## CHALLENGES FOR INFLATION



Anupam Mazumdar





MPIK-Heidelberg-13/10/2014

# Construction of Ghost Free & Singularity Free Theory of Gravity

#### Anupam Mazumdar

**Lancaster University** 

Warren Siegel, Tirthabir Biswas

Alex Kholosev, Sergei Vernov, Erik Gerwick,

Tomi Koivisto, Aindriu Conroy, Spyridon Talaganis

Phys. Rev. Lett. (2012), JCAP (2012, 2011), JCAP (2006) CQG (2013), gr-qc/1408.6205

Einstein's GR is well behaved in IR, but UV is Pathetic; Aim is to address the UV aspects of Gravity

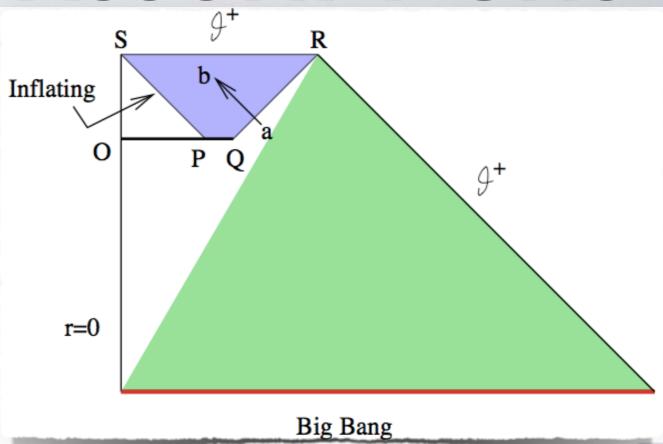
# HOW EASY IS TO INFLATE THE UNIVERSE?

Can we inflate a local patch of space time in a laboratory?

Farhi, Guth, Linde, Vilenkin, .....

#### CHALLENGES & ASSUMPTIONS

We need to embed inflation within FRW Universe, which has a space like singularity within GR



Inflationary patch has to be embedded within an anti-trapped region, i.e.

$$\frac{d\theta}{d\tau} > 0$$

$$\theta = \nabla_a N^a$$

$$\frac{d\theta}{d\tau} + \frac{1}{2}\theta^2 \le -R_{ab}N^a N^b$$

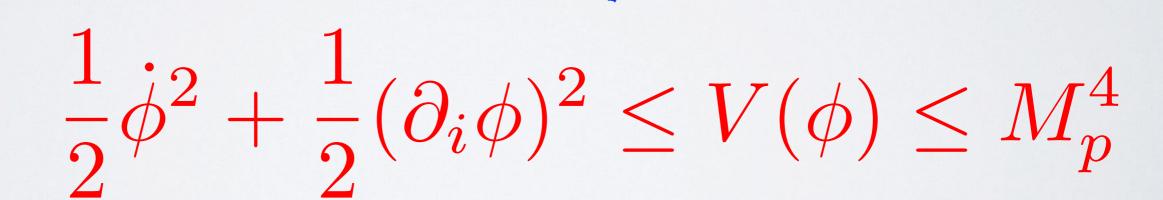
$$R_{ab}N^a N^b = 8\pi T_{ab}N^a N^b \ge 0$$

$$\frac{d\theta}{d\tau} \le 0 \qquad \rho + p \ge 0$$

Inflation ought to be embedded within an already inflating patch!!

## HOW EASY IS TO ENTER THE SLOW ROLL PHASE?

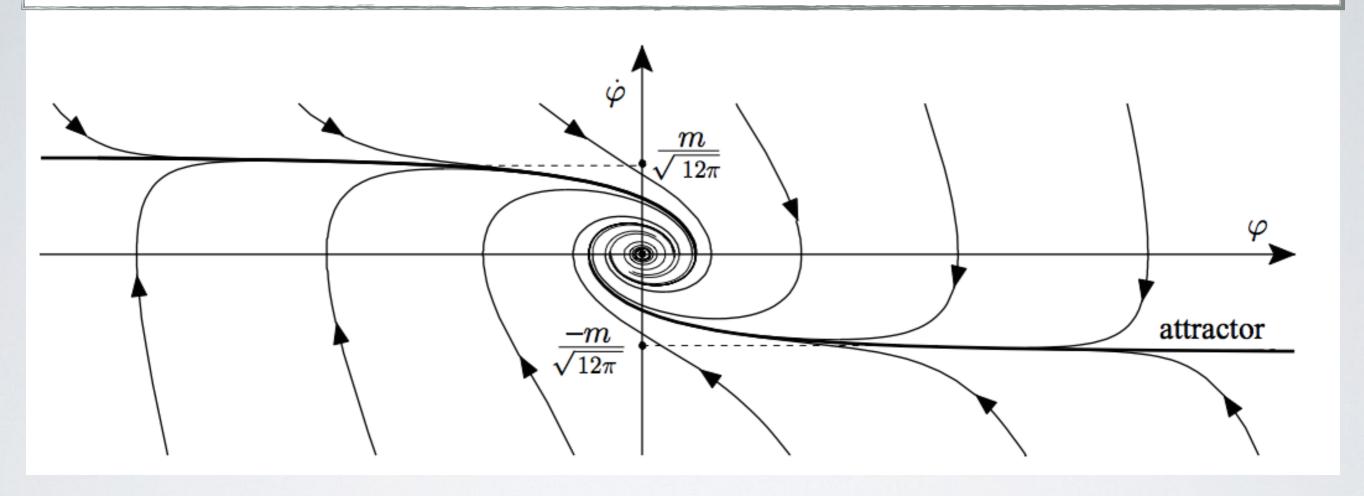
$$\frac{1}{2}\dot{\phi}^2 \sim \frac{1}{2}(\partial_i\phi)^2 \sim V(\phi) \sim M_p^4$$



**Anthropic arguments** 

### Dynamical attractor

$$\ddot{\varphi} + 3H\dot{\varphi} + V_{,\varphi} = 0 \qquad H^2 = \frac{8\pi}{3} \left( \frac{1}{2} \dot{\varphi}^2 + V(\varphi) \right) \qquad V = \frac{1}{2} m^2 \phi^2$$

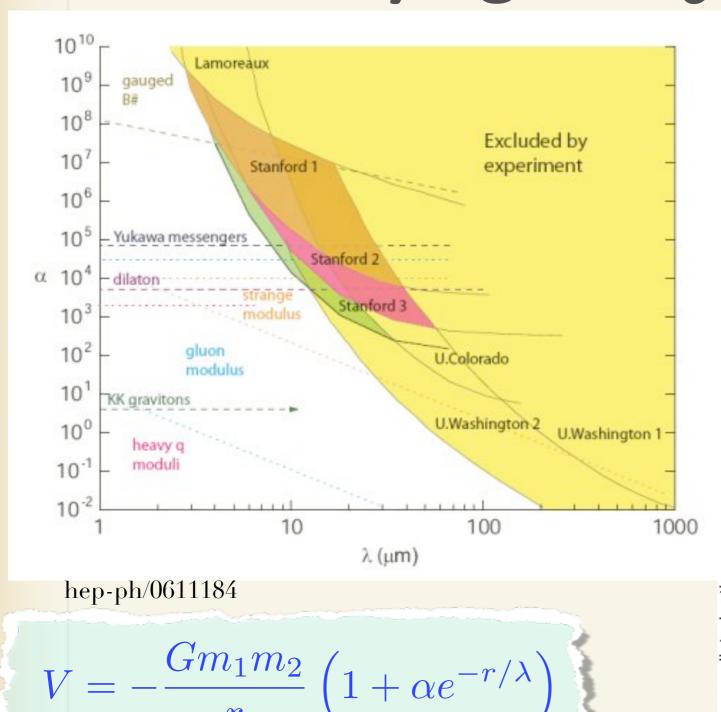


In order to seek inflation/attractor, we neglect the gradient term, we assume **Homogeneity** from the beginning.

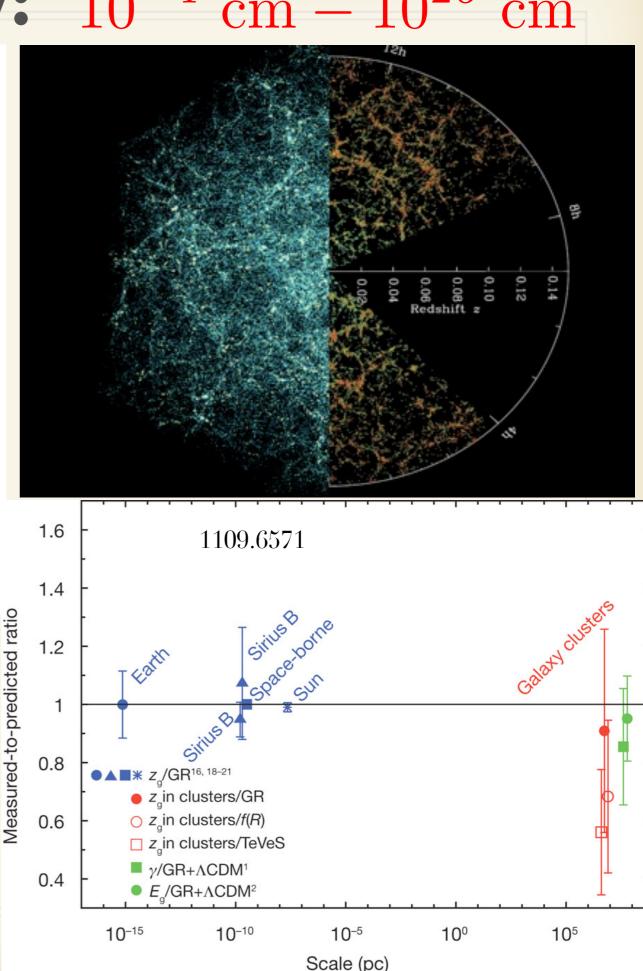
Linde, Mukhanov

Anthropic argument - there must exist a patch which could inflate!

#### Tests of 1/r gravity: $10^{-4}$ cm $-10^{26}$ cm



There is NO departure from inverse square law gravity



### Classical Singularities



UV is Pathological,

IR Part is Safe

$$S = \int \sqrt{-g} d^4x \left( \frac{R}{16\pi G} + \cdots \right)$$

Newton's fixed space

Einstein's flexible space-time

What terms shall we add such that gravity behaves better at small distances and at early times?

While keeping the General Covariance

$$S = \int \sqrt{-g} d^4x \left(\frac{R}{16\pi G}\right)$$

#### Motivations

Resolution to Blackhole Singularity

Resolution for Quantum Mechanics & Gravity
Blackhole Information Loss Paradox

Resolution to Cosmological Big Bang
 Singularity Geodesically complete Inflationary Trajectory

While Keeping IR Property of GR Intact

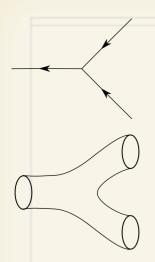
## Bottom-up approach

- Higher derivative gravity & ghosts
- Covariant extension of higher derivative ghost-free gravity
- Singularity free theory of gravity
- Background independent action of UV gravity

4d picture of Gravity

EFT is a good approximation in IR

Corrections in UV becomes important important

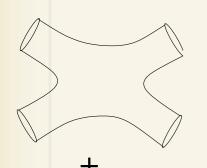


#### As an example...

String Theory Introduces 2 Parameters

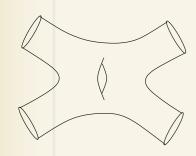
$$\kappa^2 \approx g_s^2 (\alpha')^{12}$$



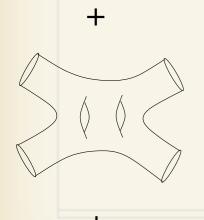


 DBI action ameliorates the Point like Singularity of Coulomb Solution

$$S = -T_p \int d^{p+1} \zeta \sqrt{-\det(\gamma_{ab} + 2\pi\alpha' F_{ab})}$$



hicksim DBI Action Provides a Description of Open Strings to All Orders in  $\alpha'$  at One-Loop



Challenge for String Theorists:

To Construct a similar Action for Closed Strings with All Orders in  $\alpha'$ 

# 4th Derivative Gravity & Power Counting renormalizability

$$I = \int d^4x \sqrt{g} \left[ \lambda_0 + k R + a R_{\mu\nu} R^{\mu\nu} - \frac{1}{3} (b+a) R^2 \right]$$

$$D \propto \frac{1}{k^4 + Ak^2} = \frac{1}{A} \left( \frac{1}{k^2} - \frac{1}{k^2 + A} \right)$$

Massive Spin-0 & Massive Spin-2 (Ghost) Stelle (1977)

Utiyama, De Witt (1961), Stelle (1977)

#### Modification of Einstein's GR

Modification of Graviton

Extra propagating degree of freedom

Propagator

Challenge: to get rid of the extra dof

# Ghosts

Higher Order Derivative Theory Generically Carry Ghosts (-ve Risidue) with real "m" (No-Tachyon)

$$S = \int d^4x \; \phi \Box (\Box + m^2) \phi \Rightarrow \Box (\Box + m^2) \phi = 0$$
 
$$\Delta(p^2) = \frac{1}{p^2(p^2 + m^2)} \sim \frac{1}{p^2} - \frac{1}{(p^2 + m^2)} \quad \text{Propagator with first order poles}$$

Ghosts cannot be cured order by order, finite terms in perturbative expansion will always lead to Ghosts!!

#### Higher Derivative Action around Minkowski

$$S = S_E + S_q$$

$$S_{q} = \int d^{4}x \sqrt{-g} \left[ R_{...} \mathcal{O}_{...}^{...} R^{...} + R_{...} \mathcal{O}_{...}^{...} R^{...} \mathcal{O}_{...}^{...} R^{...} + R_{...} \mathcal{O}_{...}^{...} R^{...} + R_{...} \mathcal{O}_{...}^{...} R^{...} \mathcal{O}_{...}^{...} \mathcal{O}_$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \quad R \sim \mathcal{O}(h)$$

$$S_q = \int d^4x \sqrt{-g} R_{\mu_1 \nu_1 \lambda_1 \sigma_1} \mathcal{O}_{\mu_2 \nu_2 \lambda_2 \sigma_2}^{\mu_1 \nu_1 \lambda_1 \sigma_1} R^{\mu_2 \nu_2 \lambda_2 \sigma_2}$$

Covariant derivatives

Unknown Infinite
Functions of Derivatives

$$(\Box \mathcal{R}^{\mu\nu}) + \mathcal{R} \mathcal{R}^{\mu\nu} + \mathcal{R} \mathcal{R}^{\mu\nu}$$

$$S_{q} = \int d^{4}x \sqrt{-g} [RF_{1}(\square)R + RF_{2}(\square)\nabla_{\mu}\nabla_{\nu}R^{\mu\nu} + R_{\mu\nu}F_{3}(\square)R^{\mu\nu} + R_{\mu}^{\nu}F_{4}(\square)\nabla_{\nu}\nabla_{\lambda}R^{\mu\lambda}$$

$$+ R^{\lambda\sigma}F_{5}(\square)\nabla_{\mu}\nabla_{\sigma}\nabla_{\nu}\nabla_{\lambda}R^{\mu\nu} + RF_{6}(\square)\nabla_{\mu}\nabla_{\nu}\nabla_{\lambda}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} + R_{\mu\lambda}F_{7}(\square)\nabla_{\nu}\nabla_{\sigma}R^{\mu\nu\lambda\sigma}$$

$$+ R^{\rho}_{\lambda}F_{8}(\square)\nabla_{\mu}\nabla_{\sigma}\nabla_{\nu}\nabla_{\rho}R^{\mu\nu\lambda\sigma} + R^{\mu_{1}\nu_{1}}F_{9}(\square)\nabla_{\mu_{1}}\nabla_{\nu_{1}}\nabla_{\mu}\nabla_{\nu}\nabla_{\lambda}\nabla_{\sigma}R^{\mu\nu\lambda\sigma}$$

$$+ R_{\mu\nu\lambda\sigma}F_{10}(\square)R^{\mu\nu\lambda\sigma} + R^{\rho}_{\mu\nu\lambda}F_{11}(\square)\nabla_{\rho}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} + R_{\mu\rho_{1}\nu\sigma_{1}}F_{12}(\square)\nabla^{\rho_{1}}\nabla^{\sigma_{1}}\nabla_{\rho}\nabla_{\sigma}R^{\mu\rho\nu\sigma}$$

$$+ R^{\nu_{1}\rho_{1}\sigma_{1}}F_{13}(\square)\nabla_{\rho_{1}}\nabla_{\sigma_{1}}\nabla_{\nu_{1}}\nabla_{\nu}\nabla_{\rho}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} + R^{\mu_{1}\nu_{1}\rho_{1}\sigma_{1}}F_{14}(\square)\nabla_{\rho_{1}}\nabla_{\sigma_{1}}\nabla_{\mu_{1}}\nabla_{\mu}\nabla_{\nu}\nabla_{\rho}\nabla_{\sigma}R^{\mu\nu\lambda\sigma}$$

$$F_i(\square) = \sum_{n \ge 0} f_{i,n} \square^n$$

# What Have We Gained?

Fundamental Theory Must have Finite Parameters

### Redundancies

$$S_{q} = \int d^{4}x \sqrt{-g} [RF_{1}(\square)R + RF_{2}(\square)\nabla_{\mu}\nabla_{\nu}R^{\mu\nu} + R_{\mu\nu}F_{3}(\square)R^{\mu\nu} + R_{\mu}^{\nu}F_{4}(\square)\nabla_{\nu}\nabla_{\lambda}R^{\mu\lambda}$$

$$+ R^{\lambda\sigma}F_{5}(\square)\nabla_{\mu}\nabla_{\sigma}\nabla_{\nu}\nabla_{\lambda}R^{\mu\nu} + RF_{6}(\square)\nabla_{\mu}\nabla_{\nu}\nabla_{\lambda}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} + R_{\mu\lambda}F_{7}(\square)\nabla_{\nu}\nabla_{\sigma}R^{\mu\nu\lambda\sigma}$$

$$+ R^{\rho}_{\lambda}F_{8}(\square)\nabla_{\mu}\nabla_{\sigma}\nabla_{\nu}\nabla_{\rho}R^{\mu\nu\lambda\sigma} + R^{\mu_{1}\nu_{1}}F_{9}(\square)\nabla_{\mu_{1}}\nabla_{\nu_{1}}\nabla_{\mu}\nabla_{\nu}\nabla_{\lambda}\nabla_{\sigma}R^{\mu\nu\lambda\sigma}$$

$$+ R_{\mu\nu\lambda\sigma}F_{10}(\square)R^{\mu\nu\lambda\sigma} + R^{\rho}_{\mu\nu\lambda}F_{11}(\square)\nabla_{\rho}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} + R_{\mu\rho_{1}\nu\sigma_{1}}F_{12}(\square)\nabla^{\rho_{1}}\nabla^{\sigma_{1}}\nabla_{\rho}\nabla_{\sigma}R^{\mu\rho\nu\sigma}$$

$$+ R^{\nu_{1}\rho_{1}\sigma_{1}}F_{13}(\square)\nabla_{\rho_{1}}\nabla_{\sigma_{1}}\nabla_{\nu_{1}}\nabla_{\nu}\nabla_{\rho}\nabla_{\sigma}R^{\mu\nu\lambda\sigma} + R^{\mu_{1}\nu_{1}\rho_{1}\sigma_{1}}F_{14}(\square)\nabla_{\rho_{1}}\nabla_{\sigma_{1}}\nabla_{\mu_{1}}\nabla_{\mu}\nabla_{\nu}\nabla_{\rho}\nabla_{\sigma}R^{\mu\nu\lambda\sigma}$$

$$= \int d^4x \sqrt{-g} \left[ R + R\mathcal{F}_1(\Box)R + R_{\mu\nu}\mathcal{F}_2(\Box)R^{\mu\nu} + R_{\mu\nu\alpha\beta}\mathcal{F}_3(\Box)R^{\mu\nu\alpha\beta} \right]$$

$$\Delta \mathcal{L} = \sqrt{-g} \left( \alpha R^2 + \beta R_{\mu\nu}^2 + \gamma R_{\alpha\beta\mu\nu}^2 \right)$$
$$\int d^4x \sqrt{-g} (R^2 - 4R_{\mu\nu}^2 + R_{\mu\nu\alpha\beta}^2)$$

Gauss-Bonet Gravity

$$= \int d^4x \sqrt{-g} \left[ R + R\mathcal{F}_1(\Box)R + R_{\mu\nu}\mathcal{F}_2(\Box)R^{\mu\nu} + R_{\mu\nu\alpha\beta}\mathcal{F}_3(\Box)R^{\mu\nu\alpha\beta} \right]$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$S_{q} = -\int d^{4}x \left[ \frac{1}{2} h_{\mu\nu} a(\Box) \Box h^{\mu\nu} + h^{\sigma}_{\mu} b(\Box) \partial_{\sigma} \partial_{\nu} h^{\mu\nu} \right]$$

$$+ hc(\Box) \partial_{\mu} \partial_{\nu} h^{\mu\nu} + \frac{1}{2} hd(\Box) \Box h + h^{\lambda\sigma} \frac{f(\Box)}{\Box} \partial_{\sigma} \partial_{\lambda} \partial_{\mu} \partial_{\nu} h^{\mu\nu}$$

$$(3)$$

$$a(\Box) = 1 - \frac{1}{2}\mathcal{F}_{2}(\Box)\Box - 2\mathcal{F}_{3}(\Box)\Box$$

$$b(\Box) = -1 + \frac{1}{2}\mathcal{F}_{2}(\Box)\Box + 2\mathcal{F}_{3}(\Box)\Box$$

$$c(\Box) = 1 + 2\mathcal{F}_{1}(\Box)\Box + \frac{1}{2}\mathcal{F}_{2}(\Box)\Box$$

$$d(\Box) = -1 - 2\mathcal{F}_{1}(\Box)\Box - \frac{1}{2}\mathcal{F}_{2}(\Box)\Box$$

$$f(\Box) = -2\mathcal{F}_{1}(\Box)\Box - \mathcal{F}_{2}(\Box)\Box - 2\mathcal{F}_{3}(\Box)\Box.$$

$$R_{\mu\nu\lambda\sigma} = \frac{1}{2} (\partial_{[\lambda}\partial_{\nu}h_{\mu\sigma]} - \partial_{[\lambda}\partial_{\mu}h_{\nu\sigma]})$$

$$R_{\mu\nu} = \frac{1}{2} (\partial_{\sigma}\partial_{(\nu}h^{\sigma}_{\mu)} - \partial_{\nu}\partial_{\mu}h - \Box h_{\mu\nu})$$

$$R = \partial_{\nu}\partial_{\mu}h^{\mu\nu} - \Box h$$

a + b = 0

$$c+d=0$$
  $\mathcal{F}_3(\square)$  is redundant around Minkowski  $b+c+f=0$ 

### Graviton Propagator

$$a(\Box)\Box h_{\mu\nu} + b(\Box)\partial_{\sigma}\partial_{(\nu}h^{\sigma}_{\mu)} + c(\Box)(\eta_{\mu\nu}\partial_{\rho}\partial_{\sigma}h^{\rho\sigma} + \partial_{\mu}\partial_{\nu}h)$$
$$+\eta_{\mu\nu}d(\Box)\Box h + \frac{1}{4}f(\Box)\Box^{-1}\partial_{\sigma}\partial_{\lambda}\partial_{\mu}\partial_{\nu}h^{\lambda\sigma} = -\kappa\tau_{\mu\nu}$$

$$-\kappa \tau \nabla_{\mu} \tau^{\mu}_{\nu} = 0 = (c + d) \square \partial_{\nu} h + (a + b) \square h^{\mu}_{\nu,\mu} + (b + c + f) h^{\alpha\beta}_{,\alpha\beta\nu}$$

Bianchi Identity 
$$a+b=0 \ c+d=0 \ b+c+f=0$$

Biswas, Koivisto, AM 1302.0532

$$\Pi_{\mu\nu}^{-1\lambda\sigma}h_{\lambda\sigma} = \kappa\tau_{\mu\nu} \qquad h = h^{TT} + h^{L} + h^{T}$$

$$\Pi = \frac{P^{2}}{ak^{2}} + \frac{P_{s}^{0}}{(a - 3c)k^{2}}$$

# Covariant Modification of a Graviton Propagator: Only 1 Entire Function

UV

$$\Pi = \frac{P^2}{ak^2} + \frac{P_s^0}{(a-3c)k^2} = \frac{1}{a} \left[ \frac{P^2}{k^2} - \frac{P_s^0}{2k^2} \right]$$

Demand:

$$a(k^2) = c(k^2)$$

**Recovers GR**  $\lim_{k^2 \to 0} \Pi^{\mu\nu}{}_{\lambda\sigma} = (P^2/k^2) - (P_s^0/2k^2)$  a(0) = c(0) = -b(0) = -d(0) = 1



'a' should be an Entire Function & cannot contain non-local operators, such as  $a(\Box) \sim 1/\Box$ 

### Ghost Free Gravity

$$a(\Box) = c(\Box) \Rightarrow 2\mathcal{F}_1(\Box) + \mathcal{F}_2(\Box) + 2\mathcal{F}_3(\Box) = 0$$

#### **Entire Function**

$$\Pi = \frac{P^2}{ak^2} + \frac{P_s^0}{(a-3c)k^2} = \frac{1}{a} \left[ \frac{P^2}{k^2} - \frac{P_s^0}{2k^2} \right]$$

$$a(\Box) = c(\Box) = e^{-\Box/M^2}$$

Some function of k which falls faster than  $1/k^2$ 

$$a(\square) = e^{-\frac{\square}{M^2}} \text{ and } \mathcal{F}_3 = 0 \Rightarrow \mathcal{F}_1(\square) = \frac{e^{-\frac{\square}{M^2}} - 1}{\square} = -\frac{\mathcal{F}_2(\square)}{2}$$

### **UV Gravity Simplified**

$$= \int d^4x \sqrt{-g} \left[ R + R\mathcal{F}_1(\Box)R + R_{\mu\nu}\mathcal{F}_2(\Box)R^{\mu\nu} + R_{\mu\nu\alpha\beta}\mathcal{F}_3(\Box)R^{\mu\nu\alpha\beta} \right]$$



$$S = \int d^4x \sqrt{-g} \left[ \frac{R}{2} + R \left[ \frac{e^{\frac{-\square}{M^2}} - 1}{\square} \right] R - 2R_{\mu\nu} \left[ \frac{e^{-\frac{\square}{M^2}} - 1}{\square} \right] R^{\mu\nu} \right]$$

#### **Applications**

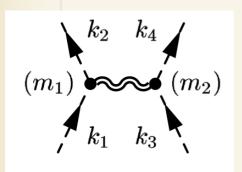
Black Hole Singularity, i.e. Schwarzschild Type

Biswas, Gerwick, Koivisto, AM, PRL (2012) (gr-qc/1110.5249)

Cosmological Singularity, i.e. Big Bang Type

Biswas, AM, Siegel, JCAP (hep-th/0508194), Brandenberger, Biswas, AM, Siegel, JCAP (hep-th/0610274) Biswas, AM, Koivisto, JCAP (1005.0590)

#### **Newtonian Potential**



#### Linearized Solution

$$ds^{2} = -(1 - 2\Phi)dt^{2} + (1 + 2\Psi)dr^{2}$$

$$(a(\Box) - 3c(\Box))\Box h + (4c(\Box) - 2a(\Box) + f(\Box))\partial_{\mu}\partial_{\nu}h^{\mu\nu} = \kappa\rho$$
$$a(\Box)\Box h_{00} + c(\Box)\Box h - c(\Box)\partial_{\mu}\partial_{\nu}h^{\mu\nu} = -\kappa\rho$$

For 
$$f = 0$$
 and  $a(\square) = c(\square)$ 

$$4a(\nabla^2)\nabla^2\Phi = 4a(\nabla^2)\nabla^2\Psi = \kappa\rho = \kappa m\delta^3(\vec{r})$$

$$a(\Box) = e^{-\Box/M^2}$$
 Varying slowly with time

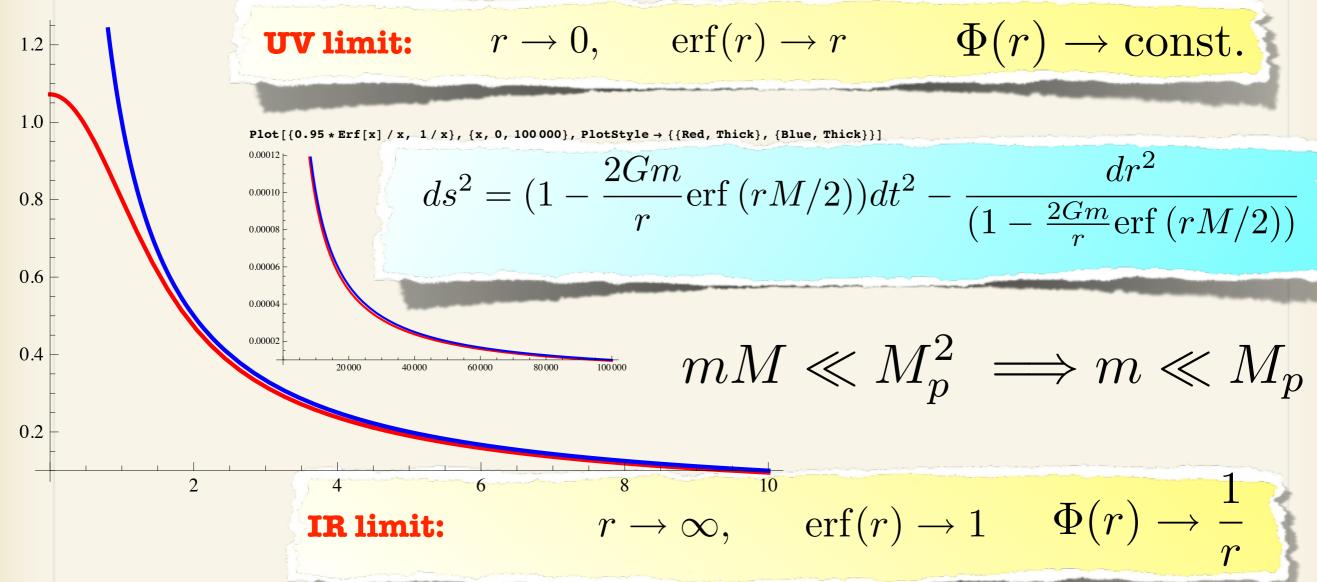
$$\square \longrightarrow \nabla^2$$

$$\Phi(r) \sim \kappa m \int \frac{dp}{p} e^{-p^2/M^2} \sin{(p\,r)} = \kappa \frac{m\pi}{4\pi^2\,r} \mathrm{erf}\left(\frac{rM}{2}\right) = \frac{Gm}{r} \mathrm{erf}\left(\frac{rM}{2}\right) = \frac{m}{4\pi M_p^2 r} \mathrm{erf}\left(\frac{rM}{2}\right)$$

$$mM \ll M_p^2 \implies m \ll M_p$$

Non Singular Solution

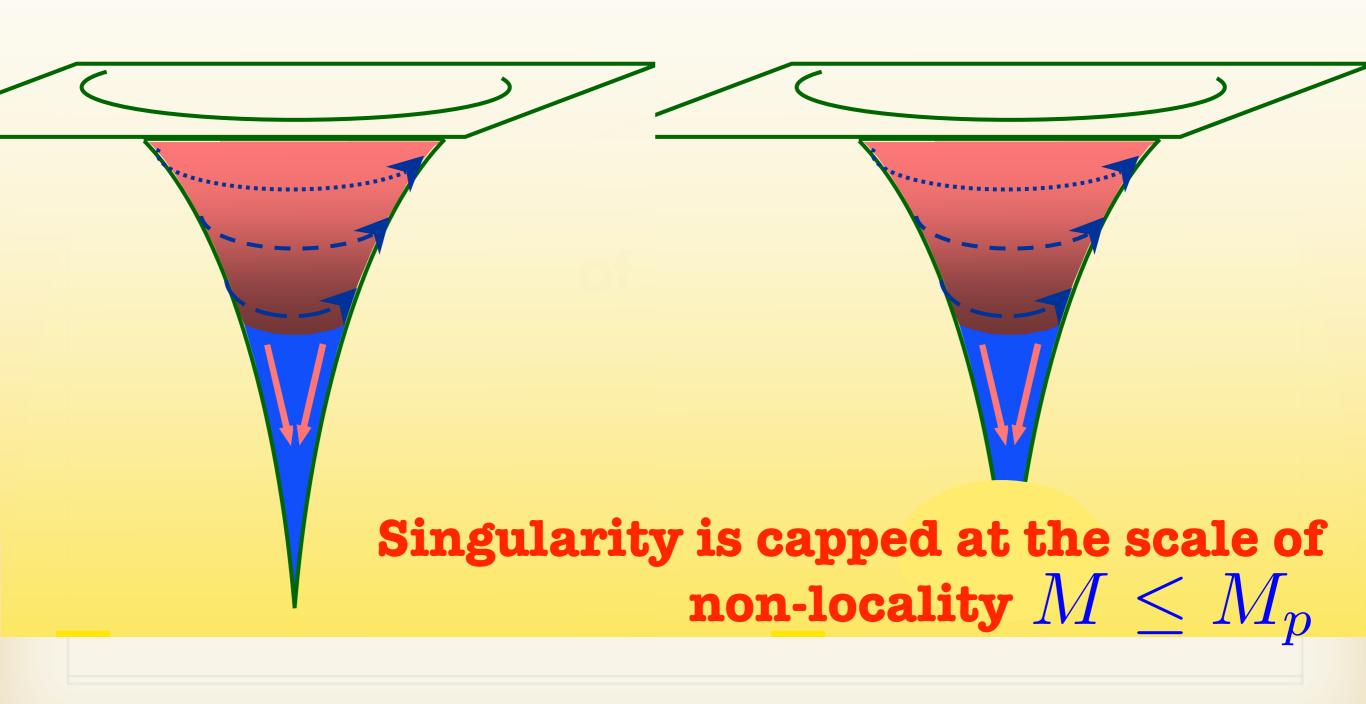
 $Plot[\{0.95 * Erf[x] / x, 1 / x\}, \{x, 0, 10\}, PlotStyle \rightarrow \{\{Red, Thick\}, \{Blue, Thick\}\}]$ 



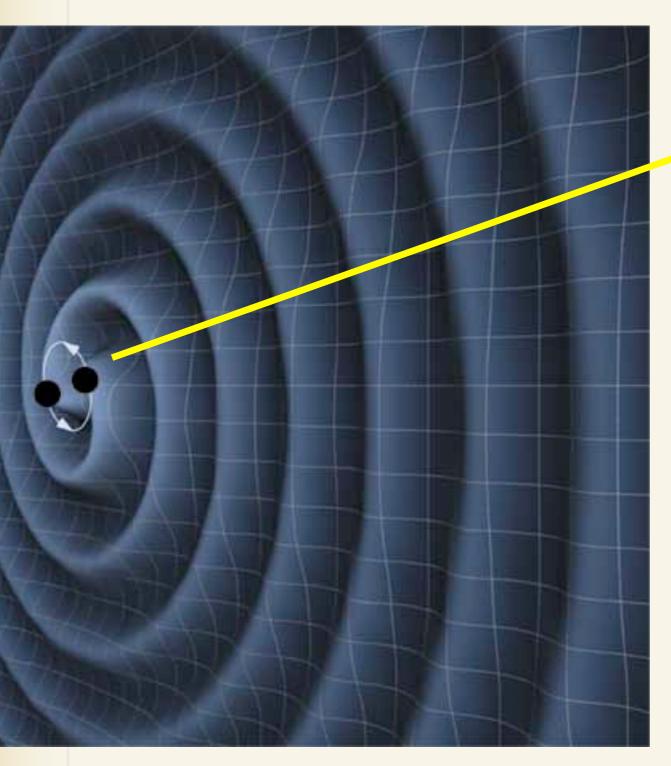
No Singularity ——— No Horizon

No Information Loss Paradox

# Where would you expect the modifications?



#### Gravitational Waves



$$\bar{h}_{jk} \approx G \frac{\omega^2(ML^2)}{r}$$

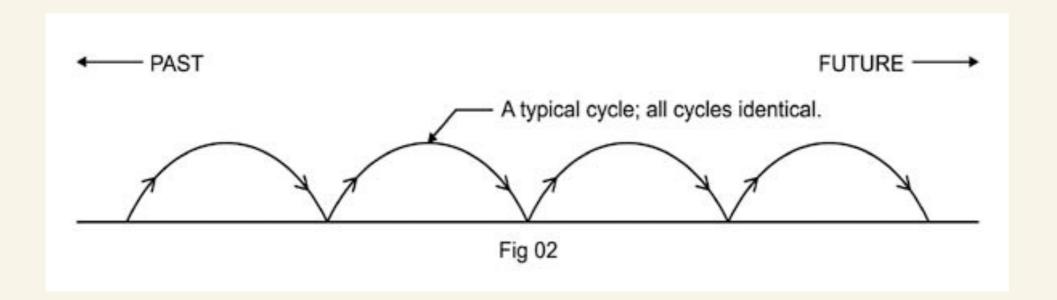
Large r limit

$$\bar{h}_{jk} \approx G \frac{\omega^2(ML^2)}{r} \operatorname{erf}\left(\frac{rM_P}{2}\right)$$

 $r \Longrightarrow 0$ , No Singularity

#### Non-Singular Bouncing Solution

$$S = \int d^4x \sqrt{-g} \left[ \frac{R}{2} + R \left[ \frac{e^{\frac{-\square}{M^2}} - 1}{\square} \right] R - 2R_{\mu\nu} \left[ \frac{e^{-\frac{\square}{M^2}} - 1}{\square} \right] R^{\mu\nu} \right]$$



 $h \sim \text{diag}(0, A \sin \lambda t, A \sin \lambda t, A \sin \lambda t)$  with  $A \ll 1$ 

# Non- Singular Bouncing, Homogeneous & Isotropic Universe

# Implications for Cosmic Inflation

#### Revisiting Hawking-Penrose Singularity

#### Theorems

$$\theta = \nabla_a N^a$$

$$\frac{d\theta}{d\tau} + \frac{1}{2}\theta^2 \le -R_{ab}N^aN^b$$

#### General Relativity

$$R_{ab}N^aN^b = 8\pi T_{ab}N^aN^b \ge 0$$

$$\frac{d\theta}{d\tau} \le 0 \qquad \rho + p \ge 0$$

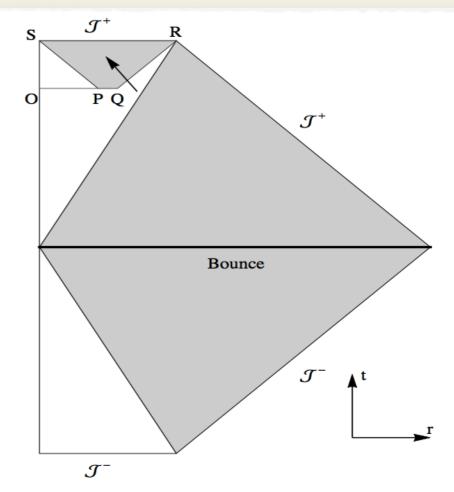
#### Non-local extension of GR

$$R_{ab}N^aN^b \le 0, \qquad \frac{d\theta}{d\tau} + \frac{1}{2}\theta^2 \ge 0$$

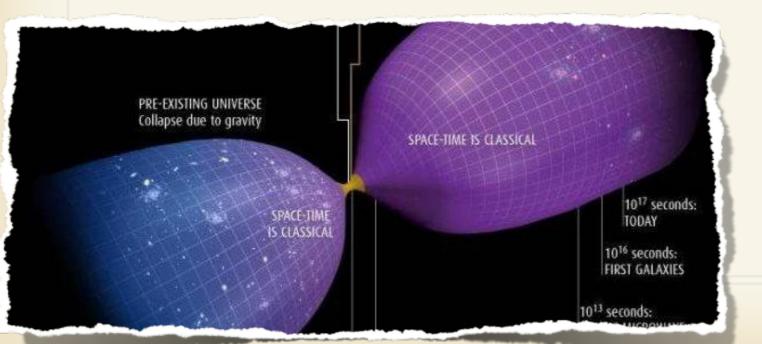
#### Revisiting Singularity Theorems

$$S = \int d^4x \sqrt{-g} \left( \frac{M_P^2}{2} R + \frac{R\mathcal{F}(\square)R}{2} \right)$$

$$R_{\mu\nu}k^{\mu}k^{\nu} = (k^0)^2 \frac{(\rho+p) + 2\partial_t^2(\mathcal{F}(\square)R)}{M_p^2 + 2\mathcal{F}(\square)R}$$



$$R_{\mu\nu}k^{\mu}k^{\nu} \le 0, \qquad T_{\mu\nu}k^{\mu}k^{\nu} \ge 0 \to (\rho + p \ge 0)$$



$$\frac{d\theta}{d\tau} + \frac{1}{2}\theta^2 \ge 0$$

Conroy, Koshlev, AM, (gr-qc/1408.6205)

#### Non-locality & Quantum Gravity

$$S = \int d^4x \ \left[ \phi \Box e^{\frac{-\Box}{M^2}} \phi - \frac{\phi^6}{M_6^2} \right]$$



$$\frac{1}{M_6^2} \left[ \int d^4 p \frac{e^{\frac{-p^2}{M^2}}}{p^2} \right] \sim \frac{M^2}{M_6^2}$$

- Gravity is a Gauge Theory: Free kinetic action is tangled with interactions
- Vertices have the same exponential enhancement as the suppression in the propagator: One has to do the calculation ...
- Effective description: Arising from the integrations of quantum fluctuations of some unknown degrees of freedom -- the question of quantisation has no meaning, and one has to use the classical solutions as master fields (collective variables) for the quantum dynamics of the unknown degrees of freedom.

$$S = \int d^4x \sqrt{-g} \left[ \frac{R}{2} + \alpha_0(R, R_{\mu\nu}) + \alpha_1(R, R_{\mu\nu}) R \mathcal{F}_1(\square) R \right]$$
$$+ \alpha_2(R, R_{\mu\nu}) R_{\mu\nu} \mathcal{F}_2(\square) R^{\mu\nu} + \alpha_3(R, R_{\mu\nu}) C_{\mu\nu\lambda\sigma} \mathcal{F}_3 C^{\mu\nu\lambda\sigma} \right]$$

### Summary

$$S = \int d^4x \sqrt{-g} \left[ \frac{R}{2} + R \left[ \frac{e^{\frac{-\square}{M^2}} - 1}{\square} \right] R - 2R_{\mu\nu} \left[ \frac{e^{-\frac{\square}{M^2}} - 1}{\square} \right] R^{\mu\nu} \right]$$

# Absence of Cosmological and Blackhole Singularities

Conjecture: The Form of Most General Action

$$S = \int d^4x \sqrt{-g} \left[ \frac{R}{2} + \alpha_0(R, R_{\mu\nu}) + \alpha_1(R, R_{\mu\nu}) R \mathcal{F}_1(\square) R \right]$$
$$+ \alpha_2(R, R_{\mu\nu}) R_{\mu\nu} \mathcal{F}_2(\square) R^{\mu\nu} + \alpha_3(R, R_{\mu\nu}) C_{\mu\nu\lambda\sigma} \mathcal{F}_3 C^{\mu\nu\lambda\sigma} \right]$$

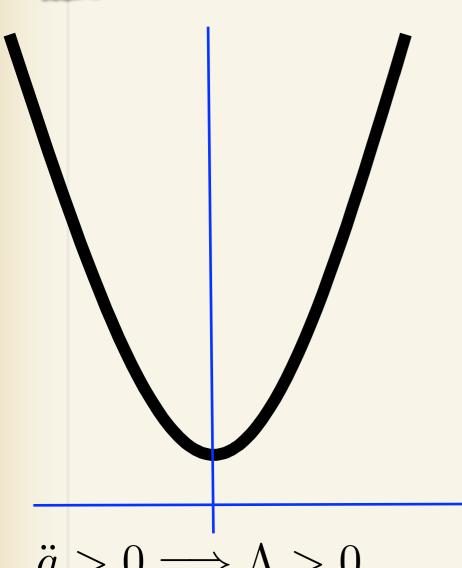
#### Conclusions

- We have constructed a Ghost Free & Singularity Free
   Theory of Gravity
- If we can show higher loops are finite then it is a great news -- this is what we are working now
- But, studying singularity theorems, positive energy theorems, Hawking radiation, Non-Singular Bouncing Cosmology, ....., many interesting problems can be studied in this framework
- Holography is no longer a property of UV, becomes part of an IR effect. The area law of gravitational entropy will no longer hold true in UV.

# Extra Slides

### Full Non-Singular Solution

$$S = \int d^4x \, \sqrt{-g} \left[ \frac{R}{2} + R \left[ \frac{e^{\frac{-\Box}{M^2}} - 1}{\Box} \right] R - 2R_{\mu\nu} \left[ \frac{e^{-\frac{\Box}{M^2}} - 1}{\Box} \right] R^{\mu\nu} \right]$$



$$\Box R = r_1 R + r_2$$

$$\Lambda = -\frac{r_2 M_P^2}{4r_1}$$

$$a(t) = \cosh\left(\sqrt{\frac{r_1}{2}}t\right)$$



 $\ddot{a} > 0 \Longrightarrow \Lambda > 0$ 

Biswas, AM, Siegel, JCAP

(hep-th/0508194)

**Does Not Contribute to Dynamics But to Perturbations** 

# Remarks on f(R) Gravity & 4th Order Gravity

$$= \int d^4x \sqrt{-g} \left[ R + R\mathcal{F}_1(\Box)R + R_{\mu\nu}\mathcal{F}_2(\Box)R^{\mu\nu} + R_{\mu\nu\alpha\beta}\mathcal{F}_3(\Box)R^{\mu\nu\alpha\beta} \right]$$

$$\mathcal{L} \approx R + c_1 R^2 + c_2 R^3 + c_2 R^4 + c_3 R^5 + c_6 R^6 + \cdots \qquad I = \int d^4 x \sqrt{g} \left[ \lambda_0 + k R + a R_{\mu\nu} R^{\mu\nu} - \frac{1}{3} (b+a) R^2 \right]$$

Scalar Ghost (Massive Spin 0)

$$\Pi \sim -1/2k^2(k^2 - m^2) + \dots$$

**Massive Spin-2 Ghost** 

$$\Pi \sim P_2/k^2(k^2-m^2)+\dots$$

f(R) type model can be made Ghost Free but they do not improve UV behaviour 4th Order Gravity can Improve UV behaviour but has a Ghost

#### Non-Singular Bouncing Solution

$$= \int d^4x \sqrt{-g} \left[ R + R\mathcal{F}_1(\Box)R + R_{\mu\nu}\mathcal{F}_2(\Box)R^{\mu\nu} + R_{\mu\nu\alpha\beta}\mathcal{F}_3(\Box)R^{\mu\nu\alpha\beta} \right]$$

$$a(\Box)[\Box h_{\mu\nu} - \partial_{\sigma}\partial_{(\nu}h_{\mu)}^{\sigma}] + c(\Box)[\eta_{\mu\nu}\partial_{\rho}\partial_{\sigma}h^{\rho\sigma} + \partial_{\mu}\partial_{\nu}h - \eta_{\mu\nu}\Box h]$$
$$+ [a(\Box) - c(\Box)]\Box^{-1}\partial_{\sigma}\partial_{\lambda}\partial_{\mu}\partial_{\nu}h^{\lambda\sigma} = -\kappa\tau_{\mu\nu}$$

 $h \sim \text{diag}(0, A \sin \lambda t, A \sin \lambda t, A \sin \lambda t) \text{ with } A \ll 1$ 

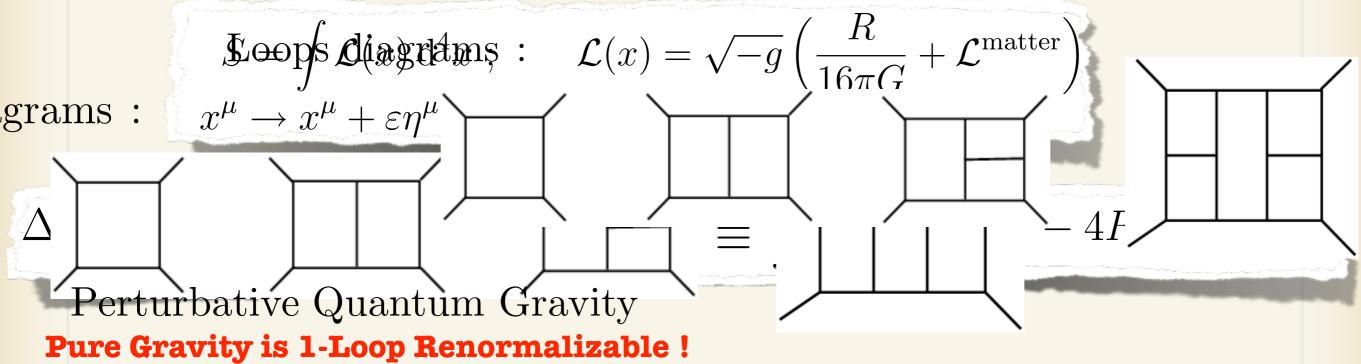
$$c(\Box) \equiv \frac{a(\Box)}{3} \left[ 1 + 2 \left( 1 - \frac{\Box}{m^2} \right) \tilde{c}(\Box) \right]$$

# Non-Singular Bouncing, Homogeneous & Isotropic Universe

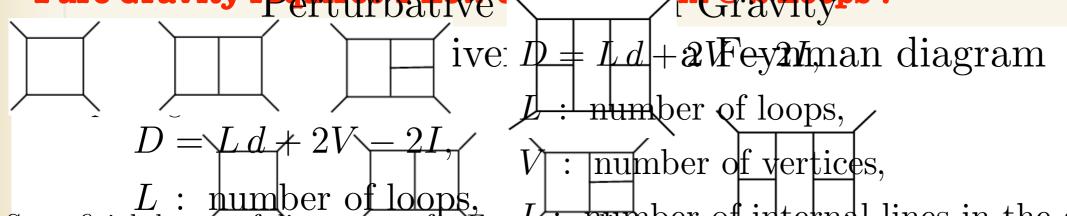
Such a solution is not possible in GR

Biswas, Gerwick, Koivisto, AM, PRL (2012) (gr-qc/1110.5249)

# Perturbative Quantum Gravity Perturbative Quantum Gravity



Superficial degree of divergence of a Feynman diagran ram**Pure Gravity requires lateve** 



L: number of loops, L: superficial degree of divergence of a Feynman which of internal lines in the graph.

V: number of vertices Topological relation between V, I and L, L = 1 + I - ID = L d + 2V - 2I,

L: number of loops,

V: number of vertices,

D = 2 + (d - 2)L. For  $d = 4 \rightarrow D = 2 + 2L$  and L, L = 1 + I - V,

I: number of internal lines in the graph.

### Graviton Propagator in G-R

$$\partial_{\sigma}h_{\mu\nu}\,\partial^{\sigma}h^{\mu\nu} \quad , \quad \partial^{\nu}h_{\mu\nu}\,\partial_{\sigma}h^{\mu\sigma} \quad \mathcal{L}_{sym} = -\frac{1}{4}\,\partial_{\sigma}h_{\mu\nu}\,\partial^{\sigma}h^{\mu\nu} + \frac{1}{2}\,\partial^{\nu}h_{\mu\nu}\,\partial_{\sigma}h^{\mu\sigma}$$

$$\partial^{\nu}h_{\mu\nu}\,\partial^{\mu}h_{\sigma}^{\sigma} \quad , \quad \partial^{\mu}h_{\nu}^{\ \nu}\,\partial_{\mu}h_{\sigma}^{\ \sigma} \qquad \qquad -\frac{1}{2}\,\partial^{\nu}h_{\mu\nu}\,\partial^{\mu}h_{\sigma}^{\ \sigma} + \frac{1}{4}\,\partial^{\mu}h_{\nu}^{\ \nu}\,\partial_{\mu}h_{\sigma}^{\ \sigma}$$

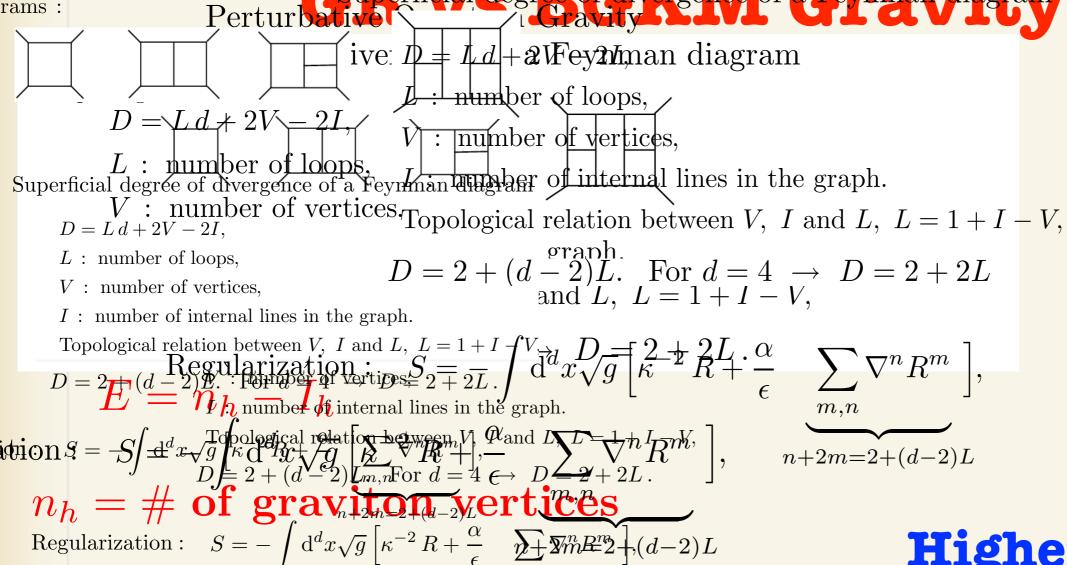
$$h_{\mu\nu} = \kappa \frac{1}{k^2} (T_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} T_{\sigma}^{\ \sigma})$$

#### P Van Nieuwenhuizen (1973)

$$\mathcal{L} = -\frac{1}{4} \,\partial_{\mu} h_{\alpha\beta} \,\partial^{\mu} h^{\alpha\beta} + \frac{1}{8} \,(\partial_{\mu} h^{\alpha}_{\alpha})^{2} + \frac{1}{2} \,C_{\mu}^{2} + \frac{1}{2} \,\kappa \,h_{\mu\nu} \,T^{\mu\nu} + \mathcal{L}_{gf} + \dots$$

$$D_{\mu\nu\alpha\beta}(k) = \frac{\eta_{\mu\alpha}\eta_{\nu\beta} + \eta_{\mu\beta}\eta_{\nu\alpha} - \frac{2}{d-2}\eta_{\mu\nu}\,\eta_{\alpha\beta}}{k^2} \qquad \qquad \text{De Donder Gauge}$$





 $I_h = \#$  of internal graviton propagator

Higher Loops are well behaved

Using Topological Identity : E = 1 - L

For  $L \geq 2 \implies E < 0$ 

#### Background Independent Action: de & Anti-de Sitter

$$S = \int d^4x \, \sqrt{-g} \left[ \frac{R}{2} + \alpha_1(R) R \left[ \frac{e^{-\frac{\Box}{M^2}} - 1}{\Box/M^2} \right] R - 2\alpha_2(R) R_{\mu\nu} \left[ \frac{e^{-\frac{\Box}{M^2}} - 1}{\Box/M^2} \right] R^{\mu\nu} - \Lambda \right]$$

$$\alpha_1(0) = \alpha_2(0) = 1$$

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu} \,,$$

$$\lambda \left[ 1 - \frac{32\lambda^2 \alpha_1'(\lambda)}{M_p^2} - \frac{16\lambda^2 \alpha_2'(\lambda)}{M_p^2} \right] = \frac{\Lambda}{M_p^2}$$

$$\bar{R}_{\mu\nu} = \lambda \bar{g}_{\mu\nu} \; ; \; \bar{R} = 4\lambda \text{ and } \bar{\nabla}_{\mu}\bar{g}_{\nu\rho} = 0$$

#### Generic Form of Action

$$S = \int d^4x \sqrt{-g} \left[ \frac{R}{2} + \alpha_0(R, R_{\mu\nu}) + \alpha_1(R, R_{\mu\nu}) R \mathcal{F}_1(\square) R \right]$$
$$+ \alpha_2(R, R_{\mu\nu}) R_{\mu\nu} \mathcal{F}_2(\square) R^{\mu\nu} + \alpha_3(R, R_{\mu\nu}) C_{\mu\nu\lambda\sigma} \mathcal{F}_3 C^{\mu\nu\lambda\sigma} \right]$$

#### Looking for Ghosts

$$F(R) = R + \sum_{n=0}^{\infty} c_n R \square^n R$$

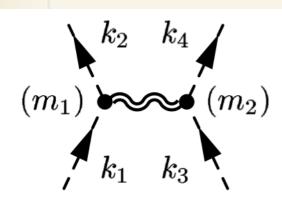
$$S = \int d^4 x \sqrt{-g} \left[ \Phi R + \psi \sum_{1}^{\infty} c_i \square^i \psi - \{ \psi(\Phi - 1) - c_0 \psi^2 \} \right]$$

$$\frac{\delta S}{\delta \Phi} = 0 \Rightarrow \psi = R \quad S \approx \int d^4 x \sqrt{-g'} \left[ R' + \frac{3}{2} \phi \Box' \phi + \psi \sum_{1}^{\infty} c_i \Box'^i \psi - \{\psi \phi - c_0 \psi^2\} \right]$$

$$\psi = 3\Box\phi,$$

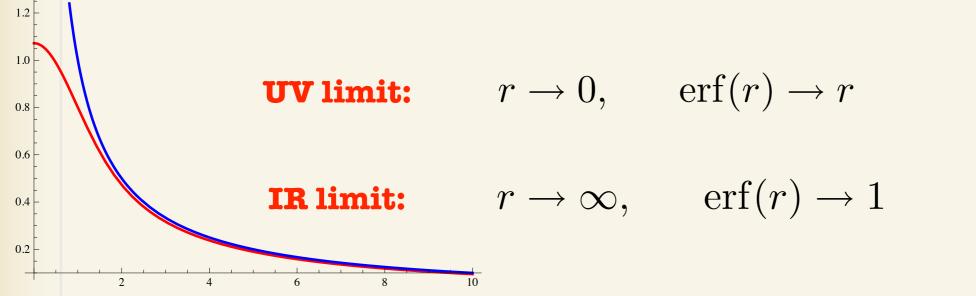
$$\phi = 2\left[\sum_{1}^{\infty} c_i\Box^i\psi + c_0\psi\right] \qquad \left(1 - 6\sum_{0}^{\infty} c_i\Box^{i+1}\right)\phi \equiv \Gamma(\Box)\phi = 0$$

#### **Newtonian Potential**



$$ds^{2} = -(1 - 2\Phi)dt^{2} + (1 + 2\Psi)dr^{2}$$

$$\Phi(r) = \Psi(r) = -\frac{m_1 m_2}{4\pi M_p^2 r} \operatorname{erf}\left(\frac{rM}{2}\right) \ll 1$$
Plot[{0.95 \* Erf[x] / x, 1/x}, {x, 0, 10}, PlotStyle → {{Red, Thick}, {Blue, Thick}}]



$$r \to 0$$
,

$$\operatorname{erf}(r) \to r$$

$$\Phi(r) \to {\rm const.}$$

imit: 
$$r o \infty$$

$$\operatorname{erf}(r) \to 1$$

$$\Phi(r) \to \frac{1}{r}$$

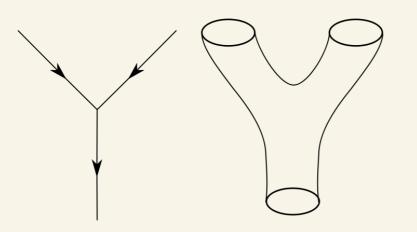
#### No Singularity, No Horizon, No Information Loss for Mini-Bhs

$$ds^{2} = \left(1 - \frac{2Gm}{r} \operatorname{erf}(rM/2)\right) dt^{2} - \frac{dr^{2}}{\left(1 - \frac{2Gm}{r} \operatorname{erf}(rM/2)\right)}$$

$$mM \ll M_p^2 \implies m \ll M_p$$



### Non-Local



Mostly we Deal with Free Strings

$$\alpha' = \frac{1}{2\pi\alpha'}$$

$$T = \frac{1}{2\pi\alpha'}$$

#### **String Interactions**

# + + +

#### @ the lowest order

$$S = \frac{1}{2\kappa^2} \int d^{26}X \sqrt{-G} \,\mathcal{R}$$

#### (summing over Topologies)

$$S_{\text{string}} = S_{\text{Poly}} + \lambda \chi$$
  
 $\chi = 2 - 2h = 2(1 - g)$   
 $g_s = e^{\lambda}$ 

$$\kappa^2 \approx g_s^2 (\alpha')^{12}$$

String Theory Inevitably Introduces 2 Parameters

