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What is spacetime?  
        and how does it come about?  
                        the quest for quantum gravity



Quantum Gravity:

the problem



What we know about gravity and spacetime
•    gravitational physics well described by General Relativity


• basis for our description of astrophysics and cosmology


•   predicts amazing new phenomena (deflection of light, gravitational distortion of space and time 
measurements, gravitational waves, black holes, expansion of universe, …….)

1 Quantum theory and gravity – what is the
connection?

According to our current knowledge, the fundamental interactions of Nature
are the strong, the electromagnetic, the weak, and the gravitational interac-
tions. The first three are successfully described by the Standard Model of
particle physics, in which a partial unification of the electromagnetic and the
weak interactions has been achieved. Except for the non-vanishing neutrino
masses, there exist at present no empirical fact that is clearly at variance with
the Standard Model. Gravity is described by Einstein’s theory of general rel-
ativity (GR), and no empirical fact is known that is in clear contradiction to
GR. From a pure empirical point of view, we thus have no reason to search
for new physical laws. From a theoretical (mathematical and conceptual)
point of view, however, the situation is not satisfactory. Whereas the Stan-
dard Model is a quantum field theory describing an incomplete unification of
interactions, GR is a classical theory. Let us have a brief look at Einstein’s
theory, see, for example, Misner et al. (1973). It can be defined by the
Einstein–Hilbert action

SEH =
c4

16πG

∫

M

d4x
√
−g (R− 2Λ)− c4

8πG

∫

∂M

d3x
√
hK, (1)

where g is the determinant of the metric, R the Ricci scalar, and Λ is the
cosmological constant. In addition to the two main terms, which consist of
integrals over a spacetime region M, there is a term that is defined on the
boundary ∂M (here assumed to be space-like) of this region. This term is
needed for a consistent variational principle; here, h is the determinant of
the three-dimensional metric, and K is the trace of the second fundamental
form.

In the presence of non-gravitational fields, (1) is augmented by a ‘matter
action’ Sm. From the sum of these actions, one finds Einstein’s field equations
by variation with respect to the metric,

Gµν := Rµν −
1

2
gµνR =

8πG

c4
Tµν − Λgµν . (2)

The right-hand side displays the symmetric (Belinfante) energy–momentum
tensor

Tµν =
2√
−g

δSm

δgµν
, (3)

plus the cosmological-constant term, which may itself be accommodated into
the energy–momentum tensor as a contribution of the ‘vacuum energy’. If
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•    what do we learn from GR?


• gravitational interaction described (macroscopically) by geometry of spacetime


• continuum, local picture of spacetime adequate


• dynamics and (local) interaction with matter described by Einstein’s equations: “matter tells 
spacetime how to curve, spacetime tells matter how to move”


• spacetime itself is physical system

• there is no fixed background over which things happen, if not as approximation


• deeper understanding of gravity is deeper understanding of space and time
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Space and Time in General Relativity

GR key ingredients:  only dynamical fields + diffeomorphism invariance


• no preferred time/space direction - infinity of equally valid local notions of time/space


• only dynamical and diffeo-invariant quantities are physical (correspond to predictions of theory)


• manifold points, paths on manifolds, values of fields at points or regions, are -not- physical per se


• they have to be made physical (given some operational meaning) by defining them via dynamical fields

classical theory: S

S

M

2

1

g

h

h
2

1

(M , g) SM(g) Rµ⌫(g) � 1

2
R(g)gµ⌫ + ⇤ gµ⌫ = 0

spacetime structures:

topological manifold

differentiable structure

(“time” foliation vector, …)

continuum metric field

matter/gauge fields





two incompatible conceptual (and mathematical) frameworks for space, time, geometry and matter

so, what are, really, space, time, geometry, and matter? 

spacetime (geometry) is a dynamical entity itself

there are no preferred temporal (or spatial) directions

physical systems are local and locally interacting

everything (incl. spacetime) evolves deterministically

all dynamical fields are continuous entities

every property of physical systems (incl. spacetime) and 
of their interactions can be precisely determined, in 
principle

spacetime is fixed background for fields’ dynamics

evolution is unitary (conserved probabilities) with 
respect to a given (preferred) temporal direction   

nothing can be perfectly localised

everything evolves probabilistically

interaction and matter fields are made of “quanta” 

every property of physical systems and their 
interactions is intrinsically uncertain, in general

GR QFT

Why we need to go beyond GR and QFT



•  breakdown of GR for strong gravitational fields/large energy densities

spacetime singularities - black holes, big bang - quantum effects expected to be important

several open physical issues, at limits of GR and QFT or at interface (where both are expected to be relevant)

•  divergences in QFT - what happens at high energies? how does spacetime react to such high energies?

• what happens to quantum fields close to big bang? what generates cosmological fluctuations, and how? 

Why we need to go beyond GR and QFT
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Why we need to go beyond GR and QFT

•  no proper understanding of interaction of geometry with quantum matter, if gravity is not quantized

fermionic fields are added, one must generalize GR to the Einstein–Cartan
theory or to the Poincaré gauge theory, because spin is the source of torsion,
a geometric quantity that is identically zero in GR (see e.g. Gronwald and
Hehl 1996).

As one recognizes from (2), these equations can no longer have exactly the
same form if the quantum nature of the fields in Tµν is taken into account. For
then we have operators in Hilbert space on the right-hand side and classical
functions on the left-hand side. A straightforward generalization would be
to replace Tµν by its quantum expectation value,

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
⟨Ψ|T̂µν |Ψ⟩. (4)

These ‘semiclassical Einstein equations’ lead to problems when viewed as
exact equations at the most fundamental level, cf. Carlip (2008) and the
references therein. They spoil the linearity of quantum theory and even
seem to be in conflict with a performed experiment (Page and Geilker 1981).
They may nevertheless be of some value in an approximate way. Independent
of the problems with (4), one can try to test them in a simple setting such as
the Schrödinger–Newton equation; it seems, however, that such a test is not
realisable in the foreseeable future (Giulini and Grossardt 2011). This poses
the question of the connection between gravity and quantum theory (Kiefer
2012).

Despite its name, quantum theory is not a particular theory for a partic-
ular interaction. It is rather a general framework for physical theories, whose
fundamental concepts have so far exhibited an amazing universality. Despite
the ongoing discussion about its interpretational foundations (which we shall
address in the last section), the concepts of states in Hilbert space, and in
particular the superposition principle, have successfully passed thousands of
experimental tests.

It is, in fact, the superposition principle that points towards the need for
quantizing gravity. In the 1957 Chapel Hill Conference, Richard Feynman
gave the following argument (DeWitt and Rickles 2011, pp. 250–60), see also
Zeh (2011). He considers a Stern–Gerlach type of experiment in which two
spin-1/2 particles are put into a superposition of spin up and spin down and
is guided to two counters. He then imagines a connection of the counters to a
ball of macroscopic dimensions. The superposition of the particles is thereby
transferred to a superposition of the ball being simultaneously at two posi-
tions. But this means that the ball’s gravitational field is in a superposition,
too! In Feynman’s own words (DeWitt and Rickles 2011, p. 251):

Now, how do we analyze this experiment according to quantum
mechanics? We have an amplitude that the ball is up, and an

2

not a consistent theory





•    challenges to “localization” in semi-classical GR    

•      spacetime singularities in GR

•      black hole thermodynamics

• Einstein’s equations as equation of state (Jacobson et al)

minimal length scenarios

breakdown of continuum itself?

black holes satisfy thermodynamic relations

if spacetime itself has (Boltzmann) entropy, it has microstructure

if entropy is finite, this implies discreteness

GR dynamics is effective equation of state for any microscopic dofs 
collectively described by a spacetime, a metric and some matter fields

hints of disappearance of spacetime itself, more radical departure from GR and QFT

fundamental discreteness of spacetime?  
is spacetime itself “emergent” from non-spatiotemporal, non-geometric, 

quantum building blocks (“atoms of space”)?

Why we need to go beyond GR and QFT





e.g. : dark matter (galactic dynamics), dark energy (accelerated cosmological expansion) - either 95% of the 
universe is not known, or we do not understand gravity at large scales

e.g. cosmological constant as possible large scale manifestation of microscopic (quantum gravity) physics

if spacetime (with its continuum structures, metric, matter fields, topology) is emergent,

even large scale features of gravitational dynamics can (and maybe should) have their 
origin in more fundamental (“atomic”) theory

cannot trust most notions on which effective quantum field theory is based (locality, separation of scales, etc)

Why we need to go beyond GR and QFT



What has to change (in going from GR to QG)
• quantum fluctuations (superpositions) of spacetime structures

• geometry (areas, distances, volumes, curvature, etc)

• causality (causal relations)

• topology?

• dimensionality?

• breakdown of continuum description of spacetime?

• fundamental discreteness? of space only? of time as well?

• entirely new degrees of freedom - “atoms of space”? which ones?

• but then, how does usual spacetime “emerge”?

• new QG scale: Planck scale



What could be the relevant scale for QG effects?
based on current theories, i.e. GR and QFT: Planck scale

~ where both GR and QFT are relevant

in principle, Quantum Gravity from cosmological scales to Planck scale

cautionary remark: this is on the basis of current physics, tested only up to very different scales 
(compared to Planck scale) and based on concepts that may not be valid beyond such scales



What has to change (in going from GR to QG)
• quantum fluctuations (superpositions) of spacetime structures

• geometry (areas, distances, volumes, curvature, etc)

• causality (causal relations)

• topology?

• dimensionality?

• breakdown of continuum description of spacetime?

• fundamental discreteness? of space only? of time as well?

• entirely new degrees of freedom - “atoms of space”? which ones?

• but then, how does usual spacetime “emerge”?

• new QG scale: Planck scale

no spacetime or geometry?
how can we even talk of “scales”? 
total failure of effective field theory intuition?



Quantum Gravity and the nature of spacetime

quantum gravity = microscopic theory of pre-geometric quantum degrees of freedom 
(“quantum (field) theory of atoms of space”)

gravitational field result of collective dynamics
 

spacetime and geometry are emergent entities, obtained after 
coarse graining of fundamental, non-spatiotemporal dofs

candidate “atoms of quantum space”  ——->  how to recover continuum spacetime (and GR)?

the goals are:


• identify the fundamental (quantum) degrees of freedom of spacetime                  
——  the “atoms of space (or spacetime)” and their quantum dynamics


• show that an approximately continuum, classical spacetime emerges


• show that GR is good effective description of emergent spacetime dynamics

Quantum Gravity is not about “quantizing GR”, but about understanding the “microstructure of spacetime”



Quantum Gravity:

variety of approaches



Quantum Gravity: contemporary approaches

String Theory

Non-commutative geometry

Causal Dynamical Triangulations

Tensor Models

SupergravityLoop Quantum Gravity

Group Field Theory

Asymptotic SafetyCausal Sets

Simplicial Quantum Gravity

Spin Foam models



String theory (and related)

string excitations: particles of any spin/mass; 
incl. graviton =  quantum of gravitational field
consistent (around flat space) and finite 
perturbation theory in 10d  
background spacetime satisfies GR equations

starting idea: quantum theory of strings, interacting and propagating on given spacetime background

many different (consistent) versions (different matter content, different 
symmetries) - all require supersymmetry and spacetime dimension > 4

central result: spacetime as seen by strings, as opposed to point 
particles/fields, has very different topology and geometry; e.g. 
distances smaller than minimal string length cannot be probed

many non-perturbative aspects; extended (d>1) configurations 
(branes) as fundamental as strings, and interacting with them 
(Polchinski, …., 1994 - )

(…… , a lot of people, …..)



dualities between various string theories and supergravity: different 
aspects of same underlying fundamental theory (M-theory)?

dualities show that spacetime topology and dimension 
are themselves dynamical

AdS/CFT correspondence: a (gauge) QFT with conformal invariance 
on 4d flat space could fully encode the physics of a gravitational theory 
in 5d (with AdS boundary); viceversa, semiclassical GR (with extra 
conditions) could describe the physics of a peculiar many-body 
quantum system in different dimension 

is the world holographic? are gravity and gauge theories equivalent? 
many results and new directions

large number of mathematical results and 
radical generalisation of quantum field theory

String theory (and related)
(…… , a lot of people, …..)



QG as (Effective) QFT - Asymptotic Safety Scenario
Quantum gravity is perturbatively non-renormalizable, as 
a QFT for the metric field (e.g. around Minkowski space)

gµ⌫ = ⌘µ⌫ + hµ⌫

can still be used as effective field theory (incorporating quantum (loop) corrections) with fixed cutoffrelativity

Sgrav =
∫

d4x
√
g
[

Λ+
2
κ2

R+ c1R2+ c2RµνRµν + . . .+Lmatter

]

(26)

Here the terms have zero, two and four derivatives respectively.
Following our EFT script, we turn to experiment to determine the parameters of this

Lagrangian. The first term, the cosmological constant, appears to be non-zero but it
is so tiny that it is not relevant on ordinary scales. The EFT treatment does not say
anything novel about the smallness of the cosmological constant - it is treated simply as
an experimental fact. The next term is the Einstein action, with coefficient determined
from Newton’s constant κ2 = 32πG. This is the usual starting place for a treatment
of general relativity. The curvature squared terms yield effects that are tiny on normal
scales if the coefficients c1,2 are of order unity. In fact these are bounded by experiment
[13] to be less than 10+74 - the ridiculous weakness of this constraint illustrates just
how irrelevant these terms are for normal physics. So we see that general coordinate
invariance allows a simple energy expansion.
At times people worry that the presence of curvature squared terms in the action will

lead to instabilities or pathological behavior. Such potential problems have been shown
to only occur at scales beyond the Planck scale [14] where yet higher order terms are
also equally important. This is not a flaw of the effective field theory, which holds only
below the Planck scale. Given the assumption of a well-behaved full theory of gravity,
there is no aspect of the effective theory that needs to display a pathology.

Quantization and renormalization

The quantization of general relativity is rather like that of Yang-Mills theory. There
are subtle features connected with the gauge invariance, so that only physical degrees
of freedom count in loops. Feynman[15], and then DeWitt[16], did this successfully in
the 1960’s, introducing gauge fixing and then ghost fields to cancel off the unphysical
graviton states. The background field method employed by ’tHooft and Veltman[17]
was also a beautiful step forward. It allows the expansion about a background metric
(ḡµν ) and explicitly preserves the symmetries of general relativity. It is then clear that
quantization does not spoil general covariance and that all quantum effects respect this
symmetry. The fluctuation of the metric around the background is the graviton

gµν(x) = ḡµν(x)+κhµν(x) (27)

and the action can be expanded in powers of hµν(x) (with corresponding powers of κ).
The Feynman rules after gauge fixing and the addition of ghosts have been given in
several places[1, 2, 17] and need not be repeated here. They are unremarkable aside
from the complexity of the tensor indices involved.
Renormalization also proceeds straightforwardly. As advertised, the divergences are

local, with the one loop effect being equivalent to[17]

ΔL =
1

16π2
2

4−d

[

1
120

R2+
7
20
RµνRµν

]

(28)

and it is predictive (eg graviton scattering and corrections to Newtonian potential)J. Donoghue, C. Burgess, …..
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local, with the one loop effect being equivalent to[17]

ΔL =
1

16π2
2

4−d

[

1
120

R2+
7
20
RµνRµν

]

(28)

and it is predictive (eg graviton scattering and corrections to Newtonian potential)

Can it make sense non-perturbatively? Asymptotic safety scenario
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1.3 The case of gravity

We shall use a derivative expansion of Γk:

Γk(gµν ; g(n)
i ) =

∞
∑

n=0

∑

i

g(n)
i (k)O(n)

i (gµν) , (1.3.1)

where O(n)
i =

∫

ddx
√

gM(n)
i and M(n)

i are polynomials in the curvature
tensor and its derivatives containing 2n derivatives of the metric; i is an
index that labels different operators with the same number of derivatives.
The dimension of g(n)

i is dn = d−2n. The first two polynomials are just
M(0) = 1, M(1) = R. The corresponding couplings are g(1) = −Zg =
− 1

16πG
, g(0) = 2ZgΛ, Λ being the cosmological constant. Newton’s

constant G appears in Zg, which in linearized Einstein theory is the wave
function renormalization of the graviton. Neglecting total derivatives,
one can choose as terms with four derivatives of the metric M(2)

1 = C2

(the square of the Weyl tensor) and M(2)
2 = R2. We also note that the

coupling constants of higher derivative gravity are not the coefficients
g(2)

i but rather their inverses 2λ = (g(2)
1 )−1 and ξ = (g(2)

2 )−1. Thus,

Γ(n≤2)
k =

∫

ddx
√

g

[

2ZgΛ − ZgR +
1

2λ
C2 +

1

ξ
R2

]

. (1.3.2)

As in any other QFT, Zg can be eliminated from the action by a rescaling
of the field. Under constant rescalings of gµν , in d dimensions,

Γk(gµν ; g(n)
i ) = Γbk(b−2gµν ; bd−2ng(n)

i ) . (1.3.3)

This relation is the analog of (1.2.9) for the metric, but also coincides
with (1.2.3), the invariance at the basis of dimensional analysis; fixing it
amounts to a choice of unit of mass. This is where gravity differs from
any other field theory (Percacci & Perini (2004), Percacci (2007)). In
usual QFT’s such as (1.2.8), one can exploit the two invariances (1.2.3)
and (1.2.9) to eliminate simultaneously k and Z from the action. In the
case of pure gravity there is only one such invariance and one has to
make a choice.

If we choose k as unit of mass, we can define the effective action,

Γ̃(g̃µν ; Z̃g, Λ̃, . . .) = Γ1(g̃µν ; Z̃g, Λ̃, . . .) = Γk(gµν ; Zg, Λ, . . .) , (1.3.4)

where g̃µν = k2gµν , Z̃g = Zg

k2 = 1
16πG̃

, Λ̃ = Λ
k2 , etc.. There is then

no freedom left to eliminate Zg. Physically measurable quantities will
depend explicitly on Z̃g, so by the arguments of section 1.2, we have to
impose that ∂tZ̃g = 0, or equivalently ∂tG̃ = 0, at a FP.

Effective action 

(~ covariant path integral)

as solution to non-perturbative RG 
equations (e.g. Wetterich eqn)
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necessarily studied in various truncations (+ matter fields etc)

eg  Einstein-Hilbert truncation

look for non-Gaussian UV fixed points
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contradict the notion that the UV limit is defined by k → ∞. The point
is that only statements about dimensionless quantities are physically
meaningful, and the statement “k → ∞” is meaningless until we specify
the units. In a fundamental theory one cannot refer to any external
“absolute” quantity as a unit, and any internal quantity which is chosen
as a unit will be subject to the RG flow. If we start from low energy
(k′ ≪ 1) and we increase k, k′ will initially increase at the same rate,
because in this regime ∂tG ≈ 0; however, when k′ ≈ 1 we reach the FP
regime where G(k) ≈ G̃∗/k2 and therefore k′ stops growing.

The second consequence concerns the graviton anomalous dimension,
which in d dimensions is ηg = ∂t log Zg = ∂t log Z̃g + d − 2. Since we
have argued that ∂tZ̃g = 0 at a gravitational FP, if Z̃g∗ ≠ 0 we must
have ηg∗ = d − 2. The propagator of a field with anomalous dimension
η behaves like p−2−η, so one concludes that at a nontrivial gravitational
FP the graviton propagator behaves like p−d rather than p−2, as would
follow from a naive classical interpretation of the Einstein-Hilbert action.
Similar behaviour is known also in other gauge theories away from the
critical dimension, see e.g. Kazakov (2003).

1.4 The Gravitational Fixed Point

I will now describe some of the evidence that has accumulated in favor of
a nontrivial gravitational FP. Early attempts were made in the context
of the ϵ–expansion around two dimensions (ϵ = d − 2), which yields

βG̃ = ϵG̃ − qG̃2 . (1.4.1)

Thus there is a UV–attractive FP at G̃∗ = ϵ/q. The constant q = 38
3 for

pure gravity (Weinberg (1979), Kawai & Ninomiya (1990), see Aida &
Kitazawa (1997) for two–loop results). Unfortunately, for a while it was
not clear whether one could trust the continuation of this result to four
dimensions (ϵ = 2).

Most of the recent progress in this approach has come from the appli-
cation to gravity of the ERGE. It was shown by Wetterich (1993) that
the effective action Γk defined in (1.2.2) satisfies the equation

∂tΓk =
1

2
STr

(

δ2Γk

δφAδφB
+ RAB

k

)−1

∂tR
BA
k , (1.4.2)

where STr is a trace over momenta as well as over particle species and
any spacetime or internal indices, including a sign -1 for fermionic fields

14 R. Percacci
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Fig. 1.2. The flow in the Einstein–Hilbert truncation, see Eq.(1.4.9-10). The
nontrivial FP at Λ̃ = 0.171, G̃ = 0.701 is UV–attractive with eigenvalues
−1.69±2.49i. The Gaußian FP is attractive along the Λ̃–axis with eigenvalue
−2 and repulsive in the direction (0.04, 1.00) with eigenvalue 2.

let us consider pure gravity in the Einstein–Hilbert truncation, i.e. ne-
glecting terms with n ≥ 2. In a suitable gauge the operator δ2Γk

δgµνδgρσ
is

a function of −∇2 only. Then, rather than taking as ∆ the whole lin-
earized wave operator, as we did before, we use (1.4.4) with ∆ = −∇2.
In this way we retain explicitly the dependence on Λ and R. Using the
optimized cutoff, with gauge parameter 1/α = Z, the ERGE gives

βΛ̃ =
−2(1 − 2Λ̃)2Λ̃ + 36−41Λ̃+42Λ̃2−600Λ̃3

72π G̃ + 467−572Λ̃
288π2 G̃2

(1 − 2Λ̃)2 − 29−9Λ̃
72π

G̃
(1.4.9)

βG̃ =
2(1 − 2Λ̃)2G̃ − 373−654Λ̃+600Λ̃2

72π
G̃2

(1 − 2Λ̃)2 − 29−9Λ̃
72π G̃

(1.4.10)

This flow is shown in Figure 2.
Lauscher & Reuter (2002a), Reuter & Saueressig (2002) have stud-

ied the gauge– and cutoff–dependence of the FP in the Einstein–Hilbert
truncation. The dimensionless quantity Λ′ = ΛG (the cosmological con-
stant in Planck units) and the critical exponents have a reassuringly
weak dependence on these parameters. This has been taken as a sign
that the FP is not an artifact of the truncation. Lauscher & Reuter
(2002b) have also studied the ERGE including a term R2 in the trun-
cation. They find that in the subspace of Q̃ spanned by Λ̃, G̃, 1/ξ, the

S. Weinberg, M. Reuter, C. Wetterich, 
R. Percacci, D. Benedetti, A. Eichhorn, 
….

J. Donoghue, C. Burgess, …..



QG as canonical and/or covariant quantization of GR
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If the black hole approaches the Planck regime, the question about the
information-loss problem is related to the fate of the singularity. If the sin-
gularity remains in quantum gravity (which is highly unlikely), information
will indeed be destroyed. Most approaches to quantum gravity indicate that
entropy is conserved for the total system, so there will not be an information-
loss problem, in accordance with standard quantum theory. How the exact
quantum state during the final evaporation phase looks like, is unclear. One
can make oversimplified models with harmonic oscillators (Kiefer et al. 2009),
but an exact solution from an approach to quantum gravity is elusive.

2 Main approaches to quantum gravity

Following Isham (1987), one can divide the approaches roughly into two
classes. In the first class, one starts from a given classical theory of grav-
ity and applies certain quantization rules to arrive at a quantum theory of
gravity. In most cases, the starting point is GR. This does not yet lead
to a unification of interactions; one arrives at a separate quantum theory
for the gravitational field, in analogy to quantum electrodynamics (QED).
Most likely, the resulting theory is an effective theory only, valid only in cer-
tain situations and for certain scales.1 Depending on the method used, one
distinguishes between covariant and canonical quantum gravity.

The second class consists of approaches that seek to construct a unified
theory of all interactions. Quantum aspects of gravity are then seen only in
a certain limit – in the limit where the various interactions become distin-
guishable. The main representative of this second class is string theory.

In the rest of this section, I shall give a brief overview of the main ap-
proaches. For more details, I refer to Kiefer (2012). In most expressions,
units are chosen with c = 1.

2.1 Covariant quantum gravity

In covariant quantum gravity, one employs methods that make use of four-
dimensional covariance. Today, this is usually done by using the quantum
gravitational path integral, see, for example, Hamber (2009). Formally, the
path integral reads

Z[g] =

∫
Dgµν(x) e

iS[gµν(x)], (17)

1“It is generally believed today that the realistic theories that we use to describe physics
at accessible energies are what are known ‘effective field theories’.” (Weinberg 1995,
p. 499).

9

the constraints obey a closed (but not Lie) algebra. For the exact relation of
the constraints to the classical spacetime diffeomorphisms, see, for example,
Pons et al. (2009) and Barbour and Foster (2008).

By quantization, the constraints are turned into quantum constraints
for physically admissible wave functionals. The exact form depends on the
choice of canonical variables. If one uses the three-dimensional metric as the
configuration variable, one arrives at quantum geometrodynamics. If one
uses a certain holonomy as the configuration variable, one arrives at loop
quantum gravity.

2.2.1 Quantum geometrodynamics

In geometrodynamics, the canonical variables are the three-metric hab(x)
and its conjugate momentum pcd(y), which is linearly related to the second
fundamental form. In the quantum theory, they are turned into operators
that obey the standard commutation rules,

[ĥab(x), p̂
cd(y)] = i!δc(aδ

d
b)δ(x, y). (21)

Adopting a general procedure suggested by Dirac, the constraints are imple-
mented as quantum constraints on the wave functionals,

H⊥Ψ = 0, (22)

HaΨ = 0. (23)

The first equation is called Wheeler–DeWitt equation (DeWitt 1967, Wheeler
1968); the three other equations are called quantum momentum or diffeomor-
phism constraints. The latter guarantee that the wave functional is invari-
ant under three-dimensional coordinate transformations. The configuration
space of all three-metrics divided by three-dimensional diffeomorphisms is
called superspace.

In the vacuum case, the above equations assume the explicit form

Ĥ⊥Ψ :=

(

−16πG!
2Gabcd

δ2

δhabδhcd
−

√
h

16πG
( (3)R− 2Λ)

)

Ψ = 0, (24)

ĤaΨ := −2Dbhac
!

i

δΨ

δhbc
= 0. (25)

Here, Db is the three-dimensional covariant derivative, Gabcd is the DeWitt
metric (which is an ultralocal function of the three-metric), and (3)R is the
three-dimensional Ricci scalar. In the presence of non-gravitational fields,
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Canonical quantization of GR:

3+1 splitting of manifold and fields; canonical phase space of 3-metric and extrinsic curvature

Covariant (path integral) quantization of GR:

and transition amplitudes

formidable mathematical (and conceptual) difficulties

symmetries and dynamics fully encoded in diffeomorphism and Hamiltonian constraints

wavefunctions depend in 3-metric or extrinsic curvature

no time/space dependence

functional aspects

diffeomorphism symmetry

………..



Lattice Quantum Gravity

Quantum Regge calculus

(Causal) Dynamical Triangulations

Path integral of discrete geometries: 
fixed simplicial lattice, sum over edge length variables
continuum limit via lattice refinement

Path integral of discrete geometries: 
sum over all possible (causal) simplicial lattices 
(fixed topology), fixed edge lengths
continuum limit via sum over finer and finer lattices

Z = lim�!1

Z
dµ({Le}) e�S�

R ({Le})

Z = lima!0

X

�

µ(a,�) e�S�
R ({Le=a})

Basic idea: covariant quantisation of 
gravity as sum over “discrete geometries”

Continuum spacetime manifold replaced 
by simplicial lattice; metric data encoded in 
edge lengths 

Gravitational action is discretised version 
of Einstein-Hilbert action (Regge action)

T. Regge, R. Williams, H. Hamber, B. Dittrich, B. Bahr, ….

J. Ambjorn, J. Jurkiewicz, R. Loll, D. Benedetti, A. Goerlich, T. Budd, …



Loop Quantum Gravity (and spin foam models)

H2 = lim
�

S
� H�

⇡
= L2

�
Ā
�

4

where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L
2
⇣
G

E
/G

V
, dµ =

QE
e=1 dµ

Haar
e

⌘
(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µ
Haar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤

G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1

[�H�

⇡
. Of course, the

two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L
2
⇣
(G⇥d

/G)⇥V
, dµ =

QV
v=1

Qd
i=1 dµ

v
Haar,i

⌘
, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵

ab
ij �V (. . . , gia ↵

ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum
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kinematical Hilbert space of quantum states:

G= SU(2)

spin networks can be understood as (generalised) 
piecewise-flat discrete geometries

underlying graphs are dual to (simplicial lattices)
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“histories” (dynamical interaction processes) are also 
purely algebraic and combinatorial: spin foams

2-complex J bordered by the graphs of γ and γ′ respectively, a collection of spins {jf} associated
with faces f ∈ J and a collection of intertwiners {ιe} associated to edges e ∈ J . Both spins and
intertwiners of exterior faces and edges match the boundary values defined by the spin networks s
and s′ respectively. Spin foams F : s → s′ and F ′ : s′ → s′′ can be composed into FF ′ : s → s′′

by gluing together the two corresponding 2-complexes at s′. A spin foam model is an assignment
of amplitudes A[F ] which is consistent with this composition rule in the sense that

A[FF ′] = A[F ]A[F ′]. (74)

Transition amplitudes between spin network states are defined by

⟨s, s′⟩phys =
∑

F :s→s′

A[F ], (75)

where the notation anticipates the interpretation of such amplitudes as defining the physical scalar
product. The domain of the previous sum is left unspecified at this stage. We shall discuss this
question further in Section V. This last equation is the spin foam counterpart of equation (73).
This definition remains formal until we specify what the set of allowed spin foams in the sum are
and define the corresponding amplitudes.
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Figure 5: A typical path in a path integral version of loop quantum gravity is given by a series of
transitions through different spin-network states representing a state of 3-geometries. Nodes and
links in the spin network evolve into 1-dimensional edges and faces. New links are created and
spins are reassigned at vertexes (emphasized on the right). The ‘topological’ structure is provided
by the underlying 2-complex while the geometric degrees of freedom are encoded in the labeling of
its elements with irreducible representations and intertwiners.

The background-independent character of spin foams is manifest. The 2-complex can be
thought of as representing ‘space-time’ while the boundary graphs as representing ‘space’. They do
not carry any geometrical information in contrast with the standard concept of a lattice. Geometry
is encoded in the spin labelings which represent the degrees of freedom of the gravitational field.

In standard quantum mechanics the path integral is used to compute the matrix elements of the
evolution operator U(t). It provides in this way the solution for dynamics since for any kinemat-
ical state Ψ the state U(t)Ψ is a solution to Schrödinger’s equation. Analogously, in a generally
covariant theory the path integral provides a device for constructing solutions to the quantum
constraints. Transition amplitudes represent the matrix elements of the so-called generalized ‘pro-
jection’ operator P (i.e., ⟨s, s′⟩phys = ⟨sP, s′⟩ recall the general discussion of Sections 2.2) such
that PΨ is a physical state for any kinematical state Ψ. As in the case of the vector constraint
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and quantum cosmology

M. Reisenberger, C. Rovelli, J. Baez, J. Barrett, L. Crane, A. Perez, E. Livine,  DO, S. Speziale, ……



New perspective: emergent spacetime and gravity

• failures of GR and QFT at high energies/small distances        breakdown of continuum spacetime itself?



New perspective: emergent spacetime and gravity

• failures of GR and QFT at high energies/small distances        breakdown of continuum spacetime itself?

•     black hole thermodynamics

solution of information loss paradox require non-locality?

if spacetime itself has entropy, it has microstructure

if entropy is finite, this implies discreteness

The decade closes with the main lines of the covariant and the canonical
theory clearly defined. It will soon become clear that neither theory works.

6 The Middle Ages: 1970-1983

1970

The decade of the seventies opens with a world of caution. Reviving a point
made by Pauli, a paper by Zumino [35], suggests that the quantization of GR
may be problematic and might make sense only by viewing GR as the low energy
limit of a more general theory.

1971
Using the technology developed by DeWitt and Feynman for gravity, t’Hooft

and Veltman decide to study the renormalizability of GR. Almost as a warm
up exercise, they consider the renormalization of Yang-Mills theory, and find
that the theory is renormalizable – result that has won them this year Nobel
prize [36]. In a sense, one can say that the first physical result of the research
in quantum gravity is the proof that Yang-Mills theory is renormalizable.

1971

David Finkelstein writes his inspiring “spacetime code” series of papers [37]
(which, among others ideas, discuss quantum groups).

1973
Following the program, t’Hooft finds evidence of un-renormalizable diver-

gences in GR with matter fields. Shortly after, t’Hooft and Veltman, as well as
Deser and Van Nieuwenhuizen, confirm the evidence [38].

1974

Hawking announces the derivation of black hole radiation [39]. A (macro-
scopically) Schwarzshild black hole of mass M emits thermal radiation at the
temperature

T =
h̄c3

8πkGM

The result comes as a surprise, anticipated only by the observation by Beken-
stein, a year earlier, that entropy is naturally associated to black holes, and thus
they could be thought, in some obscure sense, as “hot” [40], and by the Bardeen-
Carter-Hawking analysis of the analogy between laws of thermodynamics and
dynamical behavior of black holes. Hawking’s result is not directly connected to
quantum gravity –it is a skillful application of quantum field theory in curved
spacetime– but has a very strong impact on the field. It fosters an intense
activity in quantum field theory in curved spacetime, it opens a new field of
research in “black hole thermodynamics” (for a review of the two, see [43]), and
it opens the quantum-gravitational problems of understanding the statistical

11

origin of the black hole (the Bekenstein-Hawking) entropy. For a Schwarzshild
black hole, this is

S =
1

4

c3

h̄G
A (2)

where A is the area of the black hole surface. An influential, clarifying and
at the same time intriguing paper is written two years later by Bill Unruh.
The paper points out the existence of a general relation between accelerated
observers, quantum theory, gravity and thermodynamics [42]. Something deep
about nature should be hidden in this tangle of problems, but we do not yet
know what.

1975

It becomes generally accepted that GR coupled to matter is not renormal-
izable. The research program started with Rosenfeld, Fierz and Pauli is dead.

1976

A first attempt to save the covariant program is made by Steven Wein-
berg, who explore the idea of asymptotic safety [44], developing earlier ideas
from Giorgio Parisi [45], Kenneth Wilson and others, suggesting that non-
renormalizable theories could nevertheless be meaningful.

1976

To resuscitate the covariant theory, even if in modified form, the path has al-
ready been indicated: find a high energy modification of GR. Preserving general
covariance, there is not much one can do to modify GR. An idea that attracts
much enthusiasm is supergravity [46]: it seems that by simply coupling a spin
3/2 particle to GR, namely with the action (in first order form)

S[g, Γ,ψ] =

∫

d4x
√
−g

(

1

2G
R −

i

2
ϵµνρσ ψµγ5γνDρψσ

)

,

one can get a theory finite even at two loops.

1977
Another, independent, idea is to keep the same kinematics and change the

action. The obvious thing to do is to add terms proportional to the divergences.
Stelle proves that an action with terms quadratic in the curvature

S =

∫

d4x
√
−g

(

αR + βR2 + γRµνRµν .
)

,

is renormalizable for appropriate values of the coupling constants [47]. Unfor-
tunately, precisely for these values of the constants the theory is bad. It has
negative energy modes that make it unstable around the Minkowski vacuum
and not unitary in the quantum regime. The problem becomes to find a theory
renormalizable and unitary at the same time, or to circumvent non-unitarity.

12

J. Bekenstein, S. Hawking, ……
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•    insights from analog gravity models in condensed matter physics
effective curved metric and matter fields from non-geometric atomic theory
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Stelle proves that an action with terms quadratic in the curvature

S =

∫

d4x
√
−g

(

αR + βR2 + γRµνRµν .
)

,

is renormalizable for appropriate values of the coupling constants [47]. Unfor-
tunately, precisely for these values of the constants the theory is bad. It has
negative energy modes that make it unstable around the Minkowski vacuum
and not unitary in the quantum regime. The problem becomes to find a theory
renormalizable and unitary at the same time, or to circumvent non-unitarity.
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J. Bekenstein, S. Hawking, ……

GR from local horizon thermodynamics

assume       constant� => ⇥S = � ⇥A �A =
�

H ⇥� ⇥ d⇤

� � �p + ⇥ d�
d⇥

��
p

+O(⇥2)

dS = �

�

H
⇥̃ d⌅[⇤ � ⌅(1/2 ⇤2 + ⇥⇧⇥2 + Rabl

a lb)]p

by Raychaudhuri

TdS = �
⇧�
2⌥

�

H
⇤̃ d⌃[⌅ � ⌃(1/2 ⌅2 + ⇥�⇥2 + Rabl

a lb)]p =

=
�

H
⇤̃ d⌃ (�⌃⇧)Tabl

alb = ⇥Q

�A has local and non-local contributions

perturbation via heat flux

=>

equilibrium recovery via entropy balance law

=0

�Q = TdS

�

B_p

�Q

equilibrium = Rindler horizon bifurcation surface

⇥S = � ⇥A = 0 �p = 0=>

• Einstein’s equations as equation of state 
GR dynamics is effective equation of state for any microscopic dofs 

collectively described by a spacetime, a metric and some matter fields

GR from local horizon thermodynamics

S(E, V )
�Q = dE + pdV

�Q = TdS

dS = (�S/�E)dE + (�S/�V )dV

p = T (�S/�V )

T�1 = (�S/�E)
�Q

equilibrium 
entropy balance

equation of  state

=>

Einstein equation of  state: ANALOGY

=>

IDEA local matter-energy 
perturbations =>+ Einstein eq. as 

equation of  state
geometric entropy 

functional

GR from local horizon thermodynamics

S(E, V )
�Q = dE + pdV

�Q = TdS

dS = (�S/�E)dE + (�S/�V )dV

p = T (�S/�V )

T�1 = (�S/�E)
�Q

equilibrium 
entropy balance

equation of  state

=>

Einstein equation of  state: ANALOGY

=>

IDEA local matter-energy 
perturbations =>+ Einstein eq. as 

equation of  state
geometric entropy 

functional crucial: “holographic” behaviour

T. Jacobson, ….., T. Padmanabhan, ……

•    insights from analog gravity models in condensed matter physics
effective curved metric and matter fields from non-geometric atomic theory

C. Barcelo, S. Liberati, M. Visser, ‘05



Quantum Gravity:

(possible) phenomenology



QG phenomenology

QG modification of effective field theory

•  modified dispersion relations

• modified scattering thresholds

• non-local terms (violation of locality)

•  minimal length

• deformed uncertainty relations

• violation/deformation of spacetime symmetries 
(e.g. Lorentz symmetry)

many (simplified) scenarios are already testable

G. Amelino-Camelia, ’08


S. Hossenfelder, ’12


T. Jacobson, S. Liberati, D. Mattingly, ‘07



QG effects in black hole physics
•  Hawking radiation and BH evaporation

• reviation from thermal radiation?

• end result: compact remnant? nothing? 

• black hole information paradox (is 
unitarity violated? renounce locality?)

•  BH formation, horizon and singularity

• regular black hole-like objects in QG 
(with “horizon”, but no singularity)

• inner quantum region

• black hole -> white hole transition 
(radio bursts)

• exotic compact objects 

• horizonless - imperfect absorption 
(modified GW signal)

• outer “membrane” - GW echo

A. Ashtekar, M. Bojowald, …. 

H. Haggard, C. Rovelli, F. Vidotto, …

V. Cardoso, P. Pani …. 

J. Abedi, H. Dykaar, N. Afshordi, ‘16



QG in cosmological scenarios for the early universe

Inflation

Emergent 
universe

why a close to homogeneous and isotropic universe?
why an approximately scale invariant power spectrum?

• density perturbations as vacuum 
quantum fluctuations 

• period of accelerated expansion 
(driven by “inflaton” field?)

• naturally scale invariant spectrum

• what produces inflation? 

• physics of trans-Planckian modes (for long inflation)?

• inflation too close to Planck regime?

• inflationary spacetime still contains singularity

Inflation needs 
Quantum Gravity

Bouncing 
cosmology

R. Brandenberger, ’10, ’11, ’14 

R. Brandenberger, ’10, ’11, ’14 



QG in Cosmological scenarios for the early universe

    main open problems

q

p
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1

sf

i

s

!

!I think this is a promising theory, 

but there is still very much to do

(i) More solid arguments that the classical limit is GR

(ii) Compute quantum corrections to Effective QFT scattering

(iii) IR renormalization?    Scaling   [Orsay group, Smerlak Bonzom]

(iv) Lorentzian structure?

(v) Open points in the definition (Edge splitting invariance?) [Bojowald Perez, Warsaw school]

(vi) Difficulties of low energy computation

(vii) Questions on the vertex expansion

(viii) Observable consequences?  Cosmology?  [Barrau, Mielczarek, Grain, Cailleteau, Ashtekar, Sloan]

Inflation

Bouncing 
cosmology

Emergent 
universe

why a close to homogeneous and isotropic universe?
why an approximately scale invariant power spectrum?

• classical contracting phase 
“before” the big bang, bouncing to 
current expanding phase 

• various realizations (e.g. LQC)

• can produce scale invariant 
spectrum

• trans-Planckian modes not needed

• new physics needed to describe/justify cosmological bounce

Bouncing cosmology 
needs Quantum Gravity

R. Brandenberger, ’10, ’11, ’14 

R. Brandenberger, ’10, ’11, ’14 



QG in cosmological scenarios for the early universe

Inflation

Bouncing 
cosmology

Emergent 
universe

why a close to homogeneous and isotropic universe?
why an approximately scale invariant power spectrum?

& problems; Brandenberger, Alternatives to cosmological inflation;
Brandenberger 2010a, 2010b for details). This simplest way of
obtaining a cosmological bounce is plagued by an instability of the
vacuum (Cline, Jeon, & Moore, 2004). More sophisticated models
which avoid this instability have recently been developed, e.g. the
ghost condensate scenario (Buchbinder, Khoury, & Ovrut, 2007;
Creminelli & Senatore, 2007; Lin, Brandenberger, & Levasseur, 2011)
or the Galileon bounce (Easson, Sawicki, & Vikman, 2011; Qiu, Evslin,
Cai, Li, & Zhang, 2011). However, these models do not (yet) come
from a theory of matter and gravity which is complete at high
energies.

Possibly a more promising approach to obtaining bouncing
cosmologies is by modifying the gravitational sector of the theory.
There is excellent motivation to consider modifications of gravity
at high energy densities: General Relativity is not a renormalizable
quantum theory of gravity. In all known approaches to quantum
gravity, the Einstein action of General Relativity is only a low
energy effective action. At high energy densities where the bounce
is expected to occur deviations from General Relativity will be
important. Two examples of modifications of General Relativity at
high densities which lead to bouncing cosmologies are the “non-
singular universe” construction of Brandenberger, Mukhanov, and
Sornborger (1993) and the ghost-free higher derivative action of
Biswas, Mazumdar, and Siegel (2006). It was also realized
(Brandenberger, R., 2009; Brandenberger, R. H., 2009) that the
Hořava–Lifshitz proposal for a power-counting renormalizable
theory of quantum gravity (Horava, 2009) leads to a bouncing
homogeneous and isotropic cosmology, provided that the spatial
curvature is non-vanishing.

Bouncing cosmologies also are predicted in more ambitious
approaches to quantizing gravity such as string theory (see e.g.
Kounnas et al., 2012; Kounnas et al.) and loop quantum cosmology
(see e.g. Ashtekar & Singh, 2011; Bojowald, 2011 for recent
reviews).

4.2. Emergent universe

The “emergent universe” scenario (Ellis & Maartens, 2004; Ellis,
Murugan, & Tsagas, 2004) is another non-singular cosmological
scenario in which time runs from !1 to þ1. The universe is
assumed to emerge in a quasi-static high density phase which at
some time (which is conventionally called t¼0 undergoes a phase
transition to the expanding phase of Standard Big Bang cosmology.
The time evolution of the scale factor is sketched in Fig. 5. For the
purposes of establishing a theory of cosmological structure for-
mation, the quasi-static phase is not required to be infinite. All that
is required is that the phase is much longer than the length which
in the expanding phase grows to become the current Hubble
radius. The quasi-static phase could thus be the bounce phase of a
bouncing cosmology, as in the model of Biswas, Brandenberger,

Mazumdar, & Siegel (2007) (which is based on the higher
derivative gravitational Lagrangian of Biswas et al., 2006).

The time evolution of the cosmological scale factor in an
emergent universe is sketched in Fig. 5. The vertical axis is the
cosmological scale factor, the horizontal axis is time. The universe
is initially static and makes a smooth transition to the radiation
phase of Standard Big Bang cosmology.

The emergent scenario is similar to inflationary cosmology in
that the universe is assumed to begin hot and small. But it is
similar to a bouncing cosmology in that time runs from !1 to
þ1, and in that the evolution is non-singular.

In Fig. 6 we sketch the space–time diagram in an emergent
cosmology. Since the early emergent phase is quasi-static, the
Hubble radius is infinite. For the same reason, the physical
wavelength of fluctuations remains constant in this phase. At the
end of the emergent phase, the Hubble radius decreases to a
microscopic value and makes a transition to its evolution in
Standard Cosmology.

As in inflationary cosmology and in a bouncing cosmology we
see that fluctuations originate on sub-Hubble scales. In emergent
cosmology, it is the existence of a quasi-static phase which leads to
this result. What sources fluctuations depends on the realization of
the emergent scenario. String Gas Cosmology is the example
which I will consider later on. In this case, the source of perturba-
tions is thermal: string thermodynamical fluctuations in a com-
pact space with stable winding modes, and this in fact leads to a
scale-invariant spectrum (Nayeri, Brandenberger, & Vafa, 2006).

How does emergent cosmology address the problems of
Standard Cosmology? As in the case of a bouncing cosmology,
the horizon is infinite and hence there is no horizon problem.
Since there is likely thermal equilibrium in the emergent phase, a
mechanism to homogenize the universe exists. As discussed in the
previous paragraph, there is no causality obstacle against produ-
cing cosmological fluctuations. The scenario is non-singular, but
this cannot in general be weighted as a success unless the
emergent phase can be shown to arise from some well controlled
ultraviolet physics.

a

t
t Rp = 0 p = rho / 3

~ t 1/2

Fig. 5. The dynamics of emergent universe cosmology. The vertical axis represents
the scale factor of the universe, the horizontal axis is time.

H-1

k 2k 1

tR

tf(k 2 )

tf(k 1 )

ti(k 1 )
ti(k 2 )

x p

t

Fig. 6. Space–time diagram (sketch) showing the evolution of fixed co-moving
scales in emergent cosmology. The vertical axis is time, the horizontal axis is
physical distance. The solid curve represents the Hubble radius H!1 which shrinks
abruptly to a micro-physical scale at tR and then increases linearly in time for t4tR .
Fixed co-moving scales (the dotted lines labeled by k1 and k2) which are currently
probed in cosmological observations have wavelengths which were smaller than
the Hubble radius long before tR. They exit the Hubble radius at times ti(k) just prior
to tR, and propagate with a wavelength larger than the Hubble radius until they
re-enter the Hubble radius at times tf(k).

R. Brandenberger / Studies in History and Philosophy of Modern Physics 46 (2014) 109–121114

• phase transition between static and 
expanding universe

• various realizations (e.g. string gas 
cosmology)

• density perturbations as thermal 
fluctuations

• can give scale invariant power spectrum

• trans-Planckian modes not needed

• static phase and phase transition require new physics 

Emergent universe needs 
Quantum Gravity

R. Brandenberger, ’10, ’11, ’14 



QG effects in emergent gravity scenarios
Verlinde’s emergent gravity
gravity as eqn of state

+ 

modified entropy formula (new volume-
dependent term, akin to dark energy)

modified gravity to 
explain dark matter  

(new acceleration 
scale ~ MOND)

proposals for cosmological constant/dark energy

non-local gravity (continuum only approximate; also from other perspectives)

suggestions from analogue gravity models (e.g. cosmological constant from 
depletion factor if spacetime is Bose condensate)

vanishing vacuum energy from global equilibrium of spacetime fluid

new dissipative effects in dispersion relations

if spacetime is like fluid or superfluid medium, should expect dissipation

2

where  1 is a linear perturbation of  . This equation
may be found, e.g., in [8] and is explicitly derived in [7].

In order to find the corresponding dispersion relation
one can adopt as usual the so-called Eikonal approxima-
tion in the form  1 = a(x) exp(�i[!t�~k · ~x] ), with a(x)
a slowly-varying function of position. Then the viscous
wave equation in the Eikonal approximation reduces to

� !
2 + c

2
k
2 � i⌫

4

3
!k

2 = 0 , (2)

yielding the following dispersion relation for sound waves
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The first term specifically introduces dispersion due to
viscosity, while the second term is specifically dissipative.
The previous equation can be further simplified to
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, (4)

up to higher orders of (⌫k/c). This is a concrete example
of how modified dispersion relations due to the underly-
ing microscopic structure of an emergent space-time can
be endowed with dissipative terms. In this case the lowest
order dissipative term, which is ruled by the same micro-
scopic scale provided by the viscosity, would appear at
lower energies than the dispersive, quartic term.

Such dissipative dispersion relations clearly violate uni-
tarity. However in this toy model dissipation is due to
energy exchange with extra degrees of freedom which,
being not observed, are traced away [3]. In this sense,
(apparent) dissipation can be a signal of extra-degrees of
freedom in putative fundamental theories being neglected
in the e↵ective theory.

Generalized dissipative hydrodynamics.— If we now
come back to the problem of the phenomenology asso-
ciated to an emergent spacetime from some, unspecified,
QG model, we are faced with a set of pressing questions,
which basically deal with our ignorance of the models and
the viable mechanisms leading to a classical spacetime.

In this sense one quite general approach might consist
in assuming that at su�ciently low scales any QG the-
ory will allow to describe the propagation of matter (or
gravitons) on the emergent spacetime along the equations
one could derive from hydrodynamics. Implicitly we are
assuming that a description of matter as collective exci-
tations above the spacetime medium is possible at scales
much longer than the typical scales of the fundamental
constituents interactions. This is tantamount to assume
that some EFT description is viable given that hydro-
dynamics, even dissipative one, can be described within
this formalism [9].

When adopting hydrodynamics as a large scale model
of an emergent spacetime, it is quite interesting to keep

in mind that the above discussed dissipation appears in
a gradient expansion as a first order correction to the
perfect fluid equations. In general, higher order terms
can be considered as well, and such operators will show a
similar structure to the last term on the right hand side
of Eq. (1), i.e. they will be generically of the form @trn.
Hence, dissipative terms will always appear in the disper-
sion relation with odd powers of the three momentum k

once at high energy one takes E ⇡ k.
The generalised Navier-Stokes equation will then read

@
2
t  1 = c

2r2
 1 +

1X

n=2

4

3
⌫n @trn

 1 , (5)

leading to the following dispersion relation
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with Ai = 4/3⌫ic, B
j
i = 8/27⌫i/c+4/3⌫jc, Lj

i = 4/3⌫ic�
8/9⌫2j and Mk

i,j = 4/3⌫ic+ 8/27⌫3j /c� 8/9⌫2k .
The structure of the modified dispersion relation is

such that it is not possible to proceed simply order-by-
order to account for all the possible terms. Actually, one
should not attempt to identify the index of the expansion
j with the power index of the derivative term rn in (5).
The contribution of each term of order n in the derivative
expansion is instead to be searched for in all those terms
which at some order j will contain the parameter ⌫n.
As expected, Eq. (5) shows alternating dissipative and

dispersive terms with odd and even powers of k respec-
tively. Assuming that the origin of these deviations from
the perfect fluid limit is related to the behavior of the
“spacetime fluid” close to the Planck scale, it is natural
to rescale the coe�cients of Eq. (5) by suitable powers of
the Planck energy so to make the coe�cient dimension-
less and make explicit the suppression of higher powers
terms (assuming, as a matter of naturalness, that the re-
maining dimensionless coe�cients are a priori roughly of
the same magnitude).
Let us start truncating the above dispersion relation to

the lowest order, n = 2, so regaining (4), with a suitably
rescaled coe�cient as described above. We get

!
2 = c

2
k
2 � i�2c

2 k
3

MPl
, (6)

where �2 = (4⌫2MPl)/3c is the dimensionless coe�cient
controlling the magnitude of the Lorentz violation (LV)
and MPl = 1.22⇥ 1019 GeV.

manifest in dispersion relations

S. Liberati, L. Maccione, ‘13

E. Verlinde, ‘16, S. Hossenfelder, ‘17

S. Finazzi, S. Liberati, L. Sindoni, ‘12

G. Volovik, ’01, ’05, ‘11

C. Wetterich, ’97;…; M. Maggiore, ‘17



QG effects (potentially) testable
despite suppression by Planck scale

Main theoretical problem:  


most testable effects obtained within simplified models and phenomenological frameworks


very weak link with fundamental theory


no real control over approximations and assumptions

pressing issue: 
connect simplified models with fundamental formalisms



Group field theory:

an example of fundamental quantum gravity formalism



An “atom of space”
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Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron
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4 vectors normal to triangles that close (lying in hypersurface with normal N)
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i 2 R3,1 bi · N = 0
X
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Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06; 
Bianchi, Dona, Speziale, ’10; ……
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Hilbert space

Quantum geometry in group-theoretic variables

Hv = L2
�
Gd; dµHaar

�

+ constraints on states

BIJ
i ! ĴIJ 2 so(3, 1) bJ

i ! Ĵ i
N 2 su(2)

spin network vertex

Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06; 
Bianchi, Dona, Speziale, ’10; ……



Quantum space as a many-body system
Many-body Hilbert space for “quantum space”: Fock space

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
'̂(~g) , '̂†(~g0)

i
= IG(~g,~g0)

⇥
'̂(~g) , '̂(~g0)

⇤
=

h
'̂
†(~g) , '̂†(~g0)

i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.
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.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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gravity atom’ corresponding to a Hilbert space Hv = L
2
�
G

⇥d
/G

�
. An orthonormal basis  ~�(~g) in

each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):

~� =
⇣
~J, ~m, I

⌘
!  ~�(~g) = h~g|~�i =

"
dY

a=1

D
Ja
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(ga)

#
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J1...Jd,I
n1..nd

. (6)

The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =L
1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators
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X
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'̂~�  ~�(~g) '̂
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X
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'̂
†

~�  
⇤

~�(~g) ,

satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�

0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =
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, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
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.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
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, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
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.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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gravity atom’ corresponding to a Hilbert space Hv = L
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�
. An orthonormal basis  ~�(~g) in

each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):

~� =
⇣
~J, ~m, I

⌘
!  ~�(~g) = h~g|~�i =

"
dY

a=1

D
Ja
mana

(ga)

#
C

J1...Jd,I
n1..nd

. (6)

The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =L
1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators
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satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�
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n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =
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irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@
Y

(i)

Z
[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂
†(gia), (4)

e.g. total space volume (extensive quantity):
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1
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v ⌦H(2)
v ⌦ · · ·⌦H(V )
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⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
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Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
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by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
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each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):
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The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =L
1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators
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satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�
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spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.
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Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
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Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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H� ⇢ HV

4

where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L
2
⇣
G

E
/G

V
, dµ =

QE
e=1 dµ

Haar
e

⌘
(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µ
Haar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤

G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1

[�H�

⇡
. Of course, the

two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L
2
⇣
(G⇥d

/G)⇥V
, dµ =

QV
v=1

Qd
i=1 dµ

v
Haar,i

⌘
, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵

ab
ij �V (. . . , gia ↵

ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum

� �

Forming extended structures: gluing building blocks ——-> states on connected graphs/simplicial complexes
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formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L
2
⇣
G

E
/G

V
, dµ =

QE
e=1 dµ

Haar
e

⌘
(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µ
Haar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
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tum’ variables for the classical LQG phase space on a given graph: [T ⇤
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The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1
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to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
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latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as
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with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum
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Forming extended structures: gluing building blocks ——-> states on connected graphs/simplicial complexes
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graph structure from entanglement

2– spin network states can be regarded as linear combinations of disconnected

open spin network states with additional conditions enforcing the gluing =>
encoding the connectivity of the graph.

ip =
1�

2j + 1

2j+1�

p=1

|epi�ep|

we obtain a closed and connected graph     by tensoring the links together via SU(2) 
invariant intertwiner and then gluing the individual intertwiner states among each other 
by attaching the links via bivalent intertwiners 

�

�

|Ii =
�

{a,b,c}

ia,b,c|j, ai � |j, bi � |j, ci

Topological information: connectivity

iv

=> more general, purely algebraic and combinatorial picture

Group Field Theories

�(g1, ..., gd) : G
⇥d ! C

random function (field)

d⌫(�)/Z
probability measure

Group Field Theories (GFTs) are combinatorially non-local quantum field theories 
defined on a group manifold

provide a 2n quantisation scheme for LQG: 

no embedding in a continuum manifold and no cylindrical consistency imposed on our 
quantum geometry wave-functionals 

e.g. d=3

g1 g2
with gauge invariance 
at the vertex 

v �(gi) = �(gi�)

Fock construction through 
decomposition of spin network states in 
terms of elementary building blocks 
corresponding to tensor maps 
associated to nodes of the spin network 
graphs (quantum many body system)

-

-

g3

LQG: space(time) from entangled states of quantum geometry

a

b

Entanglement of a Wilson line

in the Hilbert space decomposition the Wilson loop pure state reads

=
1p

2j + 1

2j+1X

c=1

hU |�1, j, a, ci hU |�2, j, c, bi
c

{|�, j, a, ci}, {|�, j, c, bi} orthonormal sets in H�1 , H�2

|�, j, a, bi = 1p
2j + 1

2j+1X

c=1

|�, j, a, ci ⌦ |�, j, c, bi

w/

define the reduced density matrix ⇢1 = Tr2[|�, j, a, bih�, j, a, b|]

S(�1) = �Tr[⇢1 log ⇢1] = log(2j + 1)

entanglement entropy of the wilson line

maximally mixed state

LQG structural level:

Donnelly 2012

gravity as a lattice gauge theory on a superposition of SU(2)/SL(2,C)  spin-network graphs 

diffeos compatible definition of entanglement: localisation 
and boundary charges — holographic dualities?

=> space geometry from pre-geometry, ent & coarse graining 

 (study of continuum limit) Girelli Livine 05, Livine Terno 2005-08

Charles Livine 2016, GC Mele, Vitale, Oriti

Delcamp Dittrich Riello, Geiller 16-17

Freidel Donnelly 16

Area law for entanglement entropy as a signature of good semiclassical behaviour:

Bianchi Guglielmon Hackll Yokomizo 16
 GC Rovelli Haggard Riello Ruggiero 14-15, Hamma Hung Marciano Zhang 15

Bianchi Myers 2012

 GC Anzà 16, Han et al. 16

=>

& BH entropy: Rovelli, Perez, de Lorenzo, Smerlak, Husain, Bodendorfer, 

Oriti, Pranzetti Sindoni … \infty

Dittrich, Bahr, Steinhaus, Martin-Benito...

Freidel Perez Pranzetti 16

-

-

Gluing = connectivity = entanglement between “atoms of space”

Donnelly, ’12; Livine, Terno, ’08; 
Chirco, Mele, DO, Vitale, ‘17
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details depend on (class of) models
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1
2

Z
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�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

“combinatorial non-locality”

in pairing of field arguments
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Figure 1: GFT propagator and vertex

2.2 Non-commutative Fourier transform and bivector formulation

The simplicial geometry encoded in the model (5) is best understood in a dual formulation,
coined ‘metric representation’ in [21], obtained by a group Fourier transform of the field. The
relevant Fourier transform here is the obvious extension of the non-commutative SO(3) Fourier
transform [33, 34, 35] to the group [SO(3)⇤ SO(3)]4:

⇤⇤(x1, · · · x4) :=
⇥

[dgi]4 ⇤(g1, · · · g4) eiTrx1g1 · · · eiTrx4g4 (7)

The variables xi belong to the Lie algebra so(4) = su(2) ⌅ su(2). The kernel of the Fourier
transform is a product of ‘plane waves’ Eg(x) = eiTrxg, where the trace Tr is defined in terms of
the usual trace of 2⇤ 2 matrices1 as Trxg=

�
± ⇥g±tr[x±g±] with ⇥g±=sign(trg±). Thus Eg(x)

is itself a product of two SO(3) plane waves eg±(x±) :=ei�g±trx±g± . The plane waves satisfy the
properties: ⇥

d6x Eg(x) = �(g), Eg-1(x) = Eg(�x) (8)

1Let ⇧j be i times the Pauli matrices, then tr⇧i⇧j =��ij . Given and SU(2) element u=e�nj⇥j parametrized by
the angle ⇤ ⇤ [0, ⌅] and the unit R3-vector ⌦n and a=aj⇧j in the algebra su(2), we thus have tr[au]=� sin ⇤⌦n · ⌦a.
Also ⇥u :=sign(tru)=sign(cos ⇤).

5

Example: simplicial interactions

DO, ’09; DO, ‘14
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Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

Feynman diagrams = stranded diagrams dual 
to cellular complexes of arbitrary topology 

sum over triangulations/complexes amplitude for each 
triangulation/complex

DO, ’09; DO, ‘14



Dynamics of quantum space as a group field theory

GFT

Loop Quantum 
Gravity

Quantum dofs are same as in LQG (spin networks), 
organised in different (but similar) Hilbert space


2nd quantized reformulation of states and dynamics
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where  
(�,J
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(ij) ,◆i)

(Gab
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resentations J (ab)
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detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .
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of states associated to closed graphs and such that, for each graph �, we have H� =
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E
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, dµ =
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e=1 dµ

Haar
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⌘
(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µ
Haar
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transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤
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The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2
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two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
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The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L
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, dµ =
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, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as
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ab
ij ) =

Y

[(ia),(jb)]

Z

G
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ab
ij �V (. . . , gia ↵

ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum

� �

5

gravity atom’ corresponding to a Hilbert space Hv = L
2
�
G

⇥d
/G

�
. An orthonormal basis  ~�(~g) in

each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):

~� =
⇣
~J, ~m, I

⌘
!  ~�(~g) = h~g|~�i =

"
dY

a=1

D
Ja
mana

(ga)

#
C

J1...Jd,I
n1..nd

. (6)

The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =L
1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators

'̂(g1, .., gd) ⌘ '̂(~g) =
X

~�

'̂~�  ~�(~g) '̂
†(g1, .., gd) ⌘ '̂

†(~g) =
X

~�

'̂
†

~�  
⇤

~�(~g) ,

satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�

0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:

\On,m ! h~�1, ...., ~�m|\On,m|~�0

1, ..., ~�
0

ni = On,m
�
~�1, ..., ~�m, ~�

0

1, ..., ~�
0

n

�
!

! \On,m

⇣
'̂, '̂

†

⌘
=

Z
[d~gi][d~g

0

j ] b'†(~g1)..b'†(~gm)On,m
�
~g1, ..,~gm,~g

0

1, ..,~g
0

n

�
b'(~g01)..b'(~g0n) .

Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero

GFT and Loop Quantum Gravity

Multiple relations with other QG formalisms

DO, ’13; DO, ‘14
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GFT and spin foam models
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X

{J},{I}|j,j0,i,i0

Y

f

Af (J, I)
Y

e

Ae(J, I)
Y

v

Av(J, I)
Spin foam model = quantum amplitude for spin network evolution
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Any spin foam amplitude is the Feynman amplitude of a GFT model

Multiple relations with other QG formalisms

Reisenberger, Rovelli, ‘00



Dynamics of quantum space as a group field theory

GFT

Loop Quantum 
Gravity

Spin foam 
models

Simplicial gravity 
path integrals Dynamical 

Triangulations

GFT and simplicial gravity path integrals

Z =
Z
D'D' ei S�(',') =

X
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sym(�)
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X
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w(�)A� =
X
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Z
Dg� ei S�(g�) ⌘

Z
Dg ei S(g)

GFT Feynman amplitudes (model-dependent):

lattice gravity path integrals         


(with group+Lie algebra variables)

on the lattice defined by the Feynman diagram

Baratin, DO, ’11

dynamical triangulations + quantum Regge calculus

Multiple relations with other QG formalisms



Dynamics of quantum space as a group field theory
Application of QFT tools to QG problems: GFT renormalization
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FIG. 4. The flow diagram at small N . The blue dot is the GFP, while the red one is the NGFP at {m̄⇤
, �̄

⇤}. Ordinary
trajectories are in blue, while the eigen-perturbations for the GFP are in green and those for the NGFP are in brown. Arrows
point towards the UV, i.e. growing N .

However, we should stress that such NGFPs were obtained from di↵erent rescaling of �, and going back to the
original coupling via (38), we notice that for N ! 0 the NGFP (41) corresponds to �

⇤ = 0, while the one in (28) was
at �⇤ 6= 0.

This observation could also explain the integer critical exponents. Even though m̄N and �̄N have a nontrivial fixed
point, the scaling (24) and (38) implies that at such fixed point the renormalised mass and the renormalised coupling
(i.e. their value in the limit N ! 0) are zero. Once again, modulo an exchange in the scaling dimensions of mass
and coupling, the same conclusion can be reached for the standard Wilson-Fisher fixed point in three dimensions.
However, in such a case we can easily study higher-order truncations, and find that also the coupling g6 of the �

6

interaction reaches a fixed point, and being g6 dimensionless in d = 3, it remains finite also as we remove the IR
cuto↵. That the Wilson-Fisher fixed point theory is truly an interacting one, can also be inferred more reliably from
the local potential approximation or the next orders in the derivative expansion [38]. In the Tensorial GFT case, on
the other hand, we are not able to do a full local potential approximation, but from our truncation we can easily
guess that the IR scaling dimension for the coupling of a general interaction is (B.8) with ↵ = 0, and hence all such
couplings would flow to zero at an IR fixed point. The non-trivial fixed point is really a trivial one in disguise. We
also notice that such scaling dimensions for the couplings are the one we would get for standard couplings in zero
dimensions, where we expect no phase transition and no non-trivial fixed point.

Figure 4 might seem to contradict such expectation at first, but in fact a similar flow diagram is found by analytically
continuing the usual beta equations to d = 0 (which in fact have the same structure as (39)-(40)). The explanation of
the apparent paradox is again found by remembering that in the broken phase we should better use a more appropriate
truncation, such as V (�) = �(�2 � �

2
0)

2. Then one finds that in zero dimensions the non-trivial fixed point is IR
attractive for both � and �

2
0, and it lies at �

2
0 < 0, meaning that actually there is always symmetry restoration in

the deep IR. Although we cannot at the moment repeat this analysis from scratch in the Tensorial GFT case, the
similarity of the equations in the symmetric case, together with the scaling argument, give us confidence that the
same is true here.

The fact that the zero modes surviving in the deep IR lead to an e↵ective zero-dimensional theory is very reminiscent
of what observed in [57] for scalar field theory on a spherical background. Just like in that case, also in our case we
can trace back the origin of such phenomenon to the compactness of the background space, which in [57] was S

d,
while here is (S1)d ' T

d.

All in all, for a quantum field theory on a compact space we would not expect a phase transition, on general grounds,
and our results seem to confirm this in the Tensorial GFT case as well, and the apparent NGFP is most likely an

construction and quantisation ambiguities in definition of GFT models

• GFT perturbative renormalization 
—-> renormalizability of GFT model

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

Issue 1: 

• GFT non-perturbative renormalization 
——> RG flow ~ full GFT partition function & continuum phases

Issue 2: continuum limit: controlling quantum dynamics of many interacting QG dofs

general strategy: 
treat GFTs as ordinary QFTs defined on Lie group manifold

• Divergences in simplicial models

• Renormalizability of TGFT models (d>2, non-abelian, 

w gauge invariance, ….)

• Generic asymptotic freedom/safety, hints of 

condensed phase, WF fixed point

Ben Geloun, Benedetti, Bonzom, Carrozza, 
Dittrich, DO, Einchhorn, Gurau, Koslowski, 
Krajewski, Lahoche, Ousmane Samary, Riello, 
Rivasseau, Tanasa, Toriumi, Vitale, …
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This means: 


• control QG states encoding large numbers of microscopic QG dofs


• identify those with (approximate) continuum geometric interpretation


• characterise their (geometric) properties in terms of observables


• extract their effective dynamics and recast it in GR+QFT form 



Building up continuum space and geometry
Goal: extract continuum geometric (gravitational) physics 

(dynamics) from QG (GFT) models

This means: 


• control QG states encoding large numbers of microscopic QG dofs


• identify those with (approximate) continuum geometric interpretation


• characterise their (geometric) properties in terms of observables


• extract their effective dynamics and recast it in GR+QFT form 

This requires:


• controlling large graphs/complexes superpositions


• coarse graining of description


• approximations of both states, observables and dynamics

Here: take advantage of QFTformalism/methods

(universe as a quantum many-body system - 
cosmology as QG hydrodynamics)



GFT condensate cosmology
Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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GFT condensate cosmology
Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
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�V5
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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⇥
I) + ⇥

�V5
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I
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) = 0 . (23)
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GFT condensate cosmology
Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
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⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
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�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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GFT condensate cosmology
Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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GFT condensate cosmology
• (generalised) EPRL model for 4d Lorentzian QG with SU(2) data, coupled to (discretised) (pre-)scalar field

• coupling of free massless scalar field

GFT with a Scalar Field

A matter field is needed for cosmology. A scalar field can be added to

GFTs via

'̂(gv ) ! '̂(gv ,�).

From a spin foam perspective, it is reasonable to discretize the scalar

field on chunks of 4D space-time, or at the vertices of the

two-complex dual to the discretization of the space-time.

This means that the interaction term in the GFT action must include

delta functions so all � have the same value at the vertex. Clearly,

the gradients of � will be encoded in the propagator of the GFT.

Furthermore, if we assume � is massless and minimally coupled to

gravity, the symmetries � ! �+ const and � ! �� require

K2(gv1 , gv2 ,�1,�2) = K2(gv1 , gv2 , (�1 � �2)
2
),

V5(gva ,�a) = V5(gva)
Y

�(�a � �1).
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Condensate States

A simple family of condensate states are the Gross-Pitaevskii

condensate states, i.e., coherent states of the GFT field operator

which are, up to a numerical prefactor, [Gielen, Oriti, Sindoni]

|�i ⇠ exp

✓Z
dgvd� �(gv ,�)�̂

†
(gv ,�)

◆
|0i,

where �(gv ,�) is the condensate wave function. Note that �(gv ,�)
is not normalized; rather, its norm gives the number of fundamental

GFT quanta.

Importantly, the massless scalar field can be used as a relational

clock: �(gv ,�o) can be understood as the condensate wave function

evaluated at the ‘time’ �o .

Thus, imposing the quantum equations of motion on |�i will give
relational dynamics with respect to �.
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• reduction to isotropic condensate configurations (depending on single variable j):

Relational Dynamics

We expect the condensate state to only be an approximate solution

to the quantum equations of motion. So, we will only impose the

first Schwinger-Dyson equation [Gielen, Oriti, Sindoni],

h�|
c�S
�'̄

|�i = 0.

Since we are neglecting connectivity, and only considering equilateral

spin network nodes, �(gv ,�) ! �j(�) since for each j only one

equilateral spin network node exists.

Imposing the first Schwinger-Dyson equation on |�i gives the
non-linear equation (assuming a GFT action based on EPRL)

@2

��j(�)�m2

j �j(�) + wj �̄j(�)
4
= 0,

where the numerical values of the m2

j ⇠ K (0)

2
/K (2)

2
and wj ⇠ V5/K

(2)

2

depend on the details of the GFT action.
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GFT interaction terms sub-dominant

models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
linear parts as S[', '̄] = K[', '̄] + V [', '̄], with the ki-
netic term encoding the edge amplitude of the spin foam
model and having the form (with a minimally coupled
massless scalar field)

K =
X

j,m,◆

Z
d�1d�2


'̄
jv1 ,◆1
mv1

(�1) '
jv2 ,◆2
mv2

(�2)

⇥K
jv1 ,jv2 ,◆1,◆2
mv1 ,mv2

((�1 � �2)
2)

�
, (3)

while the potential V [', '̄] encodes the vertex amplitude,
is of fifth order in the field variables ' and '̄ (for simpli-
cial GFT models) and is local in the scalar field �.

It is convenient to rewrite the kinetic term as a deriva-
tive expansion in � in the field variable '

jv2 ,◆2
mv2

(�2) around
�2 = �1 = �, giving

K =
1X

n=0

X

j,m,◆

Z
d� '̄

jv1 ,◆1
mv1

(�)'
jv2 ,◆2
mv2

(�)(K(2n))j,◆m , (4)

where the notation on Kj,◆
m has been compressed, and

(K(2n))j,◆m =

Z
du

u2n

(2n)!
Kj,◆

m (u2). (5)

In cases where the di↵erence between �1 and �2 in (3) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply

c�S
�'̄

| i = 0, (6)

together with the conjugate of this equation.
As with any interacting field theory, it is not possible

to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states

|�i = e�k�k2/2 exp

0

@
X

j,m,◆

�jv,◆
mv

(�)('̂†)jv,◆mv
(�)

1

A |0i, (7)

where �jv,◆
mv

(�) is the condensate wave function and
k�k2 =

R
d� k�(�)k2. An important point here is that

the condensate wave function is not normalized: rather
the norm of �jv,◆

mv
(�),

k�(�)k2 =
X

j,m,◆

|�jv,◆
mv

(�)|2, (8)

is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
These states have been extensively studied in the GFT

context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween di↵erent quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,

�jv,◆
mv

(�) = Cjv,◆
mv

· �j(�), (9)

where the Cjv,◆
mv

are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions �j(�), one for each spin.
The e↵ective dynamics are obtained by asking that the

condensate states (7) approximately solve the quantum
equations of motion (6). To be specific, we assume a sim-
ple Gross–Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:

h�|
c�S
�'̄

|�i = 0, (10)

which is clearly a weaker condition than (6).
For the isotropic GFT condensate states (7), and for

a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle–
Livine–Pereira–Rovelli spin foam model [13] (the most
developed one for 4D Lorentzian quantum gravity), (10)
gives the equation of motion for the �j(�)

Aj@
2
��j(�)�Bj�j(�) + wj �̄j(�)

4 = 0. (11)

It is clear that the scalar field � is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here Aj

2

functions A, B, w define the details of the EPRL model

• effective condensate hydrodynamics (non-linear quantum cosmology):

• reduction to isotropic condensate configurations (depending on single variable j):

Relational Dynamics

We expect the condensate state to only be an approximate solution

to the quantum equations of motion. So, we will only impose the

first Schwinger-Dyson equation [Gielen, Oriti, Sindoni],

h�|
c�S
�'̄

|�i = 0.

Since we are neglecting connectivity, and only considering equilateral

spin network nodes, �(gv ,�) ! �j(�) since for each j only one

equilateral spin network node exists.

Imposing the first Schwinger-Dyson equation on |�i gives the
non-linear equation (assuming a GFT action based on EPRL)

@2

��j(�)�m2

j �j(�) + wj �̄j(�)
4
= 0,

where the numerical values of the m2

j ⇠ K (0)

2
/K (2)

2
and wj ⇠ V5/K

(2)

2

depend on the details of the GFT action.
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ple action functionals, that we split into linear and non-
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In cases where the di↵erence between �1 and �2 in (3) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply
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| i = 0, (6)

together with the conjugate of this equation.
As with any interacting field theory, it is not possible

to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states
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the condensate state |�i at the relational time �.
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context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
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spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
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where the Cjv,◆
mv

are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
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• key relational observables (expectation values in condensate state) with scalar field as clock:

obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients Aj, Bj and wj. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �j(�) with di↵erent j. This is due to
the combination of the isotropic restriction and the form of the EPRL vertex amplitude
which contain Kronecker deltas �j,j0 for all edges that meet in the four-simplex. Thus, if
five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ wj�j(�)4 rather
than ⇠ wjklmn�k(�)�l(�)�m(�)�n(�). Clearly, this significantly simplifies the equations of
motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
the symmetries of Sj, it is obvious that there is a conserved quantity for every j, the
‘energy’ Ej of the condensate wave function �j(�) with respect to the relational time �,

Ej = Aj|@��j(�)|2 � Bj|�j(�)|2 +
2

5
Re

�
wj�j(�)

5
�
. (63)

In addition, in the regime in which the interaction term is small (which is necessary for
the Gross-Pitaevskii approximation to hold), the U(1) charge Qj related to the symmetry
�j(�) ! ei↵�j(�) emerges as another conserved quantity

Qj = � i

2

h
�̄j(�)@��j(�)� �j(�)@��̄j(�)

i
. (64)

Note that, following from the definition of the momentum of the massless scalar field, it is
easy to check that h�|⇡̂�(�)|�i = ~

P
j Qj and therefore ⇡� = h�|⇡̂�(�)|�i is a conserved

quantity also in the limit where the Gross-Pitaevskii approximation holds.
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obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients Aj, Bj and wj. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �j(�) with di↵erent j. This is due to
the combination of the isotropic restriction and the form of the EPRL vertex amplitude
which contain Kronecker deltas �j,j0 for all edges that meet in the four-simplex. Thus, if
five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ wj�j(�)4 rather
than ⇠ wjklmn�k(�)�l(�)�m(�)�n(�). Clearly, this significantly simplifies the equations of
motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
the symmetries of Sj, it is obvious that there is a conserved quantity for every j, the
‘energy’ Ej of the condensate wave function �j(�) with respect to the relational time �,

Ej = Aj|@��j(�)|2 � Bj|�j(�)|2 +
2

5
Re

�
wj�j(�)

5
�
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momentum of scalar field (at fixed “time”)

the condensate be isotropic, and we are working in the limit where the scalar field � is
assumed to evolve slowly. Finally, we are considering the regime where the interaction
term in (58) is subdominant, and hence where the ⇢j are su�ciently small.

On the other hand, for there to exist a continuum interpretation of the condensate
state as a space-time, there must be a large number of quanta of geometry in the conden-
sate state, which requires the ⇢j to be large. (Also, in order for a consistent continuum
geometric interpretation to be valid at least for large total spatial volumes of the universe,
a few more conditions are needed, namely that there be a small curvature and a small vol-
ume associated to each individual GFT quantum. These last conditions are not necessary
for the mathematical consistency of the condensate approximation, but are necessary to
have a clear space-time interpretation for the condensate state.)

A delicate interplay between the values of ⇢j and the coupling constants (and kernels)
of the theory is required for the condensate approximation to be valid while at the same
time neglecting the interactions. It is only when all of these assumptions hold that a
reliable cosmological interpretation of the condensate state exists and that the e↵ective
dynamics extracted here from the full theory can be trusted.

B. Condensate Friedmann Equations

The e↵ective dynamics of the GFT condensates is (part of) the hydrodynamics of the
GFT model we are studying, and is encoded in an equation for the mean field � (and its
complex conjugate) or, in more conventional hydrodynamic form, for a density ⇢ and a
phase ✓, which in turn can be decomposed in terms of modes associated to representations
j. This type of equation has the form of a non-linear extension of a quantum cosmology
dynamics, even though the physical interpretation is di↵erent. From this type of equation,
just as in (loop) quantum cosmology, it is possible to extract the gravitational dynamics
in the form of equations for geometric quantities. In particular, for homogeneous and
isotropic configurations, a natural choice is to derive an e↵ective equation that governs
the dynamics of the volume of the universe, coupled to the scalar field.

This can be done in a straightforward fashion in this case starting from the equations
of motion for ⇢j obtained in the previous section and relating the spatial volume to the
⇢j. By using the massless scalar field � as a relational clock, the resulting equations of
motion for V (�) can be compared to the Friedmann equations of cosmology, which are
presented in the Appendix A.

The quantity of interest here is the total volume of the universe in the condensate
state, at a given moment of the relational time �,

V (�) =
X

j

Vj�̄j(�)�j(�) =
X

j

Vj⇢j(�)
2, (73)
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universe volume (at fixed “time”) where Vj ⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that Vj is the largest eigenvalue of the LQG volume operator possible for a node
with all ji = j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate Vj for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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and
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Both V 0 and V 00 depend also on the wj interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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energy density of scalar field (at fixed “time”)

These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �j(�o) at
an initial time �o.

An important point here is that, for the energy density of the massless scalar field,
which is defined in terms of the expectation values of scalar field momentum and volume
operators as

⇢ =
⇡2
�

2V 2
=

~2(
P

j Qj)2

2(
P

j Vj⇢2j)
2
, (78)

to be non-zero, at least one of the Qj must be non-zero6. The condition that at least one
of the Qj be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Qj be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Qj = 0 (but still having large ⇢j) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Qj must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢j will always remain greater than zero. In turn, since V =

P
j Vj⇢2j , it follows that

V will always remain non-zero. Therefore, we find that for all cosmological solutions, the
volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
P

j �j .
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At this point, it is convenient to separate �j(�) into its modulus and phase,

�j(�) = ⇢j(�)e
i✓j(�), (67)

with ⇢j(�) and ✓j(�) both assumed to be real, and ⇢j(�) to be positive. From now on,
we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
f 0 := @�f(�). Then, in terms of ⇢j and ✓j, the equation of motion (66) splits into a real
and an imaginary part, which are respectively

⇢00j � [m2
j + (✓0j)

2]⇢j ⇡ 0, (68)

and
2⇢0j✓

0
j + ⇢j✓

00
j ⇡ 0. (69)

The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2j✓

0
j is a constant of the motion, and in fact is precisely the

conserved U(1) charge (64),
Qj ⇡ ⇢2j ✓

0
j. (70)

Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,

Ej ⇡ (⇢0j)
2 + ⇢2j(✓

0
j)

2 �m2
j⇢

2. (71)

Finally, using (70), the remaining equation of motion (68) can be rewritten as

⇢00j �
Q2

j

⇢3j
�m2

j⇢j ⇡ 0, (72)

and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢j ! 0; this implies that ⇢j remains
non-zero at all times (for non-zero Qj). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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effective dynamics for volume - generalised Friedmann equations:

where Vj ⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that Vj is the largest eigenvalue of the LQG volume operator possible for a node
with all ji = j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate Vj for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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Both V 0 and V 00 depend also on the wj interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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where Vj ⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that Vj is the largest eigenvalue of the LQG volume operator possible for a node
with all ji = j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate Vj for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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Both V 0 and V 00 depend also on the wj interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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effective dynamics for volume - generalised Friedmann equations:

where Vj ⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that Vj is the largest eigenvalue of the LQG volume operator possible for a node
with all ji = j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate Vj for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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Both V 0 and V 00 depend also on the wj interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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where Vj ⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that Vj is the largest eigenvalue of the LQG volume operator possible for a node
with all ji = j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate Vj for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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Both V 0 and V 00 depend also on the wj interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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classical approx.

In this way, the big-bang and big-crunch singularities of classical FLRW space-times
that occur generically in general relativity are resolved in the GFT condensate states
studied here. The equation of motion for ⇢j (72) clearly shows that the individual ⇢j will
reach a minimal value at which point they will bounce (and it is clear that there is only a
single bounce since ⇢j has only one turning point), and thus the cosmological space-time
that emerges from the GFT condensate state is that of a bouncing FLRW space-time.

In order to see exactly how the singularity is resolved, and better understand the
nature of the quantum e↵ects causing this resolution, it is necessary to solve our modified
Friedmann equations for V (�) for some initial conditions. Unfortunately, it is di�cult to
provide an exact solution to these equations of motion for generic initial conditions, but
there are two special cases when an explicit solution can be found.

C. Classical Limit

As already mentioned, the momentum of the scalar field, defined as the expectation
value of the operator (23) in the condensate state, is given by ⇡� = ~

P
j Qj and therefore

⇡� is a conserved quantity: this is exactly the continuity equation for a massless scalar
field in an FLRW space-time. Therefore, the only other requirement in order to verify
that the correct semi-classical limit is obtained is to ensure that the correct Friedmann
equation is recovered.

The classical limit of the generalised Friedmann equations is obtained when the Hubble
rate is small compared to the inverse Planck time, and this will occur at su�ciently large
volumes, i.e., when ⇢2j � |Ej|/m2

j and ⇢4j � Q2
j/m

2
j (note that the semi-classical limit is

not the limit of large volume, but of small space-time curvature; nonetheless, the space-
time curvature decreases as the space-time expands and therefore the dominant term in
the Friedmann equation at large volumes is also the dominant term when the space-time
curvature is small). As shall be seen in the next section, the terms containing Ej and
Qj/⇢2j can be understood as quantum corrections.

In this limit, the generalised Friedmann equations become
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We immediately see from these equations that, in order to recover the classical Friedmann
equations of general relativity in terms of the relational time �, which are given in Ap-
pendix A 1, (in this specific context where the FLRW space-time emerges as a condensate
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In this way, the big-bang and big-crunch singularities of classical FLRW space-times
that occur generically in general relativity are resolved in the GFT condensate states
studied here. The equation of motion for ⇢j (72) clearly shows that the individual ⇢j will
reach a minimal value at which point they will bounce (and it is clear that there is only a
single bounce since ⇢j has only one turning point), and thus the cosmological space-time
that emerges from the GFT condensate state is that of a bouncing FLRW space-time.

In order to see exactly how the singularity is resolved, and better understand the
nature of the quantum e↵ects causing this resolution, it is necessary to solve our modified
Friedmann equations for V (�) for some initial conditions. Unfortunately, it is di�cult to
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pendix A 1, (in this specific context where the FLRW space-time emerges as a condensate
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effective dynamics for volume - generalised Friedmann equations:

where Vj ⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that Vj is the largest eigenvalue of the LQG volume operator possible for a node
with all ji = j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate Vj for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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Both V 0 and V 00 depend also on the wj interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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classical approx.

In this way, the big-bang and big-crunch singularities of classical FLRW space-times
that occur generically in general relativity are resolved in the GFT condensate states
studied here. The equation of motion for ⇢j (72) clearly shows that the individual ⇢j will
reach a minimal value at which point they will bounce (and it is clear that there is only a
single bounce since ⇢j has only one turning point), and thus the cosmological space-time
that emerges from the GFT condensate state is that of a bouncing FLRW space-time.

In order to see exactly how the singularity is resolved, and better understand the
nature of the quantum e↵ects causing this resolution, it is necessary to solve our modified
Friedmann equations for V (�) for some initial conditions. Unfortunately, it is di�cult to
provide an exact solution to these equations of motion for generic initial conditions, but
there are two special cases when an explicit solution can be found.

C. Classical Limit

As already mentioned, the momentum of the scalar field, defined as the expectation
value of the operator (23) in the condensate state, is given by ⇡� = ~

P
j Qj and therefore

⇡� is a conserved quantity: this is exactly the continuity equation for a massless scalar
field in an FLRW space-time. Therefore, the only other requirement in order to verify
that the correct semi-classical limit is obtained is to ensure that the correct Friedmann
equation is recovered.

The classical limit of the generalised Friedmann equations is obtained when the Hubble
rate is small compared to the inverse Planck time, and this will occur at su�ciently large
volumes, i.e., when ⇢2j � |Ej|/m2

j and ⇢4j � Q2
j/m

2
j (note that the semi-classical limit is

not the limit of large volume, but of small space-time curvature; nonetheless, the space-
time curvature decreases as the space-time expands and therefore the dominant term in
the Friedmann equation at large volumes is also the dominant term when the space-time
curvature is small). As shall be seen in the next section, the terms containing Ej and
Qj/⇢2j can be understood as quantum corrections.

In this limit, the generalised Friedmann equations become
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We immediately see from these equations that, in order to recover the classical Friedmann
equations of general relativity in terms of the relational time �, which are given in Ap-
pendix A 1, (in this specific context where the FLRW space-time emerges as a condensate
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9j / ⇢j(�) 6= 0 8�

These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �j(�o) at
an initial time �o.

An important point here is that, for the energy density of the massless scalar field,
which is defined in terms of the expectation values of scalar field momentum and volume
operators as

⇢ =
⇡2
�

2V 2
=

~2(
P

j Qj)2

2(
P

j Vj⇢2j)
2
, (78)

to be non-zero, at least one of the Qj must be non-zero6. The condition that at least one
of the Qj be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Qj be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Qj = 0 (but still having large ⇢j) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Qj must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢j will always remain greater than zero. In turn, since V =

P
j Vj⇢2j , it follows that

V will always remain non-zero. Therefore, we find that for all cosmological solutions, the
volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
P

j �j .
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remains positive at all times
(with single turning point)

generic quantum bounce (solving classical singularity)!
M. De Cesare, M. Sakellariadou, ‘16

E = constant of motion



Accelerated phase after bounce: QG inflation?

M. De Cesare, M. Sakellariadou, ‘16

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

existence of accelerated expansion translates in relational time as:

for: standard cosmology:   introduce proper time t and scale factor α  with  
express condition that the universe has positive acceleration in purely relational times 

classical condition for accelerated expansion: 

valid also in the absence of classical 
spacetime and absence of proper time 

near bounce:    positive        zero 

accelerated expansion in the absence of 
an inflaton field with a tuned potential 

r.h.s. 
l.h.s. accelerated 

expansion l.h.s. 

r.h.s. 

accelerated expansion, 
followed by  a maximal 
deceleration 
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express condition that the universe has positive acceleration in purely relational times 

classical condition for accelerated expansion: 

valid also in the absence of classical 
spacetime and absence of proper time 

near bounce:    positive        zero 

accelerated expansion in the absence of 
an inflaton field with a tuned potential 

r.h.s. 
l.h.s. accelerated 

expansion l.h.s. 

r.h.s. 

accelerated expansion, 
followed by  a maximal 
deceleration 

near the bounce

issue is: number of e-folds

can one obtain                       ?  

�  non-interacting case :                                            for all values of m     and   Q 2                   2 

GFT cosmology in the absence of interactions between building 
blocks cannot replace the standard inflationary scenario 

can we get at least N ~ 60?

detailed study of behaviour of solutions after bounce 
confirm a distinct accelerated phase 

does the acceleration last long enough (to solve cosmological problems)?



Accelerated phase after bounce: QG inflation?

•  in effective cosmological dynamics 
neglecting GFT interactions:

acceleration is too short-lived to be physically useful

• including effects of GFT interactions (in phenomenological way):

consider 

effective action for an 
isotropic GFT condensate 

remark: 
 
�  spin foam models for 4d QG are mostly based on interaction terms of power 5 (simplicial) 
�  tensor modes are based on even powers of the modulus field (tensorial) 

consider 

effective action for an 
isotropic GFT condensate 

remark: 
 
�  spin foam models for 4d QG are mostly based on interaction terms of power 5 (simplicial) 
�  tensor modes are based on even powers of the modulus field (tensorial) 

consider 

effective action for an 
isotropic GFT condensate 

with two conserved quantities: 

consider 

effective action for an 
isotropic GFT condensate 

with two conserved quantities: 

one finds:

•  bounce

• accelerated expansion following bounce

• decelerated phase and recollapse

cyclic universe

for a given GFT energy 

the solutions are cyclic motions describing 
oscillations around a stable minimum  

  cyclic universe                                                                                                         
volume that has a positive minimum corresponding to a bounce 

occurrence of a bounce and an early epoch 
of accelerated expansion found in the free 
theory, holds in the interacting case 
 
in addition, interactions induce recollapse 
leading to cyclic cosmologies 

moreover:

• N at least ~ 60

• no intermediate deceleration 
between beginning and end 
of accelerated phase

can one obtain                       ?  

� interacting case : 

quadratic term and 2 interaction terms 

or 

additional requirement to have an inflation-like era: 
no intermediate stage of deceleration between the 
bounce and end of inflation                λ negative 

GFT cosmology can lead to an inflation-like era for certain 
types of interactions between quanta of geometry 

QG-inflation from GFT condensates

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

can one obtain                       ?  

�  non-interacting case :                                            for all values of m     and   Q 2                   2 

GFT cosmology in the absence of interactions between building 
blocks cannot replace the standard inflationary scenario 
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Cosmological perturbations from full QG

GFT for 4d gravity coupled to 4 free massless scalar fields used as clock and rods
+

isotropic reduction of geometric sector
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For locally isotropic configurations (again this can be
relaxed [18]), we can restrict the mean field � to isotropic
excitations (equilateral tetrahedra) [7], with

�(gI ,�
J) =

1X

j=0

�j(�
J)Dj(gI) ; (17)

the sum is over irreducible SU(2) representations j and
the fixed Dj(gI) is a convolution of Wigner D-matrices
with SU(2) intertwiners that encodes the shape of the
tetrahedra. � now only depends on a single j, which
determines volume information and thus the cosmological
scale factor. The volume can be computed within full
GFT as a second quantised operator, whose expectation
value we compute in the state (13) below.

The isotropic mean field �j(�J) then satisfies
�
�Bj +Aj@

2
�0 + Cj ��i

�
�j(�

J) = 0 , (18)

where we have rewritten K0, K1 and K̃1 as j-dependent
couplings with no further derivatives; we have also used
orthogonality of the WignerD-matrices to split the equa-
tion into di↵erent j contributions.

The case of Refs. [7] is obtained as the limit of our
model in which the GFT mean field takes the form

�j(�
J) ⌘ �

0
j (�

0) , (19)

with a relational 3-volume operator at “time” �
0

V̂ (�0) =

Z
dg dg0 '̂†(gI ,�

0)V (gI , g
0
I)'̂(g

0
I ,�

0) . (20)

V (gI , g0I) are matrix elements of the LQG volume oper-
ator between single-vertex spin network states.

Given a GFT state, hV̂ (�0)i gives its total 3-volume at
relational time �

0. This appears in the Friedmann equa-
tion (2), which connects GFT condensates to cosmology.

Solutions to this homogeneous case, for generic initial
conditions, lead to a semiclassical regime in which the
Universe expands to macroscopic size [7, 8]; in this regime
the 3-volume follows the classical Friedmann solution (3).
At small volumes, the Universe undergoes a bounce and
the classical singularity is avoided [7].

In the simplest example in which only a single spin j0

is excited, the 3-volume behaves as

hV̂ (�0)i �0!±1⇠ |�±|2 exp
 
±2

s
Bj0

Aj0

�
0

!
(21)

for generic initial conditions (�± 6= 0), if Bj0/Aj0 > 0;
this is precisely the classical GR result (3) if one identifies
Bj0/Aj0 =: 3⇡G. V (�) interpolates between the classi-
cal contracting and expanding solutions, and only ever
vanishes for special initial conditions [7, 8, 10]. Includ-
ing interactions can a↵ect this cosmological evolution in
several ways, for example prolonging the phase of accel-
erated expansion after the bounce and causing a later
recollapse, producing a cyclic cosmology [9].

COSMOLOGICAL PERTURBATIONS IN GFT
CONDENSATES

In a GFT model with enough degrees of freedom to
describe local physics, we could study general inhomoge-
neous quantum geometries and their dynamics. Here we
consider situations relevant for fundamental cosmology.
We study quantum fluctuations of the local 3-volume
around a close-to-homogeneous background, seeking a
quantum gravitational mechanism for explaining the ori-
gin of inhomogeneities (cosmic structure), in a similar
spirit to the inflationary paradigm, where this mecha-
nism is the imprint of quantum fluctuations in the homo-
geneous vacuum state of the inflaton [19]. We show how
such mechanism, natural in any quantum field theory
for gravity and matter, is realised by GFT condensates,
without the need to introduce an additional inflaton.
We start with the generalisation of Eq. (20) for a GFT

for gravity coupled to four reference scalar fields �I ,

V̂ (�J) =

Z
dg dg0 '̂†(gI ,�

J)V (gI , g
0
I)'̂(g

0
I ,�

J) . (22)

Here all four �J take fixed values: V̂ (�J) defines a local
volume element at the spacetime point specified by values
of the reference fields. The total 3-volume at the clock
value �

0 is obtained by integrating over the “rods” �
i,

V̂ (�0) ⌘
Z

d�i
V̂ (�0

,�
i) . (23)

In a simple coherent state of the form (13), the expec-
tation value of V̂ (�J) can be evaluated immediately,

hV̂ (�J)i =
Z

dg dg0 �̄(gI ,�
J)V (gI , g

0
I)�(g

0
I ,�

J) . (24)

For a homogeneous mean field that only depends on �
0,

the integral over �
i in Eq. (23) must be regularised; for

the isotropic wavefunction (19), we obtain

hV̂ (�J)i =
1X

j=0

Vj |�0
j (�

0)|2 , (25)

with eigenvalues Vj ⇠ VPl j
3/2 of the volume operator.

The local and total 3-volume coincide up to regularisa-
tion, as expected in a homogeneous geometry.
In cosmology the key observables encoding the pattern

of cosmic structure are correlation functions for geomet-
ric observables. Here we focus on local volume fluctu-
ations hV̂ (�J)V̂ (�J)i, computed in a mean field state
(13), which depend crucially on the one-body matrix el-
ements V

2(gI , g0I) of the squared volume operator. Us-
ing “squared matrix elements” to compute a spectrum of
perturbations has been suggested before [12], but with-
out “rods” only global information was obtained. Here,
we can use the �I to extract statistical information about
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GFT hydrodynamics equation for 
isotropic condensates (weak coupling)

small perturbations around homogeneous condensate universes

volume fluctuations and cosmological power spectrum

naturally approximate scale invariance

• dominant part (computed on exactly homogeneous 
condensate) exactly scale invariant

• scale invariance tied to translation invariance of condensate 
• deviations suppressed as universe expands and when 

inhomogeneities are negligible

small relative amplitude

• dominant term ~ 1/N ~ 1/V
• perturbations further suppressed as universe expands
• if accelerated phase, further suppression of deviations 

from scale invariance
• QG inflation without inflation
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cosmological perturbations; Fourier transforming from �
i

to their momenta ki introduces a notion of wavenumber,
defined with respect to the reference matter.

We can then obtain, within the full quantum gravity
formalism, a power spectrum of cosmological perturba-
tions. Instead of working with a generic inhomogeneous
mean field, we consider a situation of interest for the
study of cosmological perturbations and consider a mean
field perturbed around exact homogeneity,

�j(�
J) = �

0
j (�

0)(1 + ✏  j(�
J)) . (26)

We then find for the quantum fluctuations of the volume

h ˆ̃V (�0, ki)
ˆ̃
V (�0

,Ki)i � h ˆ̃V (�0, ki)ih ˆ̃V (�0
,Ki)i

= �(�0 � �0)
X

j

V
2
j |�0

j (�
0)|2

⇥
(2⇡)3�3(ki +Ki)

+ ✏ ( ̃j(�
0
, ki +Ki) +  ̃j(�0,�ki �Ki)

⇤
, (27)

where we have Fourier transformed V̂ and  j ; the delta

function in �0 arises because V̂ (�J) is a density on scalar
field space. This power spectrum is a genuine quantum
correlation in the GFT condensate.
Let us illustrate the main features of this expression.
Remarkably, the dominant part of the power spectrum

(2⇡)3�3(ki +Ki)�(�
0 � �0)

X

j

V
2
j |�0

j (�
0)|2 (28)

is naturally scale-invariant: it only depends on �0. This
property follows from computing cosmological perturba-
tions on an exactly homogeneous background. Repre-
senting quantum fluctuations, even in this case the right-
hand side of Eq. (27) is not zero: it must then be scale-
invariant, with scale defined by the reference matter.
Within our mean-field approximation, scale invariance
and translational invariance, as expressed by the momen-
tum delta function in Eq. (27), are necessarily connected.

Deviations from exact scale invariance are encoded in
the last line of Eq. (27). They arise from inhomogeneous
fluctuations around the exactly homogeneous GFT con-
densate, which should generically be present, although
maybe small. Approximate scale invariance is intrinsi-
cally linked, in this framework, to such GFT fluctuations
being small. Further deviations will come from relaxing
the mean-field approximation, i.e. from using more re-
fined quantum states. Importantly, such deviations from
scale invariance depend both on the coupling of inhomo-
geneities with the homogeneous background and on their
own dynamics, as expected on physical grounds and in
agreement with the standard theory of cosmological per-
turbations. They are fully determined by the GFT per-
turbation density field, itself a solution to the perturbed
mean field equations. A more detailed study of solutions
of such perturbed equations, in particular their initial
conditions, would be crucial to identify the precise form

of these deviations. This result does not depend on the
existence of a bouncing dynamics for the background,
whose influence on the power spectrum, however, should
also be studied.
The amplitude of volume fluctuations relative to

the homogeneous background, i.e. of c
�Ṽ (�0, ki) ⌘

ˆ̃
V (�0, ki)/hV̂ (�0)i, is obtained by dividing Eq. (27)
by the squared background volume hV̂ (�0)i2 ⌘
(
R
d�i

P
j Vj |�0

j (�
0)|2)2. This amplitude is of order 1/N ,

for N � 1 quanta in the condensate. For instance, con-
sidering only the dominant, scale invariant contribution
and with only a single spin j0 excited, the power spec-
trum of such perturbations is

P�V (k) =
V

2
j0 |�

0
j0(�

0)|2

(
R
d�i Vj0 |�0

j0
(�0)|2)2

=
Vj0

(
R
d�i)V (�0)

, (29)

with V (�0) = N(�0)Vj0 . A small amplitude of scalar
perturbations, decreasing as the universe expands, arises
naturally from the simplest GFT condensates.
For Cj/Bj < 0 in Eq. (18), inhomogeneous perturba-

tions decay relative to the homogeneous background at
large volumes; one approaches scale invariance even more
closely, further suppressing the deviations coming from
the inhomogeneous term. If GFT interactions produce
a long-lasting accelerated expansion after the bounce
regime, as shown in [9], this leads to an even stronger
suppression of the deviations from scale invariance. This
would be basically the inflationary mechanism without
an inflaton, purely driven by quantum gravity dynamics.
The choice of vacuum, e.g. as made in inflation, is re-

placed by the GFT condensate state (13) that refers to
both quantum geometric and matter degrees of freedom.
This is because such fluctuations are computed directly
within the complete quantum gravity formalism, which
also defines the ultraviolet completion of the theory.

CONCLUSIONS

By introducing in the GFT formalism scalar field de-
grees of freedom that can be used as physical reference
frames, we could extend the mean field approximation
for GFT condensates beyond homogeneity. This approx-
imation has already been shown to provide an e↵ective
cosmological dynamics in which not only a semiclassi-
cal large Friedmann universe is reproduced under generic
conditions, but also the cosmological singularity is re-
placed by a quantum bounce, followed by an accelerated
phase of expansion of pure quantum gravity origin that,
depending on the GFT interactions, can be long lasting.
We then considered the typical setup of early universe
cosmology within this full quantum gravity framework:
we computed the power spectrum of quantum fluctua-
tions of the local volume, i.e. scalar cosmological per-

�V (�0, ki;�0,Ki) ⌘ h ˆ̃V (�0, ki)
ˆ̃V (�0,Ki)i � h ˆ̃V (�0, ki)ih ˆ̃V (�0,Ki)i

= �(�0 � �0)
X

j

V 2
j |�0

j (�
0)|2

⇥
(2⇡)3�3(ki +Ki) + ✏ ( ̃j(�

0, ki +Ki) +  ̃j(�
0,�ki �Ki))

⇤

�V (�0, ki;�0,Ki)

hV̂ (�0)i2
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