.Then, by means then
of (7), one gets

d1N
d*# (0) ≃ d1N

d*# 33333333V"=V⊙+ 44V' d1Nd*# 33333333V"=V⊙ΔV cos[27 (0 − 9): ] . (18)

In order now to properly reproduce the experimental
rate of nuclear recoil and in turn the expected number of
events in a certain energy bin, one should take into account
the response of the detectors as well. It can be done by the
following energy convolution and transformation:

d1
d*( =∑

N

< (*()∫∞0 d*#KN ($N*#,*() d1Nd*# (*#) , (19)

where *( is the detected energy and the functions
KN($N*#,*() and <(*() are the energy resolution centered
in $N*# and the detector’s efficiency, respectively. Here
the sum runs over the different species of the detectors
(e.g., DAMA is a multiple target experiment composed
by crystal of sodium and iodine) and $N is the so-called
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    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Number of events expressed in terms of model independent nuclear responses
Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall

13

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l c
ent
er
r ⇥
0 k
pc

Ga
l e
dg
e r
⇥
20
kp
c

10�1 1 10 102 103 104 105
10�17

10�16

10�15

10�14

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

Gal center r ⇥ 0 kpc

Gal edge r ⇥ 20 kpc

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l e
dg
e z
⇥
15
kp
c

10�1 1 10 102 103 104 105

10�17

10�16

10�15

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

1 kpc4 kpc

Gal edge z ⇥ 15 kpc

Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Going beyond the usual SI and SD pictures and study non-conventional models

Number of events

P. Panci,  “New Directions in Direct DM Searches”,  Adv.High Energy Phys. 2014 (2014) 681312
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DAMA: Results

“First results from the DAMA/LIBRA experiments”, Eur.Phys.J. C56 (2008) 333

Fitted with:

with significance 8.3 σ CL

with significance 8.9 σ CL

with significance 8.2 σ CL

Sm cos(t/� + ⇥)

� = 0.996± 0.002 year

� = 138± 7 days � 2nd June

Sm = 0.0223± 0.0027 cpd/kg/keV

Sm = 0.0178± 0.0020 cpd/kg/keV
� = 0.998± 0.002 year

� = 145± 7 days � 2nd June

Sm = 0.0131± 0.0016 cpd/kg/keV

� = 0.998± 0.003 year

� = 144± 8 days � 2nd June

2-4 keV energy bin

2-5 keV energy bin

2-6 keV energy bin

A clear annual modulation over the course of many years is present !!



DAMA: Results

“First results from the DAMA/LIBRA experiments”, Eur.Phys.J. C56 (2008) 333

signal window

Spectrum of the modulated signal Spectrum of the total rate

Spectral features of the DAMA signal in the low-energy bin

Bottom line: the modulation is only visible at low energy (from 2 to 6 keVee)



DAMA: Results

“First results from the DAMA/LIBRA experiments”, Eur.Phys.J. C56 (2008) 333

signal window

Spectral features of the DAMA signal in the low-energy bin

Bottom line: the modulation is only visible at low energy (from 2 to 6 keVee)

Comparison with the DAMA datasets
one has to compare the theoretical modulated signal with the experimental one  
in the energy bins of interest, without exceed the total rate

Spectrum of the modulated signal Spectrum of the total rate



Xenon-based DM experiments
Dark Matter direct detection Limits on spin-independent interactions

XENON100

2 phase (gas/liquid) Xenon detector @ Gran Sasso
S1: prompt scintillation signal, S2: delayed ionization signal

48 kg fid., 100.9 days (Jan to June 2010) 1104.2549

3 events observed, 1.8± 0.6 background expectation

T. Schwetz 87

 - Electron Recoil:

 - Nuclear Recoil: Sliq � Sgas

Sliq ⌧ Sgas

the density of ionization is very high, mostly of the ionized electrons 
promptly recombine, without drift in the gas phase, producing in the 
liquid the majority of the signal

the density of ionization is very poor, the ionized electrons can drift in 
the gas phase producing there a scintillation signal
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tion parameter space, and by the lines corresponding to
S2>150 PE and a lower line at ⇥97% acceptance from
neutron calibration data (see lines in Fig. 2, top).

Both NR and ER interactions contribute to the ex-
pected background for the WIMP search. The first is de-
termined from Monte Carlo simulations, using the mea-
sured intrinsic radioactive contamination of all detector
and shield materials [8] to calculate the neutron back-
ground from (�, n) and spontaneous fission reactions, as
well as from muons, taking into account the muon energy
and angular dependence at LNGS. The expecation from
these neutron sources is (0.17+0.12

�0.07 ) events for the given
exposure and NR acceptance in the benchmark region.
About 70% of the neutron background is muon-induced.

ER background events originate from radioactivity of
the detector components and from ⇥ and ⇤ activity of
intrinsic radioactivity in the LXe target, such as 222Rn
and 85Kr. The latter background is most critical since it
cannot be reduced by fiducialization. Hence, for the dark
matter search reported here, a major e�ort was made to
reduce the 85Kr contamination which a�ected the sensi-
tivity of the previous search [6]. To estimate the total ER
background from all sources, the 60Co and 232Th calibra-
tion data is used, with >35 times more statistics in the
relevant energy range than in the dark matter data. The
calibration data is scaled to the dark matter exposure by
normalizing it to the number of events seen above the
blinding cut in the energy region of interest. The ma-
jority of ER background events is Gaussian distributed
in the discrimination parameter space, with a few events
leaking anomalously into the NR band. These anoma-
lous events can be due to double scatters with one energy
deposition inside the TPC and another one in a charge
insensitive region, such that the prompt S1 signal from
the two scatters is combined with only one charge sig-
nal S2. Calibration data show that anomalous leakage is
most likely below ⇥8PE. The ER background estimate
including Gaussian and anomalous events is (0.79±0.16)
in the benchmark region, leading to a total background
expectation of (1.0± 0.2) events.

The background model used in the PL analysis em-
ploys the same assumptions and input spectra from MC
and calibration data. Its validity has been confirmed
prior to unblinding on the high-energy sideband and on
the vetoed data from 6.6-43.3 keVnr. However, the model
does not include a population with S2/S1 values below
the NR signal region extending down to the lowest en-
ergies with S2<150PE. This population was found only
after unblinding and might contribute to the background
at low S1.

After unblinding, two events were observed in the
benchmark WIMP search region, see Fig. 2. With en-
ergies of 7.1 keVnr (3.3 PE) and 7.8 keVnr (3.8 PE) both
fall into the lowest PE bin used for this analysis. The
waveforms for both events are of high quality and their
S2/S1 value is at the lower edge of the NR band from

neutron calibration. There are no leakage events below
3 PE. The PL analysis yields a p-value of � 5% for all
WIMP masses for the background-only hypothesis indi-
cating that there is no excess due to a dark matter sig-
nal. The probability that the expected background in
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FIG. 2: (Top) Event distribution in the discrimination param-
eter space log10(S2b/S1), flattened by subtracting the distri-
bution’s mean, as observed after unblinding using all analysis
cuts and a 34 kg fiducial volume (black points). A lower
analysis threshold of 6.6 keVnr (NR equivalent energy scale)
is employed. The PL analysis uses an upper energy threshold
of 43.3 keVnr (3-30 PE) and the benchmark WIMP search re-
gion is limited to 30.5 keVnr (3-20PE). The negligible impact
of the S2>150PE threshold cut is indicated by the dashed-
dotted blue line and the signal region is restricted by a lower
border running along the 97% NR quantile. An additional
hard S2b/S1 discrimination cut at 99.75% ER rejection de-
fines the benchmark WIMP search region from above (dotted
green) but is only used to cross check the PL inference. The
histogram in red indicates the NR band from the neutron cal-
ibration. Two events fall into the benchmark region where
(1.0 ± 0.2) are expected from background. (Bottom) Spatial
event distribution inside the TPC using a 6.6-43.3 keVnr en-
ergy window. The 34 kg fiducial volume is indicated by the
red dashed line. Gray points are above the 99.75% rejection
line, black dots fall below.
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0.64 ± 0.16 events from ER leakage are expected below
the NR mean, for the search dataset. The spatial
distribution of the events matches that expected from the
ER backgrounds in full detector simulations. We select
the upper bound of 30 phe (S1) for the signal estimation
analysis to avoid additional background from the 5 keVee
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FIG. 4. The LUX WIMP signal region. Events in the
118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. 3, with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation
analysis.

Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
modeled using a standard isothermal Maxwellian velocity
distribution [36], with v0 = 220 km/s; vesc = 544 km/s;
⇢0 = 0.3 GeV/c3; average Earth velocity of 245 km s�1,
and Helm form factor [37, 38]. We conservatively model
no signal below 3.0 keVnr (the lowest energy for which
direct NR yield measurements exist [30, 40]). We do
not profile the uncertainties in NR yield, assuming a
model which provides excellent agreement with LUX
data (Fig. 1 and [39]), in addition to being conservative
compared to past works [23]. We also do not account
for uncertainties in astrophysical parameters, which are
beyond the scope of this work. Signal models in S1 and S2

are obtained for each WIMP mass from full simulations.
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [41] (dark yellow line), CDMS II [42] (green line),
ZEPLIN-III [43] (magenta line) and XENON100 100 live-
day [44] (orange line), and 225 live-day [45] (red line) results.
The inset (same axis units) also shows the regions measured
from annual modulation in CoGeNT [46] (light red, shaded),
along with exclusion limits from low threshold re-analysis
of CDMS II data [47] (upper green line), 95% allowed
region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].
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Incidentally, we will also see explicitly that di↵erent high-energy e↵ective operators
might have the same non-relativistic form, corresponding thus to the same O

NR

k . This can
also give rise to interference e↵ects that might significantly lower or enhance the scattering
cross section, thus generating phenomenologies that are usually not taken into account by
the e↵ective operators analyses when they consider one operator at a time.

Notice that, while long-distance QCD e↵ects induce energy-dependent corrections to
the scattering amplitude, we will only present the matching from quark and gluon level
to the nucleon level at lowest order. Next to leading order e↵ects, including two-nucleon
interactions [17], have been studied in the case of scalar interactions in [18], and for spin-
dependent (axial-vector) interactions in [19, 20].

5.1 E↵ective operators for fermion dark matter

At dimension six, the e↵ective operators one can construct with a Dirac neutral DM field �
and quark fields q are

O
q
1
= �̄� q̄q , O

q
2
= �̄ i�5� q̄q ,

O
q
3
= �̄� q̄ i�5q , O

q
4
= �̄ i�5� q̄ i�5q ,

O
q
5
= �̄�µ� q̄�µq , O

q
6
= �̄�µ�5� q̄�µq ,

O
q
7
= �̄�µ� q̄�µ�

5q , O
q
8
= �̄�µ�5� q̄�µ�

5q ,

O
q
9
= �̄ �µ⌫� q̄ �µ⌫q , O

q
10

= �̄ i�µ⌫�5� q̄ �µ⌫q ,

(5.1)

where we do not take into account here flavor-violating interactions. Notice that the operators

�̄ �µ⌫� q̄ i�µ⌫�
5q , �̄ i�µ⌫�5� q̄ i�µ⌫�

5q (5.2)

are equal to O
q
10

and �O
q
9
, respectively, by virtue of the identity i�µ⌫�5 = �1

2
"µ⌫⇢⌧�⇢⌧ . For

a Majorana DM, only the bilinears �̄�, �̄�5� and �̄�µ�5� are non-zero.
Gauge-invariant interaction operators with gluons arise at dimension seven, and are

O
g
1
=

↵s

12⇡
�̄�Ga

µ⌫G
a
µ⌫ , O

g
2
=

↵s

12⇡
�̄ i�5�Ga

µ⌫G
a
µ⌫ ,

O
g
3
=

↵s

8⇡
�̄�Ga

µ⌫G̃
a
µ⌫ , O

g
4
=

↵s

8⇡
�̄ i�5�Ga

µ⌫G̃
a
µ⌫ ,

(5.3)

where G̃a
µ⌫ ⌘ "µ⌫⇢�Ga

⇢�, and the numerical overall factors have been chosen for later conve-
nience.

The e↵ective Lagrangian at the quark-gluon level is

Le↵ =
10X

k=1

X

q

cqkO
q
k +

4X

k=1

cgkO
g
k , (5.4)

where the cqk and cgk are real dimensionful coe�cients:8 cqk will have dimensions of [mass]�2

and cgk of [mass]�3. As briefly reviewed in appendix B, these operators induce an e↵ective
Lagrangian at the nucleon level

Le↵ =
10X

k=1

X

N=p,n

cNk O
N
k , (5.5)

8The cqk coe�cients are not to be confused with cNk coe�cients defined below nor with the cNk coe�cients
introduced in eq. (2.2): the first ones are the coe�cients in the expansion in terms of quark/gluon level
e↵ective operators, the second ones of the expansion in nucleon level operators, the last ones in NR operators.
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Incidentally, we will also see explicitly that di↵erent high-energy e↵ective operators
might have the same non-relativistic form, corresponding thus to the same O
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also give rise to interference e↵ects that might significantly lower or enhance the scattering
cross section, thus generating phenomenologies that are usually not taken into account by
the e↵ective operators analyses when they consider one operator at a time.

Notice that, while long-distance QCD e↵ects induce energy-dependent corrections to
the scattering amplitude, we will only present the matching from quark and gluon level
to the nucleon level at lowest order. Next to leading order e↵ects, including two-nucleon
interactions [17], have been studied in the case of scalar interactions in [18], and for spin-
dependent (axial-vector) interactions in [19, 20].
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k . This can
also give rise to interference e↵ects that might significantly lower or enhance the scattering
cross section, thus generating phenomenologies that are usually not taken into account by
the e↵ective operators analyses when they consider one operator at a time.
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the specific form that the integrated form factors take for each one of them. In section 5 we
discuss the reduction from the set of high-energy e↵ective operators to the low-energy NR
operators. In section 6 we illustrate all the formalism with some explicit examples. Finally
in section 7 we conclude.

2 Phenomenology: from the NR operators formalism to the experimental
observables

In this section we introduce the formalism of NR operators, following [2, 3], and we describe
how to compute the experimental observables (essentially the number of events in the energy
bins of a certain experiment) in terms of it. More precisely, we will write the di↵erential

event rate as a linear function of a manipulation of the form factors F (N,N 0
)

i,j (provided
by [3]), which take into account the non-relativistic physics of the DM-nucleus interaction,
and encode all the nuclear information as well as the dynamics of the DM-nucleus interaction.

In a NR description of the elastic scattering of a DM particle � with a nucleon N , the
relevant degrees of freedom are the DM-nucleon relative velocity ~v, the exchanged momentum
~q, the nucleon spin ~sN and the DM spin ~s� (if di↵erent from zero). The scattering amplitude
will then be a rotationally invariant function of these variables; invariance under Galilean
boosts is ensured by the fact that these vectors are by themselves invariant under Galileo
velocity transformations, and translational symmetry is also respected given the absence of a
reference frame/point in space. In this regard, a basis of 16 rotationally invariant operators
can be constructed with ~v, ~q, ~sN , and ~s� [5], which include all possible spin configurations.
The scattering amplitude can then be written as a linear combination of these operators, with
coe�cients that may depend on the momenta only through the q2 or v2 scalars (~q ·~v = q2/2µN

by energy conservation, with µN the DM-nucleon reduced mass). Before introducing these
NR operators, however, let us notice that, instead of ~v, the variable ~v? ⌘ ~v � ~q/2µN is
somehow more suitable to write the amplitude. ~v? is Hermitian, in a sense explained e.g.
in [3], while ~v is not, and moreover one has ~v? · ~q = 0. Following [3] we will therefore use, in
the description of the NR operators, ~v? instead of ~v. The NR operators considered in this
work are

O
NR

1 = ,

O
NR

3 = i~sN · (~q ⇥ ~v?) , O
NR

4 = ~s� · ~sN ,

O
NR

5 = i~s� · (~q ⇥ ~v?) , O
NR

6 = (~s� · ~q)(~sN · ~q) ,
O
NR

7 = ~sN · ~v? , O
NR

8 = ~s� · ~v? ,

O
NR

9 = i~s� · (~sN ⇥ ~q) , O
NR

10 = i~sN · ~q ,
O
NR

11 = i~s� · ~q , O
NR

12 = ~v? · (~s� ⇥ ~sN ) ,

(2.1)

where we follow the numbering adopted in [3, 4]. As in [3], we do not consider the full set
of independent operators (for instance, as apparent, we do not consider the operator labeled
O
NR
2

in [3], nor those above the 12th); however, as we will see in section 5, the operators
listed above are enough to describe the NR limit of many of the relativistic operators often
encountered in the literature. The form factor for the operator ONR

12
was obtained from the

authors of [3].
Given a model for the interaction of DM with the fundamental particles of the SM,

we can build the non-relativistic e↵ective Lagrangian describing DM-nucleon interactions
as follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
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the specific form that the integrated form factors take for each one of them. In section 5 we
discuss the reduction from the set of high-energy e↵ective operators to the low-energy NR
operators. In section 6 we illustrate all the formalism with some explicit examples. Finally
in section 7 we conclude.

2 Phenomenology: from the NR operators formalism to the experimental
observables

In this section we introduce the formalism of NR operators, following [2, 3], and we describe
how to compute the experimental observables (essentially the number of events in the energy
bins of a certain experiment) in terms of it. More precisely, we will write the di↵erential

event rate as a linear function of a manipulation of the form factors F (N,N 0
)

i,j (provided
by [3]), which take into account the non-relativistic physics of the DM-nucleus interaction,
and encode all the nuclear information as well as the dynamics of the DM-nucleus interaction.

In a NR description of the elastic scattering of a DM particle � with a nucleon N , the
relevant degrees of freedom are the DM-nucleon relative velocity ~v, the exchanged momentum
~q, the nucleon spin ~sN and the DM spin ~s� (if di↵erent from zero). The scattering amplitude
will then be a rotationally invariant function of these variables; invariance under Galilean
boosts is ensured by the fact that these vectors are by themselves invariant under Galileo
velocity transformations, and translational symmetry is also respected given the absence of a
reference frame/point in space. In this regard, a basis of 16 rotationally invariant operators
can be constructed with ~v, ~q, ~sN , and ~s� [5], which include all possible spin configurations.
The scattering amplitude can then be written as a linear combination of these operators, with
coe�cients that may depend on the momenta only through the q2 or v2 scalars (~q ·~v = q2/2µN

by energy conservation, with µN the DM-nucleon reduced mass). Before introducing these
NR operators, however, let us notice that, instead of ~v, the variable ~v? ⌘ ~v � ~q/2µN is
somehow more suitable to write the amplitude. ~v? is Hermitian, in a sense explained e.g.
in [3], while ~v is not, and moreover one has ~v? · ~q = 0. Following [3] we will therefore use, in
the description of the NR operators, ~v? instead of ~v. The NR operators considered in this
work are

O
NR

1 = ,

O
NR

3 = i~sN · (~q ⇥ ~v?) , O
NR

4 = ~s� · ~sN ,

O
NR

5 = i~s� · (~q ⇥ ~v?) , O
NR

6 = (~s� · ~q)(~sN · ~q) ,
O
NR

7 = ~sN · ~v? , O
NR

8 = ~s� · ~v? ,

O
NR

9 = i~s� · (~sN ⇥ ~q) , O
NR

10 = i~sN · ~q ,
O
NR

11 = i~s� · ~q , O
NR

12 = ~v? · (~s� ⇥ ~sN ) ,

(2.1)

where we follow the numbering adopted in [3, 4]. As in [3], we do not consider the full set
of independent operators (for instance, as apparent, we do not consider the operator labeled
O
NR
2

in [3], nor those above the 12th); however, as we will see in section 5, the operators
listed above are enough to describe the NR limit of many of the relativistic operators often
encountered in the literature. The form factor for the operator ONR

12
was obtained from the

authors of [3].
Given a model for the interaction of DM with the fundamental particles of the SM,

we can build the non-relativistic e↵ective Lagrangian describing DM-nucleon interactions
as follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
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the specific form that the integrated form factors take for each one of them. In section 5 we
discuss the reduction from the set of high-energy e↵ective operators to the low-energy NR
operators. In section 6 we illustrate all the formalism with some explicit examples. Finally
in section 7 we conclude.

2 Phenomenology: from the NR operators formalism to the experimental
observables

In this section we introduce the formalism of NR operators, following [2, 3], and we describe
how to compute the experimental observables (essentially the number of events in the energy
bins of a certain experiment) in terms of it. More precisely, we will write the di↵erential

event rate as a linear function of a manipulation of the form factors F (N,N 0
)

i,j (provided
by [3]), which take into account the non-relativistic physics of the DM-nucleus interaction,
and encode all the nuclear information as well as the dynamics of the DM-nucleus interaction.

In a NR description of the elastic scattering of a DM particle � with a nucleon N , the
relevant degrees of freedom are the DM-nucleon relative velocity ~v, the exchanged momentum
~q, the nucleon spin ~sN and the DM spin ~s� (if di↵erent from zero). The scattering amplitude
will then be a rotationally invariant function of these variables; invariance under Galilean
boosts is ensured by the fact that these vectors are by themselves invariant under Galileo
velocity transformations, and translational symmetry is also respected given the absence of a
reference frame/point in space. In this regard, a basis of 16 rotationally invariant operators
can be constructed with ~v, ~q, ~sN , and ~s� [5], which include all possible spin configurations.
The scattering amplitude can then be written as a linear combination of these operators, with
coe�cients that may depend on the momenta only through the q2 or v2 scalars (~q ·~v = q2/2µN

by energy conservation, with µN the DM-nucleon reduced mass). Before introducing these
NR operators, however, let us notice that, instead of ~v, the variable ~v? ⌘ ~v � ~q/2µN is
somehow more suitable to write the amplitude. ~v? is Hermitian, in a sense explained e.g.
in [3], while ~v is not, and moreover one has ~v? · ~q = 0. Following [3] we will therefore use, in
the description of the NR operators, ~v? instead of ~v. The NR operators considered in this
work are

O
NR

1 = ,

O
NR

3 = i~sN · (~q ⇥ ~v?) , O
NR

4 = ~s� · ~sN ,

O
NR

5 = i~s� · (~q ⇥ ~v?) , O
NR

6 = (~s� · ~q)(~sN · ~q) ,
O
NR

7 = ~sN · ~v? , O
NR

8 = ~s� · ~v? ,

O
NR

9 = i~s� · (~sN ⇥ ~q) , O
NR

10 = i~sN · ~q ,
O
NR

11 = i~s� · ~q , O
NR

12 = ~v? · (~s� ⇥ ~sN ) ,

(2.1)

where we follow the numbering adopted in [3, 4]. As in [3], we do not consider the full set
of independent operators (for instance, as apparent, we do not consider the operator labeled
O
NR
2

in [3], nor those above the 12th); however, as we will see in section 5, the operators
listed above are enough to describe the NR limit of many of the relativistic operators often
encountered in the literature. The form factor for the operator ONR

12
was obtained from the

authors of [3].
Given a model for the interaction of DM with the fundamental particles of the SM,

we can build the non-relativistic e↵ective Lagrangian describing DM-nucleon interactions
as follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
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the specific form that the integrated form factors take for each one of them. In section 5 we
discuss the reduction from the set of high-energy e↵ective operators to the low-energy NR
operators. In section 6 we illustrate all the formalism with some explicit examples. Finally
in section 7 we conclude.

2 Phenomenology: from the NR operators formalism to the experimental
observables

In this section we introduce the formalism of NR operators, following [2, 3], and we describe
how to compute the experimental observables (essentially the number of events in the energy
bins of a certain experiment) in terms of it. More precisely, we will write the di↵erential

event rate as a linear function of a manipulation of the form factors F (N,N 0
)

i,j (provided
by [3]), which take into account the non-relativistic physics of the DM-nucleus interaction,
and encode all the nuclear information as well as the dynamics of the DM-nucleus interaction.

In a NR description of the elastic scattering of a DM particle � with a nucleon N , the
relevant degrees of freedom are the DM-nucleon relative velocity ~v, the exchanged momentum
~q, the nucleon spin ~sN and the DM spin ~s� (if di↵erent from zero). The scattering amplitude
will then be a rotationally invariant function of these variables; invariance under Galilean
boosts is ensured by the fact that these vectors are by themselves invariant under Galileo
velocity transformations, and translational symmetry is also respected given the absence of a
reference frame/point in space. In this regard, a basis of 16 rotationally invariant operators
can be constructed with ~v, ~q, ~sN , and ~s� [5], which include all possible spin configurations.
The scattering amplitude can then be written as a linear combination of these operators, with
coe�cients that may depend on the momenta only through the q2 or v2 scalars (~q ·~v = q2/2µN

by energy conservation, with µN the DM-nucleon reduced mass). Before introducing these
NR operators, however, let us notice that, instead of ~v, the variable ~v? ⌘ ~v � ~q/2µN is
somehow more suitable to write the amplitude. ~v? is Hermitian, in a sense explained e.g.
in [3], while ~v is not, and moreover one has ~v? · ~q = 0. Following [3] we will therefore use, in
the description of the NR operators, ~v? instead of ~v. The NR operators considered in this
work are

O
NR

1 = ,

O
NR

3 = i~sN · (~q ⇥ ~v?) , O
NR

4 = ~s� · ~sN ,

O
NR

5 = i~s� · (~q ⇥ ~v?) , O
NR

6 = (~s� · ~q)(~sN · ~q) ,
O
NR

7 = ~sN · ~v? , O
NR

8 = ~s� · ~v? ,

O
NR

9 = i~s� · (~sN ⇥ ~q) , O
NR

10 = i~sN · ~q ,
O
NR

11 = i~s� · ~q , O
NR

12 = ~v? · (~s� ⇥ ~sN ) ,

(2.1)

where we follow the numbering adopted in [3, 4]. As in [3], we do not consider the full set
of independent operators (for instance, as apparent, we do not consider the operator labeled
O
NR
2

in [3], nor those above the 12th); however, as we will see in section 5, the operators
listed above are enough to describe the NR limit of many of the relativistic operators often
encountered in the literature. The form factor for the operator ONR

12
was obtained from the

authors of [3].
Given a model for the interaction of DM with the fundamental particles of the SM,

we can build the non-relativistic e↵ective Lagrangian describing DM-nucleon interactions
as follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
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Incidentally, we will also see explicitly that di↵erent high-energy e↵ective operators
might have the same non-relativistic form, corresponding thus to the same O

NR

k . This can
also give rise to interference e↵ects that might significantly lower or enhance the scattering
cross section, thus generating phenomenologies that are usually not taken into account by
the e↵ective operators analyses when they consider one operator at a time.

Notice that, while long-distance QCD e↵ects induce energy-dependent corrections to
the scattering amplitude, we will only present the matching from quark and gluon level
to the nucleon level at lowest order. Next to leading order e↵ects, including two-nucleon
interactions [17], have been studied in the case of scalar interactions in [18], and for spin-
dependent (axial-vector) interactions in [19, 20].

5.1 E↵ective operators for fermion dark matter

At dimension six, the e↵ective operators one can construct with a Dirac neutral DM field �
and quark fields q are

O
q
1
= �̄� q̄q , O

q
2
= �̄ i�5� q̄q ,

O
q
3
= �̄� q̄ i�5q , O

q
4
= �̄ i�5� q̄ i�5q ,

O
q
5
= �̄�µ� q̄�µq , O

q
6
= �̄�µ�5� q̄�µq ,

O
q
7
= �̄�µ� q̄�µ�

5q , O
q
8
= �̄�µ�5� q̄�µ�

5q ,

O
q
9
= �̄ �µ⌫� q̄ �µ⌫q , O

q
10

= �̄ i�µ⌫�5� q̄ �µ⌫q ,

(5.1)

where we do not take into account here flavor-violating interactions. Notice that the operators

�̄ �µ⌫� q̄ i�µ⌫�
5q , �̄ i�µ⌫�5� q̄ i�µ⌫�

5q (5.2)

are equal to O
q
10

and �O
q
9
, respectively, by virtue of the identity i�µ⌫�5 = �1

2
"µ⌫⇢⌧�⇢⌧ . For

a Majorana DM, only the bilinears �̄�, �̄�5� and �̄�µ�5� are non-zero.
Gauge-invariant interaction operators with gluons arise at dimension seven, and are

O
g
1
=

↵s

12⇡
�̄�Ga

µ⌫G
a
µ⌫ , O

g
2
=

↵s

12⇡
�̄ i�5�Ga

µ⌫G
a
µ⌫ ,

O
g
3
=

↵s

8⇡
�̄�Ga

µ⌫G̃
a
µ⌫ , O

g
4
=

↵s

8⇡
�̄ i�5�Ga

µ⌫G̃
a
µ⌫ ,

(5.3)

where G̃a
µ⌫ ⌘ "µ⌫⇢�Ga

⇢�, and the numerical overall factors have been chosen for later conve-
nience.

The e↵ective Lagrangian at the quark-gluon level is

Le↵ =
10X

k=1

X

q

cqkO
q
k +

4X

k=1

cgkO
g
k , (5.4)

where the cqk and cgk are real dimensionful coe�cients:8 cqk will have dimensions of [mass]�2

and cgk of [mass]�3. As briefly reviewed in appendix B, these operators induce an e↵ective
Lagrangian at the nucleon level

Le↵ =
10X

k=1

X

N=p,n

cNk O
N
k , (5.5)

8The cqk coe�cients are not to be confused with cNk coe�cients defined below nor with the cNk coe�cients
introduced in eq. (2.2): the first ones are the coe�cients in the expansion in terms of quark/gluon level
e↵ective operators, the second ones of the expansion in nucleon level operators, the last ones in NR operators.
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Incidentally, we will also see explicitly that di↵erent high-energy e↵ective operators

might have the same non-relativistic form, corresponding thus to the same O
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k . This can
also give rise to interference e↵ects that might significantly lower or enhance the scattering
cross section, thus generating phenomenologies that are usually not taken into account by
the e↵ective operators analyses when they consider one operator at a time.

Notice that, while long-distance QCD e↵ects induce energy-dependent corrections to
the scattering amplitude, we will only present the matching from quark and gluon level
to the nucleon level at lowest order. Next to leading order e↵ects, including two-nucleon
interactions [17], have been studied in the case of scalar interactions in [18], and for spin-
dependent (axial-vector) interactions in [19, 20].

5.1 E↵ective operators for fermion dark matter

At dimension six, the e↵ective operators one can construct with a Dirac neutral DM field �
and quark fields q are
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where we do not take into account here flavor-violating interactions. Notice that the operators
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are equal to O
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10

and �O
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9
, respectively, by virtue of the identity i�µ⌫�5 = �1

2
"µ⌫⇢⌧�⇢⌧ . For

a Majorana DM, only the bilinears �̄�, �̄�5� and �̄�µ�5� are non-zero.
Gauge-invariant interaction operators with gluons arise at dimension seven, and are
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where G̃a
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⇢�, and the numerical overall factors have been chosen for later conve-
nience.

The e↵ective Lagrangian at the quark-gluon level is

Le↵ =
10X

k=1

X
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k +
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k=1

cgkO
g
k , (5.4)

where the cqk and cgk are real dimensionful coe�cients:8 cqk will have dimensions of [mass]�2

and cgk of [mass]�3. As briefly reviewed in appendix B, these operators induce an e↵ective
Lagrangian at the nucleon level

Le↵ =
10X

k=1

X

N=p,n

cNk O
N
k , (5.5)

8The cqk coe�cients are not to be confused with cNk coe�cients defined below nor with the cNk coe�cients
introduced in eq. (2.2): the first ones are the coe�cients in the expansion in terms of quark/gluon level
e↵ective operators, the second ones of the expansion in nucleon level operators, the last ones in NR operators.
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Figure 7: Bounds on individual contact e↵ective operators, all at 90% CL.
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5.1 E↵ective operators for fermion Dark Matter

At dimension six, the e↵ective operators one can construct with a Dirac neutral DM field
� and quark fields q are

O
q
1
= �̄� q̄q , O

q
2
= �̄ i�5� q̄q ,

O
q
3
= �̄� q̄ i�5q , O

q
4
= �̄ i�5� q̄ i�5q ,

O
q
5
= �̄�µ� q̄�µq , O

q
6
= �̄�µ�5� q̄�µq ,

O
q
7
= �̄�µ� q̄�µ�

5q , O
q
8
= �̄�µ�5� q̄�µ�

5q ,

O
q
9
= �̄ �µ⌫� q̄ �µ⌫q , O

q
10

= �̄ i�µ⌫�5� q̄ �µ⌫q ,

(39)

where we do not take into account here flavor-violating interactions. Notice that the oper-
ators

�̄ �µ⌫� q̄ i�µ⌫�
5q , �̄ i�µ⌫�5� q̄ i�µ⌫�

5q (40)

are equal to O
q
10

and �O
q
9
, respectively, by virtue of the identity i �µ⌫�5 = �1

2
"µ⌫⇢⌧�⇢⌧ . For

a Majorana DM, only the bilinears �̄�, �̄�5� and �̄�µ�5� are non-zero.
Gauge-invariant interaction operators with gluons arise at dimension seven, and are

O
g
1
=

↵s

12⇡
�̄�Ga

µ⌫G
a
µ⌫ , O

g
2
=

↵s

12⇡
�̄ i�5�Ga

µ⌫G
a
µ⌫ ,

O
g
3
=

↵s

8⇡
�̄�Ga

µ⌫G̃
a
µ⌫ , O

g
4
=

↵s

8⇡
�̄ i�5�Ga

µ⌫G̃
a
µ⌫ ,

(41)

where G̃a
µ⌫ ⌘ "µ⌫⇢�Ga

⇢�, and the numerical overall factors have been chosen for later conve-
nience.

The e↵ective Lagrangian at the quark-gluon level is

Le↵ =
10X

k=1

X

q

cqkO
q
k +

4X

k=1

cgkO
g
k , (42)

where the cqk and cgk are real dimensionful coe�cients:8 cqk will have dimensions of [mass]�2

and cgk of [mass]�3. As briefly reviewed in Appendix B, these operators induce an e↵ective
Lagrangian at the nucleon level

Le↵ =
10X

k=1

X

N=p,n

cNk O
N
k , (43)

where the O
N
k (N = p, n) are

O
N
1
= �̄� N̄N , O

N
2
= �̄ i�5� N̄N ,

O
N
3
= �̄� N̄ i�5N , O

N
4
= �̄ i�5� N̄ i�5N ,

O
N
5
= �̄�µ� N̄�µN , O

N
6
= �̄�µ�5� N̄�µN ,

O
N
7
= �̄�µ� N̄�µ�

5N , O
N
8
= �̄�µ�5� N̄�µ�

5N ,

O
N
9
= �̄ �µ⌫� N̄ �µ⌫N , O

N
10

= �̄ i�µ⌫�5� N̄ �µ⌫N ,

(44)

8The cqk coe�cients are not to be confused with cNk coe�cients defined below nor with the cNk coe�-
cients introduced in Eq. (2): the first ones are the coe�cients in the expansion in terms of quark/gluon
level e↵ective operators, the second ones of the expansion in nucleon level operators, the last ones in NR
operators.
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Direct detection of DM particles:
We provide tools for deriving bounds for DM-nucleus elastic collisions in a model independent way 

more than 100 papers used our tools !!The tools are provided in numerical form in this webpage:

Direct Detection Tools
“Tools for model independent bounds in Direct DM Searches”, JCAP 1103 (2011) 051
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Limitations of rel. EFT
UV Complete Models: predict different high-energy operators enter together  
with the Wilson coefficients that are related in a non-trivial way
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UV Complete Models: predict different high-energy operators enter together  
with the Wilson coefficients that are related in a non-trivial way



Running in Direct Detection
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Should we worry about loop corrections  
in a pre-discovery era?

RGE Effects:
- change the size  
of the effective couplings

- can generate operator 
mixing at low energy

DM-nucleus collisions:
- only sensitive to light degrees  
of freedom (light quarks and gluons)

- scattering cross sections particularly 
sensitive to the Lorentz structure of 
the high-energy effective operators
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Both scalar DM (complex) and 
fermion DM (Dirac or Majorana) 
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and fermion DM (Dirac & Majorana)
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Vector Mediators
Simplified Model

Spin-1 massive mediator
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4
V µ⌫Vµ⌫ +
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2
m2

V V
µVµ

LV

kinetic term for the spin 1 massive mediator

We do not consider mass and kinetic  
mixing with the Z boson since they depend  

on the detail of the UV theory



SIMPLIFIED MODEL

Vector mediatorVector Mediators
Simplified Model

L = LSM + LDM + LV + Jµ
DM Vµ + Jµ

SM Vµ

Frandsen, Kahlhoefer, Preston, Sarkar, K. Schmidt-Hoberg, JHEP07 (2012), arXiv:1204.3839

Buchmueller, Dolan, McCabe, JHEP01 (2014), arXiv:1308.6799

Alves, Profumo, Queiroz, JHEP04 (2014), arXiv:1312.5281

Arcadi, Mambrini, Tytgat, Zaldivar, JHEP03 (2014), arXiv:1401.0221

Lebedev, Mambrini, PLB734 (2014), arXiv:1403.4837

Buchmueller, Dolan, Malik, McCabe, JHEP01 (2015), arXiv:1407.8257

Harris, Khoze, Spannowsky, Williams, PRD91 (2015), arXiv:1411.0535

Alves, Berlin, Profumo, Queiroz, PRD92 (2015), arXiv:1501.03490

Jacques, Nordström, JHEP06 (2015), arXiv:1502.05721 

Chala, Kahlhoefer, McCullough, Nardini, Schmidt-Hoberg, JHEP07 (2015), arXiv:1503.05916

Compact and powerful 
tool to explore LHC 
phenomenology and 

complementarity among 
DM searches

Vector Mediators
Simplified Model

Jµ
DM Vµ

Mediator coupled to spin-1 DM currents

Jµ
DM =

⇢
c� �† !@ µ� scalar DM
K�

�
c�V ��µ�+ c�A ��µ�5�

�
fermion DM

V DM

DM

mediator coupled with spin 1 DM currents

Vector Mediators
Simplified Model

Jµ
DM Vµ

Mediator coupled to spin-1 DM currents

Jµ
DM =

⇢
c� �† !@ µ� scalar DM
K�

�
c�V ��µ�+ c�A ��µ�5�

�
fermion DM

V DM

DM



SIMPLIFIED MODEL

Vector mediatorVector Mediators
Simplified Model

L = LSM + LDM + LV + Jµ
DM Vµ + Jµ

SM Vµ

Frandsen, Kahlhoefer, Preston, Sarkar, K. Schmidt-Hoberg, JHEP07 (2012), arXiv:1204.3839

Buchmueller, Dolan, McCabe, JHEP01 (2014), arXiv:1308.6799

Alves, Profumo, Queiroz, JHEP04 (2014), arXiv:1312.5281

Arcadi, Mambrini, Tytgat, Zaldivar, JHEP03 (2014), arXiv:1401.0221

Lebedev, Mambrini, PLB734 (2014), arXiv:1403.4837

Buchmueller, Dolan, Malik, McCabe, JHEP01 (2015), arXiv:1407.8257

Harris, Khoze, Spannowsky, Williams, PRD91 (2015), arXiv:1411.0535

Alves, Berlin, Profumo, Queiroz, PRD92 (2015), arXiv:1501.03490

Jacques, Nordström, JHEP06 (2015), arXiv:1502.05721 

Chala, Kahlhoefer, McCullough, Nardini, Schmidt-Hoberg, JHEP07 (2015), arXiv:1503.05916

Compact and powerful 
tool to explore LHC 
phenomenology and 

complementarity among 
DM searches
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Mediator coupled to spin-1 currents of SM fermions
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DM particles interact with the nucleus in deeply NR regime
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connecting 
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Main Steps to NR XS
DM particles interact with the nucleus in deeply NR regime

straightforward for vector mediator

complete one loop RGE analysis 
for Spin 1 mediator can be found in

 F. D’Eramo, M. Procura, JHEP 1504 (2015), [arXiv:1411.3342] 
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Some Results: Quark Vector
mediator with FU couplings the 

V current of quarks 

RGE driven by loops of electromagnetic currents (no mixing)

Results I: quarks vector
Mediator with flavor universal 

couplings to quark vector currents
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RGE effects are O(1%) correction to EFT couplings
FD, Kavanagh, Panci, in preparation 
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mediator with FU couplings the 
AV current of quarks 

Some Results: Quark Axial
Mediator with flavor universal 

couplings to quark axial currents

Results II: quarks axial
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runDM: general RGE
Interested in the General RGE of the 15 gauge invariant couplings from high 

energy to low energy ?

Exhaustive study for other cases in: F. D’Eramo, B. J. Kavanagh, P. Panci, 
JHEP 1608 (2016) 111,  [arXiv: 1605.04917]

https://github.com/bradkav/runDM/



DD vs LHC (Axial-Axial)
LHC phenomenology and complementary with Direct searches
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ATLAS,  [arXiv: 1604.01306]
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where the O
N
k (N = p, n) are

O
N
1 = �̄� N̄N , O

N
2 = �̄ i�5� N̄N ,

O
N
3 = �̄� N̄ i�5N , O

N
4 = �̄ i�5� N̄ i�5N ,

O
N
5 = �̄�µ� N̄�µN , O

N
6 = �̄�µ�5� N̄�µN ,

O
N
7 = �̄�µ� N̄�µ�

5N , O
N
8 = �̄�µ�5� N̄�µ�

5N ,

O
N
9 = �̄ �µ⌫� N̄ �µ⌫N , O

N
10 = �̄ i�µ⌫�5� N̄ �µ⌫N ,

(5.6)

and we denoted with N the nucleon field. Notice that the gluon operators contribute to the
scalar operators ON

1
, ON

2
, ON

3
and O

N
4
. The couplings are

cN1,2 =
X

q=u,d,s

cq
1,2

mN

mq
f (N)

Tq +
2

27
f (N)

TG

0

@
X

q=c,b,t

cq
1,2

mN

mq
� cg

1,2mN

1

A , (5.7a)

cN3,4 =
X

q=u,d,s

mN

mq

h
(cq

3,4 � C3,4) + cg
3,4m̄

i
�(N)

q , (5.7b)

cp
5,6 = 2 cu5,6 + cd5,6 , cn5,6 = cu5,6 + 2 cd5,6 , (5.7c)

cN7,8 =
X

q

cq
7,8�

(N)

q , (5.7d)

cN9,10 =
X

q

cq
9,10 �

(N)

q , (5.7e)

where C3,4 ⌘
P

q c
q
3,4 m̄/mq with m̄ ⌘ (1/mu + 1/md + 1/ms)�1; the factors fTq, fTG, �

(N)

q

and �(N)

q are given in appendix B, to which the reader should refer for the derivation of the
equations (5.7) and where reference to the relevant literature is provided. For the quark
scalar couplings cq

1
to cq

4
it is usually assumed cqk / mq, as it would be the case for a DM-

quark interaction mediated by a higgs-like particle coupling to the quark masses (we will go
back to this point in section 6.1).

To compute the DM-nucleus amplitude, we have now to coherently sum up the interac-
tion amplitude over all nucleons in the nucleus, taking also into account the physics of the
bound state. The form factor formalism of [3] allows to make this for any type of interaction,
only we have first to evaluate the matrix elements outh�, N |ON

k |�, Niin and to express them
in terms of the non-relativistic operators O

NR

i introduced in eq. (2.1). To do so, we can
expand the solution of the Dirac equation in its non-relativistic limit: in the Weyl or chiral
representation for the spinors,

us(p) =

✓p
pµ�µ ⇠sp
pµ�̄µ ⇠s

◆
=

1p
2(p0 +m)

✓
(pµ�µ +m) ⇠s

(pµ�̄µ +m) ⇠s

◆

=
1p
4m

✓
(2m� ~p · ~�) ⇠s
(2m+ ~p · ~�) ⇠s

◆
+ O(~p 2)

(5.8)

where �µ = ( ,~�), �̄µ = ( ,�~�) and we approximated pµ = (m, ~p) + O(~p 2) in the non-
relativistic limit. In this limit we can study the velocity, momentum and spin dependence of
the fermion bilinears, when both fermions are on-shell. Up to and including the first order
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in the three-momenta,

ū(p0)u(p) ' 2m, (5.9a)

ū(p0)i �5u(p) ' 2i ~q · ~s , (5.9b)

ū(p0)�µu(p) '
✓

2m
~P + 2i ~q ⇥ ~s

◆
, (5.9c)

ū(p0)�µ�5u(p) '
✓
2~P · ~s
4m~s

◆
, (5.9d)

ū(p0)�µ⌫u(p) '
 

0 i ~q � 2~P ⇥ ~s

�i ~q + 2~P ⇥ ~s 4m "ijksk

!
, (5.9e)

ū(p0)i�µ⌫�5u(p) '
✓

0 �4m~s
4m~s i "ijkqk � 2Pisj + 2Pjsi

◆
, (5.9f)

where ~q = ~p� ~p 0 is the exchanged momentum, and ~P = ~p+ ~p 0. The spin operator is defined
as ~s ⌘ ⇠0† ~�

2
⇠, where in its absence a ⇠0†⇠ is understood.

Finally, when contracting fermionic DM and nucleon bilinears,9 the following expressions
can be derived for the (matrix elements of the) O

N
k , at leading order in the non-relativistic

expansion:
hON

1 i = hON
5 i = 4m�mNO

NR

1 ,

hON
2 i = �4mNO

NR

11 ,

hON
3 i = 4m�O

NR

10 ,

hON
4 i = 4ONR

6 ,

hON
6 i = 8m�

�
+mNO

NR

8 + O
NR

9

�
,

hON
7 i = 8mN

�
�m�O

NR

7 + O
NR

9

�
,

hON
8 i = �1

2
hON

9 i = �16m�mNO
NR

4 ,

hON
10i = 8

�
m�O

NR

11 �mNO
NR

10 � 4m�mNO
NR

12

�
.

(5.11)

Here we took ~q to be the momentum transferred by the DM to the nucleus. With these
substitutions, the e↵ective Lagrangian (5.5) gives origin to the nucleonic matrix element in
the form of eq. (2.2), and the results of section 2 can be applied straightforwardly.10

From eq. (5.11) one can now see clearly that O
N
1

and O
N
5

correspond to the same
non-relativistic operator, and so do O

N
8

and O
N
9
. They are therefore indistinguishable by

direct detection experiments alone. This also means that a bound computed on one of these
operators is identical to the bound computed on the other, a di↵erence arising only if di↵erent
coe�cients are chosen for the two in the Lagrangian. Furthermore, if a model features both
operators, strong cancellations or enhancements of the scattering cross section might arise

9The following expression can be useful in expressing the result as function of only ~q and ~v?:

~P�

m�
�

~PN

mN
= 2~v? , (5.10)

where ~P� (~PN ) is the sum of the initial and final DM (nucleon) momenta.
10Notice that, while in [3, 4] the matrix element is defined as inh. . . iout, we use outh. . . iin instead. For this

reason we expect to get a minus sign for each power of q occurring in the NR operators. However, we use an
opposite convention for ~q so that the final result will be the same.
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in the three-momenta,

ū(p0)u(p) ' 2m, (5.9a)
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, (5.9f)

where ~q = ~p� ~p 0 is the exchanged momentum, and ~P = ~p+ ~p 0. The spin operator is defined
as ~s ⌘ ⇠0† ~�

2
⇠, where in its absence a ⇠0†⇠ is understood.

Finally, when contracting fermionic DM and nucleon bilinears,9 the following expressions
can be derived for the (matrix elements of the) O
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k , at leading order in the non-relativistic

expansion:
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hON
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hON
6 i = 8m�

�
+mNO
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8 + O
NR

9

�
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hON
7 i = 8mN

�
�m�O

NR

7 + O
NR
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�
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hON
8 i = �1
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hON

9 i = �16m�mNO
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Here we took ~q to be the momentum transferred by the DM to the nucleus. With these
substitutions, the e↵ective Lagrangian (5.5) gives origin to the nucleonic matrix element in
the form of eq. (2.2), and the results of section 2 can be applied straightforwardly.10

From eq. (5.11) one can now see clearly that O
N
1

and O
N
5

correspond to the same
non-relativistic operator, and so do O

N
8

and O
N
9
. They are therefore indistinguishable by

direct detection experiments alone. This also means that a bound computed on one of these
operators is identical to the bound computed on the other, a di↵erence arising only if di↵erent
coe�cients are chosen for the two in the Lagrangian. Furthermore, if a model features both
operators, strong cancellations or enhancements of the scattering cross section might arise

9The following expression can be useful in expressing the result as function of only ~q and ~v?:

~P�

m�
�

~PN

mN
= 2~v? , (5.10)

where ~P� (~PN ) is the sum of the initial and final DM (nucleon) momenta.
10Notice that, while in [3, 4] the matrix element is defined as inh. . . iout, we use outh. . . iin instead. For this

reason we expect to get a minus sign for each power of q occurring in the NR operators. However, we use an
opposite convention for ~q so that the final result will be the same.
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Match to NR operators

amplitude will then be a rotationally invariant function of these variables; invariance un-
der Galilean boosts is ensured by the fact that these vectors are by themselves invariant
under Galileo velocity transformations, and translational symmetry is also respected given
the absence of a reference frame/point in space. In this regard, a basis of 16 rotationally
invariant operators can be constructed with ⇣v, ⇣q, ⇣sN , and ⇣s� [5], which include all possible
spin configurations. The scattering amplitude can then be written as a linear combination
of these operators, with coe⌅cients that may depend on the momenta only through the q2

or v2 scalars (⇣q · ⇣v = �q2/2µN by energy conservation, with µN the DM-nucleon reduced
mass). Before introducing these NR operators, however, let us notice that, instead of ⇣v, the
variable ⇣v� ⇧ ⇣v+⇣q/2µN is somehow more suitable to write the amplitude. ⇣v� is Hermitian,
in a sense explained in Ref. [3], while ⇣v is not, and moreover one has ⇣v� · ⇣q = 0. Following
Ref. [3] we will therefore use, in the description of the NR operators, ⇣v� instead of ⇣v. The
NR operators considered in this work are

ONR
1 = ,

ONR
3 = i⇣sN · (⇣q ⇤ ⇣v�) , ONR

4 = ⇣s� · ⇣sN ,

ONR
5 = i⇣s� · (⇣q ⇤ ⇣v�) , ONR

6 = (⇣s� · ⇣q)(⇣sN · ⇣q) ,

ONR
7 = ⇣sN · ⇣v� , ONR

8 = ⇣s� · ⇣v� ,

ONR
9 = i⇣s� · (⇣sN ⇤ ⇣q) , ONR

10 = i⇣sN · ⇣q ,

ONR
11 = i⇣s� · ⇣q , ONR

12 = ⇣v� · (⇣s� ⇤ ⇣sN) .

(1)

As in [3], we do not consider the full set of independent operators (for instance, as apparent,
we do not consider the operator labeled ONR

2 in [3], nor those above the 12th); however,
as we will see in Sec. 5, the operators listed above are enough to describe the NR limit
of many of the relativistic operators often encountered in the literature. We obtained the
form factor for the operator ONR

12 from the authors of [3] (private communication / cite
a paper not out yet). •

Given a model for the interaction of DM with the fundamental particles of the SM, we
can build the non-relativistic e⇥ective Lagrangian describing DM-nucleon interactions as
follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
process at the nucleon level 1 can be expressed as a linear combination of the operators (1):

MN =
12�

i=1

cN
i (�, m�) ONR

i . (2)

The coe⌅cients cN
i , where N = p, n can be proton or neutron, are function of the parameters

of the model, such as couplings, mediator masses and mixing angles, (collectively denoted)
�, the DM mass m� and the nucleon mass mN . For example, if the scattering between
a fermonic DM ⇤ and the nucleon N is described by the (high-energy) scalar operator
gN/�2 ⇤̄⇤ N̄N , the only non-relativistic operator involved is ONR

1 , and its coe⌅cient is
cN
1 = 4 gNm�mN/�2. The general way to determine the coe⌅cients entering the matrix

element (2), starting from high-energy e⇥ective operators, is described explicitly in Sec. 5.
As anticipated above, the cN

i can in principle also depend on the exchanged momentum
squared q2; in this case we factorize the momentum dependence outside of the coe⌅cients

1Note that this quantity coincides with what is denoted as a Lagrangian L in [3,4], e.g. in eq. (55) of [3].
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Figure 7: Bounds on individual contact e↵ective operators, all at 90% CL.
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Higgs-like couplings

cqi =
mq

⇤3

5.1 E↵ective operators for fermion Dark Matter

At dimension six, the e↵ective operators one can construct with a Dirac neutral DM field
� and quark fields q are

O
q
1
= �̄� q̄q , O

q
2
= �̄ i�5� q̄q ,

O
q
3
= �̄� q̄ i�5q , O

q
4
= �̄ i�5� q̄ i�5q ,

O
q
5
= �̄�µ� q̄�µq , O

q
6
= �̄�µ�5� q̄�µq ,

O
q
7
= �̄�µ� q̄�µ�

5q , O
q
8
= �̄�µ�5� q̄�µ�

5q ,

O
q
9
= �̄ �µ⌫� q̄ �µ⌫q , O

q
10

= �̄ i�µ⌫�5� q̄ �µ⌫q ,

(39)

where we do not take into account here flavor-violating interactions. Notice that the oper-
ators

�̄ �µ⌫� q̄ i�µ⌫�
5q , �̄ i�µ⌫�5� q̄ i�µ⌫�

5q (40)

are equal to O
q
10

and �O
q
9
, respectively, by virtue of the identity i �µ⌫�5 = �1

2
"µ⌫⇢⌧�⇢⌧ . For

a Majorana DM, only the bilinears �̄�, �̄�5� and �̄�µ�5� are non-zero.
Gauge-invariant interaction operators with gluons arise at dimension seven, and are

O
g
1
=

↵s

12⇡
�̄�Ga

µ⌫G
a
µ⌫ , O

g
2
=

↵s

12⇡
�̄ i�5�Ga

µ⌫G
a
µ⌫ ,

O
g
3
=

↵s

8⇡
�̄�Ga

µ⌫G̃
a
µ⌫ , O

g
4
=

↵s

8⇡
�̄ i�5�Ga

µ⌫G̃
a
µ⌫ ,

(41)

where G̃a
µ⌫ ⌘ "µ⌫⇢�Ga

⇢�, and the numerical overall factors have been chosen for later conve-
nience.

The e↵ective Lagrangian at the quark-gluon level is

Le↵ =
10X

k=1

X

q

cqkO
q
k +

4X

k=1

cgkO
g
k , (42)

where the cqk and cgk are real dimensionful coe�cients:8 cqk will have dimensions of [mass]�2

and cgk of [mass]�3. As briefly reviewed in Appendix B, these operators induce an e↵ective
Lagrangian at the nucleon level

Le↵ =
10X

k=1

X

N=p,n

cNk O
N
k , (43)
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DAMA?



Relativistic interaction

Couplings at the quark level
DM coupling with the mediator
SM fermion coupling with the mediator
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Main Steps from the Relativistic Lagrangian to DD Rate 

Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation

Advertisement
You want to compute all signatures of your DM model in 
positrons, electrons, neutrinos, gamma rays...
but you don’t want to mess around with astrophysics?

www.marcocirelli.net/PPPC4DMID.html

Ciafaloni, Riotto et al., 1009.0224
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Dress up the quark-operators to the nucleon level 

Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation

Advertisement
You want to compute all signatures of your DM model in 
positrons, electrons, neutrinos, gamma rays...
but you don’t want to mess around with astrophysics?
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Write down the DM-nucleon effective Lagrangian



DM-nucleon Lagrangian
Le↵ =

1

2⇤2
a

X

N=p,n

gN �̄�5� N̄�5N ,

⇤a = ma/
p
g gDM :

Effective Lagrangian for contact interaction

Energy Scale of the effective Lagrangian

gN =
X

q=u,d,s

mN

mq


gq �

X

q0=u,...,t

gq0
m̄

mq0

�
�(N)

q

Quark spin content of the nucleons 

DM-nucleon effective couplings

combination of the free parameters of the 
model (mediator mass and couplings) H.-Y. Cheng and C.-W. Chiang, JHEP 1207 (2012) 009 

�(p)
u = �(n)

d = +0.84

�(p)
d = �(n)

u = �0.44
�(p)

s = �(n)
s = �0.03



DM-nucleon Lagrangian
Le↵ =

1

2⇤2
a

X

N=p,n

gN �̄�5� N̄�5N ,

⇤a = ma/
p
g gDM :

Effective Lagrangian for contact interaction

Energy Scale of the effective Lagrangian

combination of the free parameters of the 
model (mediator mass and couplings)

“Natural” Isospin Violation

Gross, Treiman, Wilczek, Phys. Rev. D19 2188, (1979)

flavor-universal couplings
higgs-like couplings

gp/gn = �16.4 :

gp/gn = �4.1 :
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    include EW corrections
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Advertisement
You want to compute all signatures of your DM model in 
positrons, electrons, neutrinos, gamma rays...
but you don’t want to mess around with astrophysics?

www.marcocirelli.net/PPPC4DMID.html

Ciafaloni, Riotto et al., 1009.0224

e±

�

10�7 10�6 10�5 10�4 10�3 10�2 10�1 1
10�4

10�3

10�2

10�1

1

10

102

x ⇥ K�MDM

dN
�dlogx

DM DM ⇤ qq at MDM ⇥ 1 TeV

10�7 10�6 10�5 10�4 10�3 10�2 10�1 1
10�4

10�3

10�2

10�1

1

10

102

x ⇥ K�MDM

dN
�dlogx

DM DM ⇤ gg at MDM ⇥ 1 TeV

10⇥7 10⇥6 10⇥5 10⇥4 10⇥3 10⇥2 10⇥1 1
10⇥4

10⇥3

10⇥2

10⇥1

1

10

102

x ⇤ K�MDM

dN
�dlogx

DM DM ⇧ ⌅�⌅⇥ at MDM ⇤ 1 TeV

10⇥7 10⇥6 10⇥5 10⇥4 10⇥3 10⇥2 10⇥1 1
10⇥4

10⇥3

10⇥2

10⇥1

1

10

102

x ⇤ K�MDM

dN
�dlogx

DM DM ⌅W�W⇥ at MDM ⇤ 1 TeV

Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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large isospin violation going from 
the quark level to the nucleon one

Important consequences in DD

the pseudo-scalar interaction measures a certain component of the spin 
content of the nucleus carried by the nucleons.

a large            will favor nuclides with a 
large spin due to their unpaired proton

gp/gn

(e.g. DAMA employs sodium & iodine)

nuclides with unpaired neutron 
will be largely disfavored

(e.g. XENON100 and LUX employ xenon)



Longitudinal SD interaction
gp/gn = �14.6 gp/gn = �4.1 gp = gn

Na
Na Na

III

Bottom line: the large enhancement of the DM-p coupling with respect  
to the DM-n coupling suppresses the LUX and XENON100 bounds

“Not so Coy DM explains DAMA (and the GC excess)”, Phys.Rev.Lett. 114 (2015) 011301
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