Neutrino Propagation with Non-unitarity

Hisakazu Minakata IFT UAM/CSIC, Madrid

Chee Sheng Fong, HM, Hiroshi Nunokawa, arXiv:1609.08623,

OSCILLATION PARAMETER SENSITIVITIES (2017)

ns shared.

NOvA Preliminary

$\delta = 3\pi/2$ (or $-\pi/2$) implies that we are at t he tip of the ellipse best case for NOvA

P-\bar{P} bi-probability diagram, proposed by HM-H.Nunokawa, JHEP 2001

Sign of Δm_{31}^2 distinguishes normal vs inverted mass ordering δ and sign Δm_{31}^2 couple because ($\Delta m_{31}^2 \frown \Delta m_{31}^2$, δ (Heid $\Im \pi$ - δ) symmetry in vacuum (IHEP 2001)

Assuming all these go through well, the key question is "What is left?" and "what is most important among the m?"

- My answer is:
 - Paradigm Test !

JUNO can m easure $|U_{e1}|^2 + |U_{e2}|^2$ $+ |U_{e3}|^2$

Seminar@MPIK-Heidelberg

Method 1: Unitarity triangle Yes, model-independent!

 $U_{e1}U_{\mu1}^* + U_{e2}U_{\mu2}^* + U_{e3}U_{\mu3}^* = 0,$

- Determine |U_{e1}|, |U_{e2}|, |U_{e3}|, separately
 JUNO (+Daya Bay etc)
- Can we do " v_{μ} -JUNO" Det ermine $|U_{\mu 1}|$, $|U_{\mu 2}|$, $|U_{\mu 3}|$, separatory 2^{nd} OM
- For JPARC beam, L=300x30=9000 km, pretty hard….

 $\sum_{May} 6 \times 180^{20} v_e - bar/s (1.6 W) = 0$

6x10²⁰

Method 2: Models with unitarity violation

- Prepare generic model of unitarity violation
- Constrain these models by confronting th em with experiments

- Question: Can I do it in a completely mod el-independent way?
- Unitarity test is a passive way

May 14, 2018

Seminar@MPIK-Heidelberg

High vs lo w scale u nitarity vi olation

New Physics at high energies:

- This is Orthodox way, well studied ..
- high scale UV pioneering work by Antu sch, Biggio, Fernandez-Martinez, Gavela, and Lopez-Pavon, JHEP2006

Note: (3+N) model invented by Schechter-Valle in 1980

- But, neutrino experiments will not be the best player for unitarity test
- the reason is: high-energy SU(2) x U
 (1) prevails charge lepton gives strong
 er constraint My suggestion today is low-E UV

- "low scale": heavy leptons/neutrinos do commu nicate with light v system, i.e., participate to nu os cillation
- Various scenarios are proposed which involve "ne w physics" at low energies: motivated by LSND-Mi niBoone. DAMA. etc.
 - [21] A. E. Nelson and J. Walsh, "Short Baseline Neutrino Oscillations and a New Light Gauge Boson," Phys. Rev. D 77 (2008) 033001 doi:10.1103/PhysRevD.77.033001 [arXiv:0711.1363 [hep-ph]].
 - [22] M. Pospelov and J. Pradler, "Elastic scattering signals of solar neutrinos with enhanced baryonic currents," Phys. Rev. D 85 (2012) 113016 Erratum: [Phys. Rev. D 88 (2013) no.3, 039904] doi:10.1103/PhysRevD.85.113016, 10.1103/PhysRevD.88.039904 [arXiv:1203.0545 [hep-ph]].
 - [23] R. Harnik, J. Kopp and P. A. N. Machado, "Exploring nu Signals in Dark Matter Detectors," JCAP **1207** (2012) 026 doi:10.1088/1475-7516/2012/07/026 [arXiv:1202.6073 [hep-ph]].
 - [24] K. S. Babu, A. Friedland, P. A. N. Machado and I. Mocioiu, "Flavor Gauge Models Below the Fermi Scale," JHEP 1712 (2017) 096 doi:10.1007/JHEP12(2017)096 [arXiv:1705.01822 [hep-ph]].

Plus many more !!

• Orthodoxy seems challenged, e.g., WIMP dark mat Mayter Jow-E SUSY, day one Negoters

High- vs low-energy unitarity violation

Low-energy UV

- lepton flavor univers ality: YES
- zero distance neutri no flavor transition: NO
- Kinematical effect of sterile nu emission: YES

High-energy UV

- lepton flavor universal ity: NO
- zero distance neutrin o flavor transition: YE S
- Kinematical effect of s terile nu emission: YE S (if kinematically allo wed)

High-energy unitarity violation

Antusch et al JHEP 2006

• When high mass sector integrated out we have effective Lagrangian of light neutrino s and leptons but with unitarity violation

Aiming at model-independent formulation !!

$$\begin{split} \mathcal{L}^{eff} &= \frac{1}{2} \left(\bar{\nu}_i i \, \partial \!\!\!/ \nu_i - \overline{\nu^c}_i m_i \, \nu_i + h.c. \right) - \frac{g}{2\sqrt{2}} \left(W^+_\mu \, \bar{l}_\alpha \, \gamma_\mu \left(1 - \gamma_5 \right) N_{\alpha i} \, \nu_i + h.c. \right) \\ &- \frac{g}{2\cos\theta_W} \left(Z_\mu \, \bar{\nu}_i \, \gamma^\mu \left(1 - \gamma_5 \right) \left(N^\dagger N \right)_{ij} \, \nu_j + h.c. \right) + \dots \\ \nu_\alpha &= N_{\alpha i} \, \nu_i \, . \qquad \left\langle \nu_i \big| \nu_j \right\rangle = \delta_{ij} \, , \qquad G_F = \frac{G_F^M}{\sqrt{(NN^\dagger)_{ee}(NN^\dagger)_{\mu\mu}}} \, . \end{split}$$

$$|
u_{lpha}
angle = rac{1}{\sqrt{(NN^{\dagger})_{lpha lpha}}} \sum_{i} N^{*}_{lpha i} |
u_{i}
angle \equiv \sum_{i} ilde{N}^{*}_{lpha i} |
u_{i}
angle \,,$$

May 14, 2018

Seminar@MPIK-Heidelberg

Flavor nu states NOT orthogonal with each

May 14, 2018

Seminar@MPIK-Heidelberg

Monologu e.. by I am not sure if I understand theory myself of high scale unitarity violation, …

- Antusch et al JHEP 2006 treatment probab ly fine
- But, treatment of truncated active 3 nu spa ce looks ad hoc
- 3 active nu spans complete space of neutr al leptons Y sum |n><n| = 1, then there is no room for non-unitary evolution
- Heavy sterile limit in (3+N) model? Looks g ood idea, but it seems nontrivial May 14, 2018

3 active+N-st erile v model for Low-E uni tarity violatio

Other models of Low-E UV?

Seminar@MPIK-Heidelberg

My goal today

- Introduce a model for Low-energy scale
- (3+N) model
- Show to what extent it can be formulate d independently of details of the sterile sector models (mass spectrum, active-st erile mixing, etc.)
- Reveal how to discriminate between low -scale vs high-scale UV

3 active +N sterile unitary model in vacuum

May 14, 2018

Seminar@MPIK-Heidelberg

3+N model for low-E UV and modest requests on it

 By 3+N model I mean (3+N) space is unitary, but not in 3 active nu space

> Unique? Probably not. General Low-E UV model hard to

- Requirement: The prediction of the 3+N mod el must be independent of details of N sterile sector
- After fulfilling this criterion we will show what is the *difference* between High-E vs Low-E UV

Probability in vacuum

Active-active, active-sterile, sterile-sterile oscillations
 If Δm²_{as} (Δm²_{ss}) > 0.1 eV², "fast oscillation" due to acti ve-sterile and sterile-sterile Δm² are averaged out

$$\left\langle \sin\left(\frac{\Delta m_{Ji}^2 x}{2E}\right) \right\rangle \approx \left\langle \sin\left(\frac{\Delta m_{JK}^2 x}{2E}\right) \right\rangle \approx 0,$$

May 14, 2018

Seminar@MPIK-Heidelberg

Fast oscillation averaged out by decone rence $\left|\delta\left(\frac{\Delta m_{ab}^2 x}{2E}\right)\right| = \left|\frac{\Delta m_{ab}^2}{2E}\delta x - \frac{\Delta m_{ab}^2 x}{2E^2}\delta E\right| \gtrsim 2\pi.$

i. Spatial resolution. In this case, decoherence happens if

$$\delta x \gtrsim rac{4\pi E}{|\Delta m^2_{ab}|}.$$

ii. Energy resolution. In this case, decoherence happens if

Decoherence in v production from pion decay

Hernandez-Smirnov PLB2012

- Decoherence parameter $\xi = (\Delta m^2/2E) / \Gamma_{\pi}$
- 2 states resolved if $\xi >> 1 \blacksquare$ decoherence
- Estimate ξ assuming pion decay $\Gamma = (m_{\pi}/E_{\pi})$ $\Gamma_0 (\Gamma_0 = \text{pion width at rest})$
- Approximation $E=\alpha E_{\pi}$
- $\xi = \Delta m^2 / 2\alpha m_{\pi} \Gamma_0$
- $1/\alpha = 2.35$
- $\xi = 0.34 (\Delta m^2 / 1 eV^2)$ t if $\Delta m^2 > 1-10 eV^2$

decoheren

May 14, 2018

Seminar@MPIK-Heidelberg

P looks almost standard one, but the re is a new term

P-leaking term: It must be obvious to exist, right?

- There is a N sterile sector which can co mmunicate with active nu sector
- So the probability leaks to sterile sector
- Yet, not emphasized before…
- $W^{4,}$ Too small? $\delta_{\alpha\beta} = \sum_{j=1}^{3} U_{\alpha j} U_{\beta j}^{*} + \sum_{J=4}^{N+3} W_{\alpha J} W_{\beta J}^{*}.$ Then, $\left|\sum_{j=1}^{3} U_{\alpha j} U_{\beta j}^{*}\right|^{2} = \left|\sum_{J=4}^{N+3} W_{\alpha J} W_{\beta J}^{*}\right|^{2}$ in the appearance channel $(\alpha \neq \beta),$ $\left(\sum_{j=1}^{3} |U_{\alpha j}|^{2}\right)^{2} = \left(1 \sum_{J=4}^{N+3} |W_{\alpha J}|^{2}\right)^{2} = 1 - \mathcal{O}(W^{2})$ in the disappearance channel

Term kept by S. Parke and M. Ross sentionergan, PRD 2017 is also 4th order in W

May 14, 2018

Summary: There exists sterile-sector mode l independent P formula if $\Delta m_{as}^2 > 0.1 \text{ eV}^2$

Disappearan
ce

$$P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = C_{\alpha\alpha} + \left(\sum_{j}^{3} |U_{\alpha j}|^{2}\right)^{2} - 4\sum_{k>j}^{3} |U_{\alpha j}|^{2} |U_{\alpha k}|^{2} \sin^{2} \frac{(\Delta_{k} - \Delta_{j})x}{2},$$

 $\mathcal{C}_{\alpha\beta} \equiv \sum_{J=1}^{N} |W_{\alpha J}|^{2} |W_{\beta J}|^{2}, \qquad \mathcal{C}_{\alpha\alpha} \equiv \sum_{J=1}^{N} |W_{\alpha J}|^{4}$

- A constant leaking term $C_{\alpha\beta}$ (= distinguishes between low-E vs high-E unitarity violation !!)
- Unitary MNS Z non-unitarty "U"

UV effect is in: (1) explicit W correction term, (2) non-unitary U matrix May 14, 2018 Seminar@MPIK-Heidelberg

Invitation to non-unitary world..

Seminar@MPIK-Heidelberg

Parke-Ross-Lonergan PRD2016

FIG. 1. Marginalized 1-D $\Delta \chi^2$ for each of the magnitudes of the 3 × 3 neutrino mixing matrix elements, without (red solid) and with (black dashed) the assumption of unitarity. The x-axis is the magnitude of each individual matrix element, and the y-axis is the associated $\Delta \chi^2$ after marginalization over all parameters other than the one in question. This analysis was performed for the normal hierarchy, the inverse hierarchy providing the same qualitative result.

Constraints on unitarity violation (Parke-Ross -Lonergan)

FIG. 2. 1-D $\Delta \chi^2$ for the absolute value of the closure of the three row (solid) and three column (dashed) unitarity triangles when considering new physics that enters above $|\Delta m^2| \ge 10^{-2} \text{ eV}^2$. There is one unique unitarity triangle, the $\nu_e \nu_\mu$ row unitarity triangle, in that it does not contain any ν_τ elements and hence is constrained to be unitary at a level half an order of magnitude better than the others. By comparison to Fig. 3 one can clearly see that the Cauchy-Schwartz constraints are satisfied.

FIG. 3. 1-D $\Delta \chi^2$ for deviation of both U_{PMNS} row (solid) and column (dashed) normalizations, when considering new physics that enters above $|\Delta m^2| \ge 10^{-2} \text{ eV}^2$.

leidelberg

Sterile mod el-independ ent P: Preva il to "in mat ter"?

Small-UV perturbation theory

$$H = \mathbf{U} \begin{bmatrix} \mathbf{\Delta}_{\mathbf{a}} & 0 \\ 0 & \mathbf{\Delta}_{\mathbf{s}} \end{bmatrix} \mathbf{U}^{\dagger} + \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \equiv H_{\text{vac}} + H_{\text{matrix}} \text{Signature}^{\dagger} \text{Xiv:1712.02798}$$

where $\Delta_{\mathbf{a}} = \operatorname{diag}(\Delta_1, \Delta_2, \Delta_3)$ and $\Delta_{\mathbf{s}} = \operatorname{diag}(\Delta_4, \Delta_5, \cdots, \Delta_{N+3})$.

$$A = \begin{bmatrix} \Delta_A - \Delta_B & 0 & 0 \\ 0 & -\Delta_B & 0 \\ 0 & 0 & -\Delta_B \end{bmatrix} \qquad \qquad \mathbf{U} = \begin{bmatrix} U & W \\ Z & V \end{bmatrix}$$

$$\Delta_A \equiv rac{a}{2E}, \qquad \Delta_B \equiv rac{b}{2E},$$

$$a = 2\sqrt{2}G_F N_e E \approx 1.52 \times 10^{-4} \left(\frac{Y_e \rho}{\mathrm{g\,cm^{-3}}}\right) \left(\frac{E}{\mathrm{GeV}}\right) \mathrm{eV^2},$$
_{May 14, 20} $b = \sqrt{2}G_F N_n E = \frac{1}{2} \left(\frac{N_n}{N_e}\right) a.$

Small-UV perturbation theory: change to vacuum mass basis

$$\begin{split} \tilde{H} &= \tilde{H}_{\text{vac}} + \tilde{H}_{\text{matt}} = \begin{bmatrix} \boldsymbol{\Delta}_{\mathbf{a}} & 0 \\ 0 & \boldsymbol{\Delta}_{\mathbf{s}} \end{bmatrix} + \mathbf{U}^{\dagger} \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \mathbf{U}. \\ \tilde{H}_{0} &= \begin{bmatrix} \boldsymbol{\Delta}_{\mathbf{a}} + U^{\dagger}AU & 0 \\ 0 & \boldsymbol{\Delta}_{\mathbf{s}} \end{bmatrix}, \quad \tilde{H}_{1} = \begin{bmatrix} 0 & U^{\dagger}AW \\ W^{\dagger}AU & W^{\dagger}AW \end{bmatrix}. \\ \mathbf{X}^{\dagger} \tilde{H}_{0} \mathbf{X} &= \begin{bmatrix} X^{\dagger} \left(\boldsymbol{\Delta}_{\mathbf{a}} + U^{\dagger}AU \right) X & 0 \\ 0 & \boldsymbol{\Delta}_{\mathbf{s}} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & 0 \\ 0 & \boldsymbol{\Delta}_{\mathbf{s}} \end{bmatrix} = \hat{H}_{0} \mathbf{H}_{0}(\mathbf{3}\mathbf{x}\mathbf{3}) \\ \hat{H}_{1} &= \mathbf{X}^{\dagger} \tilde{H}_{1} \mathbf{X} = \begin{bmatrix} 0 & (UX)^{\dagger}AW \\ W^{\dagger}A(UX) & W^{\dagger}AW \end{bmatrix}. \end{split}$$

 $\begin{bmatrix} W'A(UX) & W'AW \end{bmatrix}$ perturbation $S_{aa} = (UX)\hat{S}_{aa}(UX)^{\dagger} + (UX)\hat{S}_{aS}W^{\dagger} + W\hat{S}_{Sa}(UX)^{\dagger} + W\hat{S}_{SS}W^{\dagger},$ hat Do W perturbation to 4th order to keep P leaking term

- Did we find ~W⁴ P leaking ter
 Yes!
- How about what is the role of the rest?

$$\begin{split} & \mathcal{P}(\nu_{\beta} \to \nu_{\alpha})_{2nd}^{(d)} = 2\operatorname{Re}\left[\left\{S_{\alpha}^{(d)}\right\}^{k} S_{\alpha}^{(d)}(4)\right]_{diag}\right] \\ &= 2\operatorname{Re}\left\{\sum_{n} \sum_{k} \sum_{k} \left[\frac{x^{2}}{2} \frac{1}{(\Delta_{k} - h_{k})^{2}} e^{-i(h_{k} - h_{n})x} - \frac{2(ix)}{(\Delta_{k} - h_{k})^{2}} e^{-i(h_{k} - h_{n})x} - \frac{2(ix)}{(\Delta_{k} - h_{k})^{2}} e^{-i(h_{k} - h_{n})x}\right] \right] \\ &= 2\operatorname{Re}\left\{\sum_{n} \sum_{k} \sum_{k} \sum_{m \neq k} \left[\frac{x^{2}}{(\Delta_{k} - h_{k})^{2}} \left(e^{-i(\Delta_{k} - h_{n})x} - e^{-i(h_{k} - h_{n})x}\right)\right] \\ &\times (UX)_{\alpha k}(UX)_{\beta k}^{*}(UX)_{\alpha m}^{*}(UX)_{\beta n} \\ &\times (UX)_{\alpha k}(UX)_{\beta k}^{*}(W^{\dagger}A(UX))_{\beta k}^{*}\left\{(UX)^{\dagger}AW\right\}_{k K}\left\{W^{\dagger}A(UX)\right\}_{K k}^{*}\left\{W^{\dagger}A(UX)\right\}_{K k} \\ &+ \sum_{n} \sum_{k} \sum_{k} \sum_{m \neq k} \sum_{m \neq k} \left[\frac{(-i(\Delta_{k} - h_{k})^{2}(h_{m} - h_{k})e^{-i(h_{k} - h_{n})x}}{(\Delta_{K} - h_{k})^{2}(\Delta_{K} - h_{m})^{2}} e^{-i(\Delta_{K} - h_{n})^{2}} e^{-i((\Delta_{K} - h_{n})x}\right] \\ &+ \frac{1}{(\Delta_{K} - h_{k})^{2}(h_{m} - h_{k})^{2}} e^{-i(h_{m} - h_{n})x} - \frac{(\Delta_{K} + 2h_{m} - 3\Delta_{K})}{(\Delta_{K} - h_{m})^{2}} e^{-i(h_{K} - h_{n})x}\right] \\ &\times (UX)_{k}U(X)_{\beta k}(UX)_{k}^{*}(UX)_{k}^{*}(UX) \\ &+ \sum_{n} \sum_{k} \sum_{k \neq L} \left[\frac{x^{2}}{(\Delta_{K} - h_{m})^{2}} e^{-i(h_{m} - h_{n})x} - \frac{(\Delta_{K} + 2h_{m} - 3h_{k})}{(\Delta_{K} - h_{k})^{2}(\Delta_{L} - h_{k})^{2}} e^{-i(h_{k} - h_{n})x}\right] \\ &\times (UX)_{k}U(X)_{\beta k}(UX)_{k}^{*}(UX)_{k}^{*}(UX) \\ &K \left\{(UX)^{\dagger}AW\right\}_{kK} \left\{W^{\dagger}A(UX)\right\}_{Km} \left\{(UX)^{\dagger}AW\right\}_{mK} \left\{W^{\dagger}A(UX)\right\}_{Kk} \\ &+ \sum_{n} \sum_{k} \sum_{k \neq L} \sum_{m \neq L} \left[\frac{x^{2}}{(\Delta_{K} - h_{k})(\Delta_{L} - h_{k})} e^{-i(h_{k} - h_{n})x} + \frac{1}{(\Delta_{L} - h_{k})^{3}(\Delta_{L} - \Delta_{K})} e^{-i(A_{L} - h_{n})x}\right] \\ &\times (UX)_{ak}(UX)_{jk}U(X)_{jk}^{*}(UX)_{ak}(UX)_{jk} \\ &\times \left\{(UX)^{\dagger}AW\right\}_{kK} \left\{W^{\dagger}A(UX)\right\}_{Kk} \left\{(UX)^{\dagger}AW\right\}_{kL} \left\{W^{\dagger}A(UX)\right\}_{Lk} \\ &+ \sum_{n} \sum_{k} \sum_{k \neq L} \sum_{m \neq k} \sum_{k \neq L} \sum_{m \neq k} \left[(\frac{1}{(\Delta_{K} - h_{k})(\Delta_{L} - h_{k})(\Delta_{L} - h_{k})} e^{-i(h_{k} - h_{n})x}\right] \\ &- \frac{1}{(\Delta_{K} - h_{k})^{2}(\Delta_{L} - h_{k})^{2}(h_{m} - h_{k})^{2}} \left\{\Delta_{L}\Delta_{L} + (h_{m} - 2h_{k})(\Delta_{L} - h_{k})^{2}(\Delta_{L} - h_{m})x}\right\} \\ &+ \frac{1}{(\Delta_{K} - h_{k})^{2}(\Delta_{L} - h_{k})^{2}(h_{m} - h_{k})^{2}} \left\{\Delta_{L}\Delta_{L} + (h_{m} - 2h_{k})(\Delta_{L} - h_{k})^{2}(\Delta_{L} - h_{m})x}\right\} \\ &$$

May 14, 2018

$$\begin{split} \left| S_{\alpha\beta}^{(2)} \right|_{1st}^{2} &= \sum_{k,K} \sum_{l,L} \frac{1}{(\Delta_{K} - h_{k})(\Delta_{L} - h_{l})} \\ &\times \left[x^{2} e^{-i(h_{k} - h_{l})x} - (ix) \frac{e^{-i(\Delta_{K} - h_{l})x} - e^{-i(h_{k} - h_{l})x}}{(\Delta_{K} - h_{k})} + (ix) \frac{e^{-i(h_{k} - \Delta_{L})x} - e^{-i(h_{k} - h_{l})x}}{(\Delta_{L} - h_{l})} \right] \\ &+ \frac{1}{(\Delta_{K} - h_{k})(\Delta_{L} - h_{l})} \left\{ e^{-i(\Delta_{K} - \Delta_{L})x} + e^{-i(h_{k} - h_{l})x} - e^{-i(\Delta_{K} - h_{l})x} - e^{-i(h_{k} - \Delta_{L})x} \right\} \right] \\ &\times (UX)_{\alpha k}(UX)_{\beta k}^{*} \left\{ (UX)^{\dagger}AW \right\}_{kK} \left\{ W^{\dagger}A(UX) \right\}_{kk} \\ &\times (UX)_{\alpha l}^{*}(UX)_{\beta l} \left\{ (UX)^{\dagger}AW \right\}_{lL} \left\{ W^{\dagger}A(UX) \right\}_{Ll} \\ &+ \sum_{k \neq m} \sum_{K} \sum_{l \neq n} \sum_{L} \frac{1}{(h_{m} - h_{k})(\Delta_{K} - h_{k})(\Delta_{K} - h_{m})} \frac{1}{(h_{n} - h_{l})(\Delta_{L} - h_{l})(\Delta_{L} - h_{l})} \\ &\times \left[(\Delta_{K} - h_{k}) e^{-ih_{m}x} - (\Delta_{K} - h_{m}) e^{-ih_{k}x} - (h_{m} - h_{k}) e^{-i\Delta_{K}x} \right] \\ &\times \left[(\Delta_{L} - h_{l}) e^{+ih_{n}x} - (\Delta_{L} - h_{n}) e^{-ih_{k}x} - (h_{n} - h_{l}) e^{-i\Delta_{L}x} \right] \\ &\times (UX)_{\alpha l}(UX)_{\beta m}^{*} \left\{ (UX)^{\dagger}AW \right\}_{kK} \left\{ W^{\dagger}A(UX) \right\}_{kK} \\ &\times (UX)_{\alpha l}(UX)_{\beta m}^{*} \left\{ (UX)^{\dagger}AW \right\}_{nL} \left\{ W^{\dagger}A(UX) \right\}_{Ll} \\ &+ \sum_{k,k} \sum_{l,L} \frac{1}{(\Delta_{K} - h_{k})(\Delta_{L} - h_{l})} \left(e^{-i\Delta_{K}x} - e^{-ih_{k}x} \right) \left(e^{+i\Delta_{L}x} - e^{+ih_{l}x} \right) \\ \\ & P \left[eaking term \\ &\times \left[(UX)_{\alpha k} W_{\beta K}^{*} \left\{ (UX)^{\dagger}AW \right\}_{kK} + W_{\alpha K}(UX)_{\beta k}^{*} \left\{ W^{\dagger}A(UX) \right\}_{Kk} \right] \\ &= \sum_{k,k} \left[(UX)_{\alpha k} W_{\beta K}^{*} \left\{ W^{\dagger}A(UX) \right\}_{Ll} + W_{\alpha L}^{*}(UX)_{\beta l} \left\{ (UX)^{\dagger}AW \right\}_{LL} \right] \\ & May 14 \left(+ \sum_{K} |W_{\alpha K}|^{2}|W_{\beta K}|^{2} \right) + \sum_{K \neq L} e^{-i(\Delta_{K} - \Delta_{L})x} W_{\alpha K} W_{\beta K}^{*} W_{\alpha L}^{*}W_{\beta L}. \end{aligned}$$

Do W perturbation to 4th order to keep P leaking term

- Did we find ~W⁴ P leaking ter
 Yes!
- How about what is the role of the rest?
- To answer the question let us first examine W² terms

After averaging out fast oscillations...

$$\begin{split} P(\nu_{\beta} \rightarrow \nu_{\alpha})^{(0+2)} \\ &= \left| \sum_{j=1}^{3} U_{\alpha j} U_{\beta j}^{*} \right|^{2} - 2 \sum_{j \neq k} \operatorname{Re} \left[(UX)_{\alpha j} (UX)_{\beta j}^{*} (UX)_{\alpha k}^{*} (UX)_{\beta k} \right] \sin^{2} \frac{(h_{k} - h_{j})x}{2} \\ &- \sum_{j \neq k} \operatorname{Im} \left[(UX)_{\alpha j} (UX)_{\beta j}^{*} (UX)_{\alpha k}^{*} (UX)_{\beta k} \right] \sin(h_{k} - h_{j})x \\ &+ 2\operatorname{Re} \left\{ \sum_{m} \sum_{k,K} \frac{1}{\Delta_{K} - h_{k}} \left[(ix)e^{-i(h_{k} - h_{m})x} - \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \right] \right] \\ &\times (UX)_{\alpha k} (UX)_{\beta k}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \left\{ W^{\dagger} A (UX) \right\}_{Kk} \\ &- \sum_{m} \sum_{k \neq l} \sum_{K} \frac{1}{(h_{l} - h_{k})(\Delta_{K} - h_{l})} \frac{1}{(h_{l} - h_{k})(\Delta_{K} - h_{l})} \\ &\times \left[(\Delta_{K} - h_{k}) e^{-i(h_{l} - h_{m})x} - (\Delta_{K} - h_{l}) e^{-i(h_{k} - h_{m})x} \right] \\ &\times (UX)_{\alpha k} (UX)_{\beta l}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \left\{ W^{\dagger} A (UX) \right\}_{Kl} \\ &- \sum_{m} \sum_{k,K} \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \left[(UX)_{\alpha k} W_{\beta K}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \\ &- \sum_{m} \sum_{k,K} \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \left[(UX)_{\alpha k} W_{\beta K}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \\ &- \sum_{m} \sum_{k,K} \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \left[(UX)_{\alpha k} W_{\beta K}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \\ &- \sum_{m} \sum_{k,K} \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \left[(UX)_{\alpha k} W_{\beta K}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \\ &- \sum_{m} \sum_{k,K} \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \left[(UX)_{\alpha k} W_{\beta K}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \\ &- \sum_{m} \sum_{k,K} \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \left[(UX)_{\alpha k} W_{\beta K}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \\ &- \sum_{m} \sum_{k,K} \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \left[(UX)_{\alpha k} W_{\beta K}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \\ &- \sum_{m} \sum_{k,K} \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \left[(UX)_{\alpha k} W_{\beta K}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ W^{\dagger} A(UX) \right\}_{KK} \\ &- \sum_{m} \sum_{k,K} \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \left[(UX)_{\alpha k} W_{\beta K}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ W^{\dagger} A(UX) \right\}_{KK} \\ &$$

Do it: W perturbation to 4th order to keep P leaking term

Yes!

- Did we find ~W⁴ P leaking term?
- How about what is the role of the rest?
- To answer the question let us first examine W
 ² terms
 Always comes with matter
- If we impose $\Delta M^{2}_{jK} > 0.1 \text{ eV}^{2}$, then all the W^{2} correction terms are small negligible
- Then, all the ~W⁴ terms can be ignored excep t for P leaking term

$$_{\text{May 14, }} \frac{|A|}{\Delta m_{Jk}^2} = 2.13 \times 10^{-3} \left(\frac{\Delta m_{Jk}^2}{0.1 \text{eV}^2}\right)^{-1} \left(\frac{\rho}{2.8 \,\text{g/cm}^3}\right) \left(\frac{E}{1 \,\,\text{GeV}}\right),$$

A simple formula for oscillation probability in matter w/o unitarity: leading order in W pertur bation

$$P(\nu_{\beta} \to \nu_{\alpha}) = \mathcal{C}_{\alpha\beta} + \left| \sum_{j=1}^{3} U_{\alpha j} U_{\beta j}^{*} \right|^{2} \qquad \mathsf{X} = \dots \qquad \mathsf{U} = \begin{bmatrix} U \ W \\ Z \ V \end{bmatrix}$$
$$- 2 \sum_{j \neq k} \operatorname{Re} \left[(UX)_{\alpha j} (UX)_{\beta j}^{*} (UX)_{\alpha k}^{*} (UX)_{\beta k} \right] \sin^{2} \frac{(h_{k} - h_{j})x}{2}$$
$$- \sum_{j \neq k} \operatorname{Im} \left[(UX)_{\alpha j} (UX)_{\beta j}^{*} (UX)_{\alpha k}^{*} (UX)_{\beta k} \right] \sin(h_{k} - h_{j})x,$$

- All W² & W⁴ terms avaraged out or suppressed if ∆m² > 0.1 eV² except for P leaking term!!
- UV effect is in: (1) explicit W correction term, (2) non-un itary U matrix

May 14, 2018

Where is the region of lar ge UV?

Seminar@MPIK-Heiderourg

Large ~W² co rrections?

Seminar@MPIK-Heidelberg

• Order W2 correcti on terms

small in most of the regions of L-E, but sizeable in li mited places

 High energy, long baseline Security e, PINGU, Hyper-K

Seminar

How to pr oceed?

How to proceed?

- Find hint for non-unitarity can be done with leading order P, e.g., (implicit) order W² correction in disappe arance channels $\left(\sum_{i=1}^{3} |U_{\alpha i}|^{2}\right)^{2} = \left(1 \sum_{I=4}^{N+3} |W_{\alpha J}|^{2}\right)^{2} = 1 \mathcal{O}(W^{2})$
- This step is being done by many people: common to high-E and low-E UV
 - [24] S. Parke and M. Ross-Lonergan, "Unitarity and the three flavor neutrino mixing matrix," Phys. Rev. D 93 (2016) no.11, 113009 doi:10.1103/PhysRevD.93.113009 [arXiv:1508.05095 [hep-ph]].
 - [25] M. Blennow, P. Coloma, E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, "Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions," JHEP 1704 (2017) 153 doi:10.1007/JHEP04(2017)153 [arXiv:1609.08637 [hep-ph]].
 - [38] S. Antusch and O. Fischer, "Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities," JHEP 1410 (2014) 094 doi:10.1007/JHEP10(2014)094 [arXiv:1407.6607 [hep-ph]].
 - [39] F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tórtola and J. W. F. Valle, "On the description of non-unitary neutrino mixing," Phys. Rev. D 92 (2015) no.5, 053009 doi:10.1103/PhysRevD.92.053009 [arXiv:1503.08879 [hep-ph]].
 - [40] E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, "Global constraints on heavy neutrino mixing," JHEP 1608 (2016) 033 doi:10.1007/JHEP08(2016)033 [arXiv:1605.08774 [hep-ph]].
 - [41] F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tórtola and J. W. F. Valle, "Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study," New J. Phys. 19 (2017) no.9, 093005 doi:10.1088/1367-2630/aa79ec
 [arXiv:1612.07377 [hep-ph]].

Plus many more !! How to proceed? 2

- Then, if we see UV, the next step would be:
- Detect P leaking term $C_{\alpha\beta}$
- Detect explicit W² corrections
 - To distinguish low-E UV from high-E UV
- So far, we only did "JUNO" with known flux
- Detecting $C_{\alpha\beta}$ (in accelerator) requires near detector r measurement
- T2K/T2HK IND at 300m IND for ∆m²=3 eV²
 ND before averaged out, if we limit to ∆m² < ~0.3 eV
 2
- W² terms IceCube, Hyper-K atmospheric nu?

Conclusion (1st part)

- Mixing parameter measurement in progres s looks converging
- Accumulating hints for lepton CP violation $\delta \sim 2 = \delta \sim \delta$ could me measur ed much earlier than we thought?
- $\delta \sim 3\pi/2$ implies NOvA could determine N u mass ordering
- ~3 σ evidence for both CP and mass ordering before Hyper-K and DU

Conclusion (non-unitarity)

- General structure of nu oscillation in active nu s ector of (3+N) unitary system is analyzed in vac uum and in matter in the context of low-E unita rity violation
- A new term, the "probability leaking term" foun d (leaking to sterile sector)

Distinguishes between Low-E vs High-E unitarity violation

- Conditions for sterile sector model-independen t P in vacuum and in matter are elucidated $m_J^2 > 0.1 \text{ eV}^2$
- Myikely to be insensitive to sterile interactions

Conclusion (non-unitarity2)

- JUNO analysis shows one can constrain UV in $\nu_{\rm e}$ row at a high level

 $C_{\rm ee}$ ~ 10-4, 1- $\Sigma |U_{\rm ei}|^2$ ~ 0.01 (both 1 $\sigma)$

- Non-unitarity effect in the leading order (W^o) seems sizeable in solar- and atm MSW regions (Probability level)
- generally requires L ~ 3000-104 km

~ 3000-1

- W² correction sizeable in limited L-E regions
 - distinguishes between low-E from high-E