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PT -symmetry versus Hermiticity

All Hermitian matrices have real eigenvalues, but not all matrices with real
eigenvalues are Hermitian.

So which should we be motivated by:

I the Hermiticity of the matrix representation?

I or the reality of observables?

The reality of observables can instead be guaranteed by the weaker condition of
unbroken PT symmetry. (see Bender & Boettcher ‘98)

And unitarity, by virtue of the existence of the C′ operator. (see Bender, Brody &
Jones ‘02)

In fact, existence of an antilinear discrete symmetry of the Hamiltonian is sufficient.
(see Mannheim ‘18)



A few examples

I Photonics (see, e.g., Longhi ‘10 & ‘17; El-Ganainy et al. ‘17)

I Critical phenomena (see, e.g., Ashida, Furukawa & Ueda ‘17)

I iφ3 theory (see Blencowe, Jones & Korte ‘98; Bender, Brody & Jones ‘04; Jones
‘04; Bender, Branchina & Messina ‘13; Bender, Hook, Mavromatos & Sarkar ‘16;
Shalaby ‘17)

I −φ4 theory (see Shalaby & Al-Thoyaib ‘10)

I Lattice fermion models (see Chernodub ‘17)

I Dark matter (see Rodionov & Mandel ‘19)

I Higgs-boson decays (see Korchin & Kovalchuk ‘16)

I Deconfinement (see Raval & Mandal ‘18)

I Non-Hermitian chiral magnetic effect (see Chernodub & Cortijo ‘19)

I And many more . . .



A scalar QFT

Consider a scalar theory with a non-Hermitian mass term:
(Alexandre, PM & Seynaeve ‘17)

L = ∂αφ
∗
1∂
αφ1 + ∂αφ

∗
2∂
αφ2 −m2

1|φ1|2 −m2
2|φ2|2 − µ2(φ∗1φ2 − φ∗2φ1)

PT symmetric under (for c-number fields)

P : φ1(x)→ +φ1(x) φ2(x)→ −φ2(x)

T : φ1(x)→ +φ∗1 (x) φ2(x)→ +φ∗2 (x)

The mass spectrum

M2
± =

m2
1 + m2

2

2
±
[(

m2
1 −m2

2

2

)2

− µ4

]1/2

is real, so long as we are in the unbroken regime of PT symmetry

η ≡
2|µ2|

|m2
1 −m2

2|
< 1

We have an exceptional point at η = 1.



Variational procedure

Since the action is not Hermitian

δS

δφ∗i
≡

∂L
∂φ∗i

− ∂α
∂L

∂∂αφ∗i
= 0 <

δS

δφi
≡
∂L
∂φi
− ∂α

∂L
∂∂αφi

= 0

This is just a consequence of the fact that non-Hermitian matrices have distinct left
and right eigenvectors, i.e. the left and right zero modes are distinct.

The two choices are physically equivalent, since the difference can be absorbed by a
field redefinition.

The action is PT symmetric though, and we can choose

δS

δφPTi

= 0 ⇔
(
δS

δφi

)PT
= 0

or
δS

δφi
= 0 ⇔

(
δS

δφPTi

)PT
= 0

The left and right eigenvectors are related by PT .



PT (indefinite) inner product

The mass matrix (
m2

1 µ2

−µ2 m2
2

)
has right eigenvectors

e+ = N
(

η√
1− η2 − 1

)
e− = N

(
1−

√
1− η2

−η

)
and left eigenvectors

e‡+ ≡
[
ePT+

]T
= N

(
η 1−

√
1− η2

)
e‡− = N

(
1−

√
1− η2 η

)

The eigenvectors are not orthogonal with respect to Hermitian conjugation

e†+e− = 2N 2η
(

1−
√

1− η2
)

except at the Hermitian point µ = 0.

They are orthogonal with respect to the PT inner product

e‡+e− = 0



Exceptional point

Normalising with respect to the PT inner product yields

N =
(

2η2 − 2 + 2
√

1− η2
)−1/2

N diverges when η → 1, the mass matrix becomes defective with Jordan normal formm2
1+m2

2
2

1

0
m2

1+m2
2

2


The two eigenvectors merge

e+ = e− ∝
(

1
−1

)

The issue with orthogonality is now moot, and we can normalise with respect to the
Hermitian inner product, giving N = 1/

√
2.

On-shell this looks like a Hermitian theory with half the degrees of freedom: the
equation of motion is

� (Φ1 + Φ2) +
m2

1 + m2
2

2
(Φ1 + Φ2) = 0



Noether’s theorem

I The Hermitian-conjugate Euler-Lagrange equations cannot be satisfied
simultaneously.

I Hence, conserved currents cannot correspond to symmetries that leave the
Lagrangian invariant.

I Instead, conserved currents correspond to transformations that effect a particular
variation in the non-Hermitian part of the Lagrangian (Alexandre, PM &
Seynaeve ‘17).

Choosing δS/δΦ‡ = 0, it follows from

δL =

(
∂L
∂Φ
− ∂α

∂L
∂∂αΦ

)
δΦ + δΦ‡

(
∂L
∂Φ‡

− ∂α
∂L

∂∂αΦ‡

)
+ ∂αj

α
δ

that we have a conserved current if the transformation is such that

δL =

(
∂L
∂Φ
− ∂α

∂L
∂∂αΦ

)
δΦ



U(1) current

The conserved current is

jα = i [φ∗1∂
αφ1 − (∂αφ∗1 )φ1]− i [φ∗2∂

αφ2 − (∂αφ∗2 )φ2]

corresponding to

Φ→ e iθPΦ =

(
e+iθφ1

e−iθφ2

)
P ≡

(
1 0
0 −1

)

Notice that this reflects the usual interpretation of a PT symmetric system in terms
of one with balanced gain and loss.

This leads to a family of equivalent non-Hermitian theories:

L = ∂αφ
∗
1∂
αφ1 + ∂αφ

∗
2∂
αφ2 −m2

1|φ1|2 −m2
2|φ2|2 − µ2(e−2iθφ∗1φ2 − e+2iθφ∗2φ1)

with

δL =

(
∂L
∂Φ
− ∂α

∂L
∂∂αΦ

)
δΦ = 2iθµ2(φ∗1φ2 + φ∗2φ1)

The eigenspectrum is invariant under the global U(1) transformation.



A fermionic example

Non-Hermitian extension of the Dirac theory: (Bender, Jones & Rivers ‘05; Alexandre,
Bender & PM ‘15; Alexandre, Bender & PM ‘15; Alexandre, PM & Seynaeve ‘17)

L = ψ̄(x)
(
iγα∂α −m − µγ5

)
ψ(x)

The conserved current is

jα− = ψ̄γα
(

1 +
µ

m
γ5

)
ψ = ψ†L σ̄

αψL

(
1−

µ

m

)
+ ψ†Rσ

αψR

(
1 +

µ

m

)
corresponding to

ψ → ψ′ = exp

[
+ iθ

(
1 +

µ

m
γ5

)]
ψ ψ̄ → ψ̄′ = ψ̄ exp

[
− iθ

(
1−

µ

m
γ5

)]
and giving

δL = −2µψ̄γ5δψ 6= 0

For µ→ +(−)m, the left(right)-chiral current decouples, and the squared mass
eigenvalues M2 = m2 − µ2 go to zero.



A fermionic example

Gauging the model, the Lagrangian at the exceptional point µ = +m is

L = ψ†L i σ̄ · D−ψL + ψ†R iσ · D+ − 2mψ†LψR Dα± = ∂α + i (gV ± gA)Aα

with equations of motion

iσ · D+ψR = 0 i σ̄ · D−ψL = 2mψR

We can integrate out the left-chiral field to obtain

Lon−shell = ψ†R iσ · D+ψR (1)

But this is the Hermitian theory of a single, massless right-handed Weyl fermion!

And the axial U(1) gauge symmetry is restored:

pαΠαβ(p) =
g2
A

π2
pβ
(
m2 − µ2

)
B0 −→

µ→±m
0

Massless Dirac fermions can undergo flavour oscillations (Jones-Smith & Mathur ‘14).



A Higgs-Yukawa theory

We can realize a non-Hermitian Yukawa theory of light neutrinos (Bender, Alexandre
& PM ‘15):

L = L̄Li /DLL + ν̄R i /∂νR − h−L̄Lφ̃νR − h+ν̄R φ̃
†LL h± = h ± η

After SSB, we have a squared mass

M2 =
v2

2
(h2 − η2)

We can promote h and η to matrices in flavour space:

M2
1(2) =

v2

4

[
tr h†+h− − (+)

(
2tr (h†+h−)2 − (tr h†+h−)2

)1/2
]

Massless spectrum if h = ±η. Instead, if det h†+h− = 0, we have M2
1 = 0 and

M2
2 =

v2

2

[
trh†h − trη†η − 2i Im tr h†η

]

How many complex phases for N = 3? (with Madeleine Dale and Robert Mason in
prep)



The Goldstone theorem

The conserved current is sufficient to ensure the Goldstone theorem continues to hold
in the case of global spontaneous symmetry breaking in non-Hermitian theories
(Alexandre, Ellis, PM & Seynaeve ‘18):

L = ∂αφ
∗
1∂
αφ1 + ∂αφ

∗
2∂
αφ2 + m2

1|φ1|2 −m2
2|φ2|2 − µ2(φ∗1φ2 − φ∗2φ1)−

g

4
|φ1|4

∂U

∂φ∗1
=

g

2
|φ1|2φ1 −m2

1φ1 + µ2φ2 = 0

∂U

∂φ∗2
= m2

2φ2 − µ2φ1 = 0

⇒
(
v1

v2

)
=

√
2
m2

1m
2
2 − µ4

gm2
2

(
1
µ2

m2
2

)
e iθ

Away from the exceptional point, the mass matrix for the fluctuations φ̂i about these
vevs has a single zero eigenvalue, corresponding to the Goldstone mode

G ∝ v1Im φ̂1 − v2Im φ̂2

(see also Fring & Taira ‘19)



Gauge invariance

Since ∂α∂βF
αβ = 0 identically, the consistency of the Maxwell equation suggests we

should couple to the conserved current via the minimal coupling prescription:

∂αF
αβ = jβ−

with

jβ− = ig
(
φ∗1D

β
+φ1 − φ1

[
Dβ+φ1

]∗)
− ig

(
φ∗2D

β
−φ2 − φ2

[
Dβ−φ2

]∗)
Dβ± = ∂β ± igAβ

But the Lagrangian is then not gauge invariant, and we find a longitudinal
contribution to the gauge boson polarization tensor at one-loop:
(see Alexandre, Ellis, PM & Seynaeve ‘19; PM ‘19)

pαΠαβ(p2 = 0) ∝ g2η2 η ≡
2|µ2|

|m2
1 −m2

2|



Gauge invariance (see Alexandre, Ellis, PM & Seynaeve ‘19)

To restore gauge invariance, we must couple to the non-conserved current jν+:

∂αF
αβ = jβ+

with

jβ+ = ig
(
φ∗1D

βφ1 − φ1

[
Dβφ1

]∗)
+ ig

(
φ∗2D

βφ2 − φ2

[
Dβφ2

]∗)
Dβ = ∂β + igAβ

And to keep the field equations consistent, we must restrict to harmonic gauge
functions by adding the gauge-fixing term

L ⊃ −
1

2ξ
(∂αA

α)2

The divergence of the Maxwell equation then yields the constraint

�π0 = 2igµ2(φ∗1φ2 − φ∗2φ1)

If the rhs is non-vanishing, it is not consistent with the Lorenz gauge condition
∂αAα = 0, but we find a modified Gupta-Bleuler condition for physical states.



The Abelian Higgs mechanism

In the case of spontaneous symmetry breaking, the gauge boson acquires a mass

M2
A = 2g2

(
v2

1 + v2
2

)
where (setting the phase to zero)(

v1

v2

)
=

√
2
m2

1m
2
2 − µ4

gm2
2

(
1
µ2

m2
2

)

such that the Higgs mechanism is also borne out.
(see Alexandre, Ellis, PM & Seynaeve ‘19)

The Goldstone mode is (v2
1 > v2

2 )

G =
1√

v2
1 − v2

2

(
v1Im φ̂1 − v2Im φ̂2

)

At the exceptional point |µ2| = |m2
2|, v2

1 = v2
2 and the PT norm of the Goldstone

mode diverges. Notice that M2
A = 4g2v2

1 remains non-vanishing. (cf. Mannheim ‘19)

How do we make sense of the divergence of the PT norm here though?
→ Remember that we have an Hermitian theory on-shell at this point!



The non-Abelian Higgs mechanism

We can promote the two complex scalar fields of the previous model to two complex
SU(2) doublets and realise a non-Hermitian 2HDM. (Alexandre, Ellis, PM & Seynaeve
‘19; see also Fring & Taira ‘19.)

0 1 2 3 4

m2
2/m

2
1

0

1

2

3

µ4/m4
1

I

II

III

A

Conditions on µ4

µ4 = m4
2

µ4 = m2
1m

2
2

4µ4 =
(

2m2
1 −m2

2 − 3µ4

m2
2

)2

I: symmetric phase
II: broken PT symmetry (masses of H±, D become complex)
III: broken PT symmetry (masses of h and H become complex)



The non-Abelian Higgs mechanism
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The non-Abelian Higgs mechanism
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Concluding remarks

I We can consistently quantize certain non-Hermitian theories, but there is still
lots to be understood.

I The variational procedure for non-Hermitian QFTs has to be treated with care.

I This impacts the interpretation of Noether’s theorem, but there still exist
conserved currents.

I Gauge invariance implies minimal coupling to non-conserved currents.

I And the Goldstone theorem and Higgs mechanism are still borne out.

I An interesting avenue for model building beyond the SM?

Thank you for your attention.


