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Related/previous work (not complete...)

• Survival of SM up to MPL [Froggat,Nielsen(1996)]

• Conformal symmetry and electroweak hierarchy
[Bardeen (1995);Meissner,HN(2007)]

• Coleman-Weinberg symmetry breaking
[Elias et al.(2003); Hempfling(1996);Foot et al.(2010);...]

• Conformal symmetry and phenomenology
[Holthausen, Kubo, Lindner, Smirnov(2013;...)]

• Conformal models with (B − L) gauging
[Iso,Okada,Orikasa(2009); + Takahashi(2015)]

• Asymptotic safety and conformal fixed point at MPL

[Wetterich,Shaposhnikov(2010)]

• νMSM model [Asaka,Blanchet,Shaposhnikov(2005);...]



The electroweak hierarchy problem

A main focus of BSM model building over many years:

m2
R = m2

B + δm2
B , δm2

B ∝ Λ2 and m2
R ≪ Λ2

But is this really a problem?

• Not in renormalized perturbation theory because
Λ → ∞ and because renormalisation ”does not care”
whether an infinity is quadratic or logarithmic!
(as exemplified by dimensional regularisation which does
not even ”see” quadratic divergences for d = 4 + ε).

• Yes, if SM is embedded into Planck scale theory
and Λ is a physical scale (cutoff) ⇒ quadratic de-
pendencies on cutoff imply extreme sensitivity of
low energy physics to Planck scale physics.



Two popular proposed solutions

• Low energy supersymmetry: exact cancellation of
quadratic divergences by (softly broken) supersym-
metry ⇒ choice of cutoff Λ does not matter, can
formally send Λ → ∞ and adopt any convenient
renormalisation scheme.

• Technicolor (motivated by QCD): no fundamental
scalars ⇒ no quadratic divergences ⇒H boson would
have to be composite (could still be true...)

... as well as a number of other ideas

NB: these proposals would only solve the technical

part of the hierarchy problem (= stabilising small num-
bers against large perturbative corrections), but would
not explain the observed hierarchy of scales!



Low energy supersymmetry?



Low energy exotics?



Absence of any evidence (so far) from LHC for either
of these options ⇒ explore alternative options ⇒
Can the SM survive all the way to Planck scale MPL?

In this talk: explore (softly broken) conformal sym-
metry for a minimal extension of usual SM as an al-
ternative option.

NB: this proposal does without low energy supersym-
metry, but supersymmetry is probably still essential
for a finite and consistent theory of quantum gravity.

Realisation of such a scenario would move the SUSY
breaking scale back up to the Planck scale, but make
no explicit assumptions about Planck scale theory other
than its UV finiteness (≡ UV completeness).



Reminder: the conformal group SO(2, 4)

This is an old subject! [see e.g. H.Kastrup, arXiv:0808.2730]

Conformal group = extension of Poincaré group (with
generators Mµν, Pµ) by five more generators D and Kµ:

• Dilatations (D) : xµ → eαxµ

• Special conformal transformations (Kµ):

x′
µ
=

xµ − x2 · cµ
1− 2c · x + c2x2

eiαDP µPµe
−iαD = e2αP µPµ ⇒ exact conformal invariance

implies that one-particle spectrum is either continuous
(= R+) or consists only of the single point {0}.

Consequently, conformal group cannot be realized as
an exact symmetry in nature.



Conformal Invariance and the Standard Model

Fact: Standard Model of elementary particle physics
is conformally invariant at tree level except for explicit
mass term m2Φ†Φ in potential ⇒
Masses for vector bosons, quarks and leptons →
Can ‘softly broken conformal symmetry’ (≡ ‘SBCS’)
stabilize the electroweak scale w.r.t. the Planck scale?

Concrete implementation of this idea requires

• Consistency conditions:

– absence of Landau poles up to MP l

– absence of instabilities of effective potential up to MP l

• Absence of any intermediate mass scales between
MEW and MPL (‘grand desert scenario’).



Evidence for large scales other than MPl?

• (SUSY?) Grand Unification: mX ≥ O(1016GeV)?

– But: proton refuses to decay (so far, at least!)

– SUSY GUTs: unification of gauge couplings at ≥ O(1016GeV)

• Light neutrinos (mν ≤ O(1 eV)) and heavy neutrinos

→ most popular (and most plausible) explanation
of observed mass patterns via seesaw mechanism:
[Gell-Mann,Ramond,Slansky; Minkowski; Yanagida]

m(1)
ν ∼ m2

D

M
, mD = O(mW ) ⇒ m(2)

ν ∼ M ≥ O(1012GeV)?

• Strong CP problem ⇒ need axion a(x)?

Limits e.g. from axion cooling in stars ⇒

L =
1

4fa
aF µνF̃µν with fa ≥ O(1010GeV)

NB: axion is (still) an attractive CDM candidate.



Conformal Invariance and Quantum Theory

Important Fact: classical conformal invariance is gener-
ically broken by quantum effects (unlike SUSY!) ⇒
• Impose anomalous Ward identity

Θµ
µ =

∑

n

β(n)(g)O(n)(x)

[W. Bardeen, FERMILAB-CONF-95-391-T, FERMILAB-CONF-95-377-T]

and try radiative symmetry breaking à la Coleman-
Weinberg. But: quadratic divergences?

• Admit soft breaking (=explicit mass terms) as is
commonly done for MSSM like models, but insist
on cancellation of quadratic divergenes

NB: it is known that option (1) does not work for usual
SM with one physical Higgs, but with one extra com-
plex scalar (as in our model) there is more freedom.



Coleman-Weinberg Mechanism (1973)

• Idea: spontaneous symmetry breaking by radiative
corrections =⇒ can small mass scales be explained
via conformal anomaly and effective potential ?

V (ϕ)eff =
λ

4
ϕ4 → Veff(ϕ) =

λ

4
ϕ4 +

9λ2ϕ4

64π2

[

ln

(

ϕ2

µ2

)

+ C0

]

• But: radiative breaking spurious for pure ϕ4 theory

as is easily seen in terms of RG improved potential

V RG
eff =

1

4
λ(L)ϕ4 =

λ

4
· ϕ4

1− (9λ/16π2)L
L ≡ ln

(

ϕ2

µ2

)

• With more scalar fields finding minima and ascer-
taining their stability is much more difficult, as there
is no similarly explicit formula for V RG

eff (ϕ1, ϕ2, ...).



Softly broken conformal symmetry (SBCS)

Assume existence of a UV complete and finite funda-
mental theory, such that Λ is a physical cutoff to be
kept finite, and impose vanishing of quadratic diver-
gences at particular distinguished scale Λ (= MPL?) :

• Bare mass parameters should obey mB(Λ) ≪ MPL ;

• there should be neither Landau poles nor instabili-
ties for MEW < µ < Λ (manifesting themselves as the
unboundedness from below of the effective potential
depending on the running scalar self-couplings);

• all couplings λR(µ) should remain small (for the per-
turbative approach to be applicable and stability of
the effective potential electroweak minimum).

Furthermore use known SM values of couplings and
masses as input parameters at µ = MEW.



Bare vs. renormalized couplings

With cutoff Λ and normalization scale µ we have

λB(µ, λR,Λ) = λR +

∞
∑

L=1

L
∑

ℓ=1

aLℓ λ
L+1
R

(

ln
Λ2

µ2

)ℓ

,

so that λB = λR for µ = Λ, and

m2
B(µ, λR,mR,Λ) = m2

R − f̂quad(µ, λR,Λ)Λ
2 + m2

R

∞
∑

L=1

L
∑

ℓ=1

cLℓ λ
L
R

(

ln
Λ2

µ2

)ℓ

Crucial fact: coefficient of Λ2 can be written as a function of the

bare coupling(s) only, i.e. f̂quad(µ, λR,Λ) ≡ fquad(λB(µ, λR,Λ)).

Thus, keeping the physical cutoff Λ finite we can set

fquad(λB) = 0

NB: this condition would not make sense if Λ → ∞
where bare couplings are expected to become singular!



Quadratic divergences in Standard Model
[M. Veltman(1982);Y.Hamada,H.Kawai,K.Oda, PRD87(2013)5; D.R.T.Jones,PRD88(2013)098301]

Only one scalar: fquad(λR(µ)) = 0 for µ ≈ 1024GeV ≫ MPL !



Is the Standard Model doomed?
[Y.Hamada,H.Kawai,K.Oda, PRD87(2013)5]

λR(µ) becomes negative for µ > 1010GeV ⇒ instability?

→ might also be relevant to cosmology!



Minimal extension of SM = CSM

[K. Meissner,HN, PLB648(2007)312; Eur.Phys.J. C57(2008)493]

• Start from conformally invariant (and therefore renor-
malizable) fermionic Lagrangian L = Lkin + L′

L′ :=
(

L̄iΦY E
ij E

j + Q̄iǫΦ∗Y D
ij D

j + Q̄iǫΦ∗Y U
ij U

j +

+L̄iǫΦ∗Y ν
ijν

j
R + φνiTR CY M

ij νjR + h.c.
)

− V (Φ, φ)

• Besides usual SU (2) doublet Φ: new scalar field φ(x)

φ(x) = ϕ(x) exp

(

ia(x)√
2µ

)

• No fermion mass terms, all couplings dimensionless

• Y U
ij , Y

E
ij , Y

M
ij real and diagonal: Y M

ij = yNi
δij

Y D
ij , Y

ν
ij complex→ parametrize family mixing (CKM)

• Neutrino masses from usual seesaw mechanism
(but with 〈φ〉 < O(1 TeV) and Y ν ∼ 10−6 ⇒
no new large scales needed!)



Scalar Sector of CSM

Right-chiral neutrinos and one complex scalar ⇒
V (Φ, φ) = mHΦ

†Φ +m2
φ|φ|2 + λ1(Φ

†Φ)2 + 2λ3(Φ
†Φ)|φ|2 + λ2|φ|4

where Φ = (Φ1,Φ2) is the SU (2)EW doublet and φ is the
complex extra gauge singlet. At the minimum√

2〈Φi〉 = vHδi2 ,
√
2〈φ〉 = vφ

with mass eigenstates h0 and ϕ0

(

h0

ϕ0

)

=

(

cosβ sinβ
− sinβ cosβ

)(√
2 Re(Φ2 − 〈Φ2〉)√
2 Re(φ− 〈φ〉)

)

, (1)

with masses Mh < Mϕ and | tanβ| < 0.3 (from existing
experimental bounds if h0 = SM Higgs-Boson).

Scalar sector can be further enlarged ⇒ more ‘sterile
scalars’, possibly to also explain axion as a pseudo-
Goldstone boson. [cf. arXiv:1507.01755]



Quadratic divergences in CSM

Two physical scalars ⇒ two conditions (at one loop)

16π2fquad
1 (λ, g, y) = 6λ1 + 2λ3 +

9

4
g2w +

3

4
g2y − 6y2t

16π2fquad
2 (λ, g, y) = 4λ2 + 4λ3 −

3
∑

i=1

y2
Ni

• Start from known values of electroweak couplings
gy, gw, yt at µ = MEW and evolve them to µ = MPL.

• Choose λ1, yN and determine λ2 and λ3 from fquad
k = 0

• Evolve all couplings back to µ = MEW and check
whether all consistency requirements are satisfied.

⇒ leads to a range of possible values for new heavy
scalar ϕ0 and heavy neutrinos (with mN < 1 TeV).



β-functions at one loop

β̃
(1)
λ1

= 24λ2
1 + 4λ2

3 − 3λ1

(

3g2w + g2y − 4y2t
)

+

+
9

8
g4w +

3

4
g2wg

2
y +

3

8
g4y − 6y4t

β̃
(1)
λ2

= 20λ2
2 + 8λ2

3 + 2λ2

3
∑

i=1

y2
Ni
−

3
∑

i=1

y4
Ni

β̃
(1)
λ3

=
1

2
λ3

{

24λ1 + 16λ2 + 16λ3 −
(

9g2w + 3g2y
)

+ 2
3

∑

i=1

y2
Ni
+ 12y2t

}

β̃(1)
gw

= −19

6
g3w , β̃(1)

gy
=

41

6
g3y, β̃(1)

gs
= −7g3s ,

β̃(1)
yt

= yt

{

9

2
y2t − 8g2s −

9

4
g2w − 17

12
g2y

}

,

β̃(1)
y
Nj

=
1

2
y
Nj

{

2y2
Nj

+
3

∑

i=1

y2
Ni

}

where β̃ ≡ 16π2β.



Admissible parameter ranges
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• Couplings remain small (also at two loops)

• Mϕ grows with decreasing mixing angle β

• Usual seesaw mechanism applies, with small light
neutrino masses (for Yν ∼ 10−6) and mN < 1TeV?

• Stability of electroweak vacuum can be arranged

• Caveats: scheme dependencies, threshold effects?



What might be observed

• h0 decay width is decreased: Γh0 = cos2 β ΓSM < ΓSM

• ϕ0 decay width: Γϕ0 = sin2 β ΓSM + · · ·
– First term: narrow resonance (‘shadow Higgs boson’)

– Other terms: decay of heavy scalar into two or three h0’s,

and two heavy neutrinos (if kinematically allowed).

• → new scalar boson is main prediction!
... but not compatible with diphoton excess at 750 TeV!

• Decay via two h0 bosons might produce spectacular
signatures with 5,...,8 leptons coming out of a single
vertex. But: rates vs. background?

• Proposal can be easily discriminated against other
extensions of SM that might produce similar sig-
natures, but that would come with a lot of extra
baggage (accompanying signatures).



Outlook

• Usual SM probably cannot survive to Planck scale
⇒ requires some extension, if only to accommodate
right-chiral neutrinos.

• A conformally motivated extension of the SM can
in principle satisfy all consistency requirements, if
properly embedded into a UV complete theory.

• Model accommodates axions naturally: fa ∝ m2
W/mν.

• Low energy supersymmetry may after all not be
required for stability of electroweak scale...

• ... but is probably needed for a UV complete theory
of quantum gravity and quantum space-time.

Conclusion: Nature is probably still a bit smarter than
us, and may have a few more tricks up her sleeve!



Conformal invariance from gravity?

Here not from scale (Weyl) invariant gravity, but:

N = 4 supergravity 1[2]⊕ 4[3
2
]⊕ 6[1]⊕ 4[1

2
]⊕ 2[0]

coupled to n vector multiplets n× {1[1]⊕ 4[12]⊕ 6[0]}
Gauged N = 4 SUGRA: [Bergshoeff,Koh,Sezgin; de Roo,Wagemans (1985)]

• Scalars φ(x) = exp(LI
AT I

A) ∈ SO(6, n)/SO(6)× SO(n)

• YM gauge group GYM ⊂ SO(6, n) with dim GYM = n + 6

[Example inspired by ‘Groningen derivation’ of conformal M2

brane (‘BGL’, ‘ABJM’) theories from gauged D = 3 SUGRAs]

Although this theory is not conformally invariant, the
conformally invariant N = 4 SUSY YM theory nev-
ertheless emerges as a κ → 0 limit, which ‘flattens’
spacetime (with gµν = ηµν + κhµν) and coset space

SO(6, n)/((SO(6)× SO(n)) −→ R
6n ∋ φ[ij] a(x)



However: conformality of limit requires extra restric-
tions, in particular compact gauge group:

GYM ⊂ SO(n) ⊂ SO(6, n)

Exemplify this claim for scalar potential: with

Cai
j = κ2fabcφ[ik]

bφ[jk] c +O(κ3) , Cij = κ3fabcφ[ik]
aφb [kl]φ[lj]

c +O(κ4)

potential of gauged theory is (m,n = 1, . . . , 6; κ|z| < 1)

V (φ) =
1

κ4

(1− κz)(1− κz∗)

1− κ2zz∗

(

Cai
jCai

j −
4

9
C ijCij

)

= Tr [Xm, Xn]
2 +O(κ)

Idem for all other terms in Lagrangian! Unfortunately

• N = 4 SYM is quantum mechanically conformal theory

→ no conformal anomaly → no symmetry breaking!

• Thus need non-supersymmetric vacuum with Λ = 0

⇒ must look for a better theory with above features!



Metamorphosis of CW mechanism?

But: if we embed SM in a UV finite theory of quantum

gravity what is the origin of (conformal) anomalies?

Conjecture: If this (unknown) theory admits a clas-
sically conformal flat space limit, CW-like contribu-
tions could arise from finite logarithmic (in κ) quan-

tum gravitational corrections ⇒ identify v ∼ MPl!

• CW-like corrections would not be due to UV diver-
gences, but rather to the fact that gravity is not

conformal – this would be the only ‘footprint’ that
quantum gravity leaves in low energy physics.

• Observed mass spectrum and couplings in the SM
could have their origin in quantum gravity.


