Ripples in spacetime from broken SUSY 10/1612

Alberto Mariotti

Based on JHEP 02 (2021) 184 with Nathaniel Craig, Noam Levi and Diego Redigolo

MPI Heidelberg

7 February 2022

tps://cas.vub.ac.be/cas/images/logo.svg

(Vintage) SUSY

Negative results in LHC and DM experiments challenge BSM physics
(Similar argument applies to SUSY and other BSM scenarios)Naturalness of EW scale is into pressure
scale misteryNaturalness of EW scale is into pressure
Is there a Desert above the TeV scale?

(Vintage) SUSY

Negative results in LHC and DM experiments challenge BSM physics (Similar argument applies to SUSY and other BSM scenarios)

Naturalness of EW scale is into pressure

Is there a Desert above the TeV scale?

Why still SUSY beyond TeV?

Address hierarchy problem and naturalness (little fine-tuning)

- Included in unified description *
- Dark matter candidate (LSP)

Admit a low energy SM limit (including also *SM-like BEH boson*)

SUSY beyond TeV could be tested? Can SUSY reveals itself in GW?

put aside EW

scale mistery

Vacuum Energy

4

7

? Properties of the PT ? ? How it correlates with sparticles ?

Alberto Mariotti (VUB)

Stochastic Background of GW

Alberto Mariotti (VUB)

*****AstroPhysical SGWB

* Superposition of unresolvable sources

BBH BNS

* Predictable after LIGO/Virgo observations LIGO/Virgo Phys.Rev.D 100 (2019)

! Most likely measured in next few years !

Cosmic strings

★Cosmological SGWB

* Generated by energetic events during cosmological evolution

Alberto Mariotti (VUB)

Stochastic Background of GW

Note: Astrophysical SGWB and cosmological SGWB will superimpose

Alberto Mariotti (VUB)

11

First order phase transitions

First order phase transitions

- Discontinuos Transition between symmetric to non-symmetric phase (order parameter)
- Characterized by bubble formations
- ✦ Bubbles can source GW * Bubble collisions * Sound Waves in the plasma * Turbulence

★In the Standard Model

- *QCD Phase Transition (T ~ GeV)? In SM No first order
- *EW Phase Transition (T~ 100 GeV)? In SM No first order

(If very light Higgs it could have been strongly first order) '81 Witten

First order phase transitions

- Discontinuos Transition between symmetric to non-symmetric phase (order parameter)
- Characterized by bubble formations
- ◆Bubbles can source GW *Bubble collisions *Sound Waves in the plasma *Turbulence

★In the Standard Model

- *QCD Phase Transition (T ~ GeV)? In SM No first order
- *EW Phase Transition (T~ 100 GeV)? In SM No first order

(If very light Higgs it could have been strongly first order) '81 Witten

First order Phase Transition

First order Phase Transition

+Nucleation rate controlled by the bounce action

$$\Gamma(T) \simeq T^4 e^{-\frac{S_3(T)}{T}}$$

Approximate condition for nucleation in RD

$$\frac{S_3(T)}{T}\Big|_{T=T_n} \simeq 4\log\frac{M_{\rm Pl}}{T_n} \simeq \mathcal{C} \sim O(100 - 150)$$

First order Phase Transition

+ Parameters controlling PT properties and SGWB

Energy released during
phase transition
$$\left. \left(\Delta V(T_n) - T_n \left. \frac{d\Delta V(T_n)}{dT} \right|_{T=T_n} \right) \right.$$
Inverse time-scale of
the phase transition
$$\left. \left(\beta_H(T_n) \right) \stackrel{\text{def}}{=} \left. \frac{\beta(T_n)}{H(T_n)} \right|_{T_n} = T_n \frac{d}{dT} \left(\left. \frac{S_3}{T} \right) \right|_{T_n}$$

 Bubble dynamics in cosmic plasma
 •Bubble wall velocity/acceleration

 •Correct estimation of friction in plasma

 •Energy budget determines production mechanism

 •Hydrodynamic simulations

Alberto Mariotti (VUB)

* If friction is significant dominant production mechanism is sound waves

Model independent Experimental reach on SGWB from PT

Model independent Experimental reach on SGWB from PT

Using Nucleation Condition one can show that

$$\beta_H(T_n) \simeq S'_3(T_n) - \mathcal{C} \sim O(100 - 150)$$

Unless fine-tuning to have cancellation

One can quantify and compute the tuning to get a small eta_H

$$\Delta_{\beta_H} \equiv \operatorname{Max}_{\{p_i\}} \left| \frac{d \log \beta_H}{d \log p_i} \right|_{\operatorname{Ha} \operatorname{Giudice-Barbieri}}_{\operatorname{Ha} \operatorname{Giudice-Barbieri}}$$

Alberto Mariotti (VUB)

SUSY scales in Low Energy SUSY-breaking

 $T_{re} \gtrsim \sqrt{F}$

SUSY breaking sector must be reheated and undergoes PT at $T_* \sim \sqrt{F}$

21

SUSY scales in Low Energy SUSY-breaking

SUSY scales in Low Energy SUSY-breaking

SUSY scales in Low Energy SUSY-breaking $T_{r.h.} \gtrsim \sqrt{T}$

Alberto Mariotti (VUB)

SUSY breaking sector First Order Phase Transition at $T_* \simeq \sqrt{F}$

How we discover LESB

SUSY breaking sector First Order Phase Transition at $T_* \simeq \sqrt{F}$

Alberto Mariotti (VUB)

Hidden sector class

SUSY and R breaking in the same chiral superfield

SUSY theorems: x is a pseudo-flat direction Komargodski and Shih '09

We study EFT and PT along x direction in SUSY br models

Alberto Mariotti (VUB)

PseudoModulus PT

Now I focus on SUSY breaking sector dynamics

$$X = \frac{x}{\sqrt{2}} e^{2ia/f_a} + \sqrt{2}\theta \tilde{G} + \theta^2 F$$
 Pseudo-modulus

★*Can R-symmetry breaking PT along pseudomodulus be first order?*

★How it compares with known scenarios? (EW PT, supercooling ...)

Pseudomodulus EFT

EFT scales

* Combine flat tree level potential plus loop corrections

Realize potentials exhibiting first order phase transition

* Obtained by minimal deformation of basic O'Raifeartaigh models

✓Marginal/Irrelevant R-breaking operators✓Gauging of global symmetries

Intriligator Seiberg Shih '07 Witten '81

Pseudomodulus toy model

Pseudomodulus potential at finite T

* In non-SUSY theories this could happen only with fine-tuning

SUSY protects the flat direction but is broken by thermal corrections

Alberto Mariotti (VUB)

Pseudomodulus bounce action

Alberto Mariotti (VUB)

+Nucleation temperature (by further expanding in small V_P)

+ Duration of phase transition

$$\beta_H = \dots \quad \text{---} \quad \Delta_{\beta_H} \gtrsim 4 \left(\frac{100}{\beta_H}\right) \qquad \begin{array}{l} \text{To get small beta} \\ \text{tuning is unavoidable} \end{array}$$

+ Energy released

$$\alpha = \frac{30}{g_*(T_n)\pi^2} \left(\frac{\kappa_D F}{T_n^2}\right)^2 \sim 10^{-2} \kappa_D^2 \left(\frac{F}{m_*^2}\right)^2 \left(\frac{230}{g_*(T_n)}\right)$$

$$f$$
By taking
$$T_n \sim m_*/2$$

Two scales of SUSY breaking are needed to get sizeable alpha

Our analytics are confirmed by numerical analysis in full models

Alberto Mariotti (VUB)

A working model

O'Raifeartaigh model is the minimal model to break SUSY spontaneously

$$W=-FX+\lambda X\Phi_1 ilde{\Phi}_2+m(\Phi_1 ilde{\Phi}_1+\Phi_2 ilde{\Phi}_2)$$

we stick

★It does not break R-symmetry (vacuum is at X=0)

★We deform it to get R-symmetry breaking and another SUSY breaking scale

Vaknin arXiv:1402.5851

★We have then to study thermal properties

★*First we study thermal properties of O'Raifeartaigh*

★Then we proceed with the deformation and its thermal evolution

$$x_{\star} \simeq rac{2\sqrt{2}\pi T}{\lambda y_F} \quad , \quad T_{\star} \sim 0.23 \sqrt{y_F} m \; ,$$

competition between

Alberto Mariotti (VUB)

Alberto Mariotti (VUB)

Alberto Mariotti (VUB)

of LESB

 Φ_2 X Φ_1 Φ_1 Φ_2 $\overline{\mathrm{U}}(1)_R$ 2220 0 -1 -1 $\mathrm{U}(1)_D$ 0 1 1

Eavet-Illiopoulos term is added

$$+ \frac{g^2}{2} \left(\frac{D}{g} + |\phi_1|^2 \chi / \tilde{\psi}_1 F^2 + |\phi_2|^2 - |\tilde{\phi}_2|^2 \right)^2$$

we stick to this phase to complications

$$x_{\star} \simeq rac{2\sqrt{2}\pi T}{\lambda y_F} \quad , \quad T_{\star} \sim 0.23 \sqrt{y_F} m \; ,$$

competition between thermal and loop corrections

Alberto Mariotti (VUB)

A full model of LESB

* Simplest O'Raifeartaigh model

* Gauge non-anomalous U(1) + D-term

SUSY and spontaneous R-breaking

First Order Phase Transition associated to SUSY and R-symmetry breaking

A full model of LESB

* Simplest O'Raifeartaigh model

* Gauge non-anomalous U(1) + D-term

SUSY and spontaneous R-breaking

First Order Phase Transition associated to SUSY and R-symmetry breaking

*****Prediction for Superpartner spectrum

Add messenger in 5+bar5

$$SU(6) \supset U(1)_D \times SU(5) \qquad \mathcal{M}_{\text{mess}} = \begin{pmatrix} \frac{\lambda f_a}{\sqrt{2}} & m \\ m & 0 \end{pmatrix}$$
$$m_{\tilde{g}} \simeq 2 \text{ TeV} \left(\frac{F}{30 \text{ PeV}}\right)^{1/2} \left(\frac{y_F}{0.75}\right)^3 \left(\frac{F}{2.5D}\right)^{1/2} \left(\frac{\lambda}{4}\right) \left(\frac{g}{0.4}\right)$$

Gaugino screening is unavoidable

A signal of SGWB at O(100) Hz correlates to gluino at reach of FCC-hh

41

Alberto Mariotti (VUB)

Conclusions

10⁹ sound waves: α =0.3, k_{wall} <<1 inaccessible in LESB FCC-hh: $m_{\tilde{a}} >$ 4 TeV, LESB: *g_M* ∈ (0.01–0.1) gravitino DM (k<<1) C: $m_{\tilde{a}} > 2$ TeV, LESB: $g_M \in (0.01-0.1)$ CE ET ultralight HELC-30TeV: $e^+e^- \rightarrow \gamma \tilde{G}\tilde{G}$ gravitino (k=1) FCC-hh: pp $\rightarrow \gamma \tilde{G} \tilde{G}$ ↓ LHC: $m_{\tilde{a}} > 2$ TeV + perturbativity ↓ LHC-8TeV: $pp \rightarrow j\tilde{G}\tilde{G}$ LEP: $e^+e^- \rightarrow \gamma \tilde{G}\tilde{G}$ 10² 10^{4} 10⁵ 10^{3} 10^{6} β_H

+Novel features in SUSY breaking pseudomodulus 1st order PT low-T expansion

> SBGW could be the first sign of SUSY (breaking)! Can provide hints for future colliders

