Highlights and future prospects of the neutrino experiment BOREXINO

Werner Maneschg

\\\\\		
V/V N	lanecc	ha
VV. IV	Tanese	112

Borexino: highlights & prospects

The Borexino experiment

Main purpose, location and collaboration:

- Detection and spectroscopy of low-energy (anti)-neutrinos
- Location: Laboratori Nazionali del Gran Sasso (Assergi, Italy)
- Operated by the Borexino collaboration: 21 universities/institutes from 6 countries (Status: October 2014)

Borexino experiment: overview

Borexino detector: main properties

- Iarge-volume organic liquid scintillator detector
- ultra low background detector (cleanest environment ever measured)
- in real-time (time stemp and pulse shape available for every event)
- at low energies, typically between 0.1-10 MeV

Borexino's rich physics program (performed or planned in near future)

- Solar neutrinos: ⁷Be (main goal), ⁸B (above 2.8 MeV) pep, CNO, pp (all branches except for hep neutrinos since they are too faint)
- Geo- and reactor-antineutrinos
- SN-(anti)neutrinos
- Sterile neutrino search
- Other exotic particles and processes (solar axions, Pauli-forbidden transitions,..)
- Neutrino properties (oscillation parameters, magnetic moment...)

イロト 人間ト イヨト イヨト

Borexino: detector design

Cosmic ray attenuation:

 Overburden: 1.4 km of dolomite rock, corr. 3800 m w.e. → μ-flux red. by ~10⁶ to 1 μ/h/m²

Nut shell profile:

- Water tank (2100 m³):
 - Absorption of environmental $\gamma \, {\rm 's}$ and neutrons
 - μ Cherenkov detector (208 PMTs)
- Stainless Steel Sphere:
 2212 PMTs, 1350 m³, R=6.85 m
- 3 2 buffer layers: PC+DMP
 - Outer $\mathsf{R}_2{=}5.50\,\mathsf{m},$ Inner $\mathsf{R}_1{=}4.25\,\mathsf{m}$
 - Shielding from external $\gamma \, {\rm 's}$
- Scintillator: 270 tons of PC+PPO

W. Maneschg

Kaffeepalaver, 20-11-2014

4 / 51

Borexino: background specifications

Expected magnitude: solar ⁷Be neutrinos in sub-MeV region

• 40-50 neutrino signals/d/100 tons $\rightarrow 6 \times 10^{-9} \text{ Bq/kg}$

• Background requirements to the scintillator (less than 10 c/d/100 tons):

- U:
$$10^{-9} \text{ Bq/kg} \rightarrow < 0.8 \times 10^{-16} \text{ g/g} \text{ (sec. eq.)}$$

- Th: $10^{-9} \text{ Bq/kg} \rightarrow <2.4 \times 10^{-16} \text{ g/g} \text{ (sec. eq.)}$
- ¹⁴C: 10⁻¹⁸ g/g

• For comparison: U in water: O(10-100 Bq/kg), U/Th in rock: O(1000 Bq/kg)

Contaminant	Source	Normal/Expected mass frac./flux/rate	Required
μ	cosmic	200/s/m ² (at sea level)	$\sim 10^{-10}$
¹¹ C	in-situ μ -ind.	${\sim}15~{\rm c/d}/100$	
Ext. γ (U,Th)	SSS		$\sim 10^{-10}$ g/g
Ext. γ (U,Th)	PMTs		${\sim}10^{-8}~{ m g/g}$
Ext. γ (U,Th)	PC buffer	${\sim}10^{-16}$ - 10^{-15} g/g	${\sim}10^{-15}~{ m g/g}$
¹⁴ C	Scintillator	$\sim 10^{-12} \text{ g/g}$	10^{-18} g/g
²³⁸ U	Dust	$\sim 10^{-16}$ - 10^{-15} g/g	$< 10^{-16} { m g/g}$
²³² Th	Dust	$\sim 10^{-16}$ - 10^{-15} g/g	$< 10^{-16} \text{ g/g}$
²²² Rn	Emanation (air)	100 atoms/cm ³ (air)	$< 10^{-16} \text{ g/g}$
²¹⁰ Po	Surface cont. (from ²²² Rn)		100 c/d/100t
²¹⁰ Pb	Surface cont. (from ²²² Rn)		
³⁹ Ar	air/nitrogen	\sim 17 mBq/m 3 (air)	<1 c/d/100t
⁸⁵ Kr	air/nitrogen	\sim 1 Bq/m 3 (air)	<1 c/d/100t

3

(4) E (4) E (4)

Selection & cleanliness of detector components

From MPI-K: B. Freudiger, W. Hampel, G. Heusser, T. Kirsten, W. Rau, H. Simgen, G. Zuzel

Selection of construction materials

- Low level Ge spectrometry: $(GeMPI: U/Th: \sim 10 \mu Bq/kg)$ \rightarrow steel, teflon, wires, PMTs...
- ²²²Rn diffusion/emanation detectors: (counted with proportional counters): → nylon and steel foils, gaskets...

Clean gases for scintillator purification

- Search for N₂ low in Kr and Ar: (counted with mass spectrometers: $\sim 1.4 \text{ nBq/m}^{3}$ ³⁹Ar, $\sim 0.1 \mu \text{Bq/m}^{3}$ ⁸⁵Kr) Found: Ar<0.4 ppm; Kr<0.2 ppt (LAKN)
- Low level nitrogen supply plant:
 - Production rate: 100 m³/h, ^{222}Rn $<0.5~\mu\text{Bq/m}^3$
 - Refurbished in 2014

Particle interactions with the scintillator

Scintillation process and collected information

- Particle interacting with scintillator transfers energy to organic molecules
- Isotropic emission of scintillation light
- Isotropic distributed PMTs measure:
 - a) number of hit PMTs and collected charge signal \rightarrow energy high light yield+transparency, 30% PMT coverage \rightarrow energy resolution
 - b) time of arrival of photons \rightarrow T.o.F. \rightarrow position of baricenter
 - \rightarrow fiducial volume cut
 - \rightarrow risetime of pulse \rightarrow particle differentiation
 - c) combine information from a)+b) \rightarrow coincident signals

・ 回 ト ・ ヨ ト ・ ヨ ト

Neutrino and antineutrino detection in the Borexino scintillator

Antineutrinos: inverse beta decay

- Reaction: $\bar{\nu} + p \rightarrow n + e^+$
- Prompt signal of positron annih.: $e^- + e^+ \rightarrow 2\gamma$ (Threshold: $E_{\nu}=1.806$ MeV)
- Delayed neutron capture ($\tau \sim 255 \,\mu$ s) on H: $n + p \rightarrow D + 2.2 \, MeV\gamma$
 - \rightarrow Energy intervals, space and time correlations
 - \rightarrow very efficient rejection method

Borexino: Data collection start on May 17, 2007

Э

・ロト ・聞ト ・ヨト ・ヨト

Reached performance: energy reconstruction

Borexino calibration data

(several 100 positions, different source types; several campaigns)

Isotope	Туре	Energy [keV]
⁵⁷ Co	γ	122
¹³⁹ Ce	γ	165
²⁰³ Hg	γ	279
⁸⁵ Sr	γ	514
⁵⁴ Mn	γ	834
⁶⁵ Zn	γ	1115
⁴⁰ K	γ	1173-1332
⁶⁰ Co	γ	1460
²²² Rn	α , β	1460
¹⁴ C	γ	1460
²⁴¹ Am ⁹ Be	neutron	2223 - ~9500

Main results:

- Resolution (1σ) : $5\%/\sqrt{(E(MeV))}$ (\leftrightarrow KamLAND: $6.5\%/\sqrt{(E(MeV))}$)
- Light yield: 10000 photons/MeV, \rightarrow 500 photoelectrons/MeV
- Stability: no scintillator deterioration observed, light yield constant
- Monte Carlo code: 1% accuracy in 0.1-2 MeV, few % 0.2-2.6 MeV

Reached performance: position reconstruction

Main results:

- **Resolution** (1σ) :
 - 2.2 MeV (²¹⁴Bi, γ): (13±2) cm in x,y; (14±2) cm in x,y
 - 0.25 MeV (¹⁴C, endpoint): (42±6) cm
- Fiducial Volume cuts: analysis-dependent:
 - Solar $^7\text{Be:}\ \text{R}{<}3.067\,\text{m},\,z{<}\left|1.67\right|\text{m}$
 - Solar pep/CNO: R<2.8 m, -2.4 m<z<2.2 m (similar to FV for solar pp)
 - Geo-/reactor-antineutrinos: $R{<}4\,m$

Borexino: highlights & prospects

Borexino: background data (2007)

< A

A B K A B K

3

Borexino background decomposition (2007-2009 data)

Contaminant	Source	Normal/Expected conc./flux/rate	Required	Achieved
μ	cosmic	200/s/m ² (at sea level)	$\sim 10^{-10}$	$\sim 10^{-10}$
¹¹ C	in-situ μ -ind.	${\sim}15~{\rm c/d}/100$		\sim 27 c/d/ton
Ext. γ (U,Th)	SSS		$\sim 10^{-10} \text{ g/g}$	$\sim 10^{-10}$ -10 ⁻⁹ g/g
Ext. γ (U,Th)	PMTs		$\sim 10^{-8} \mathrm{g/g}$	$\sim 10^{-10}$ - 10^{-7} g/g
Ext. γ (U,Th)	PC buffer	$\sim 10^{-16}$ - 10^{-15} g/g	${\sim}10^{-15} { m g/g}$	
¹⁴ C	Scintillator	$\sim 10^{-12}$	$\sim 10^{-18}$	$(2.7\pm0.1)\times10^{-18}$
²³⁸ U	Dust	${\sim}10^{-16}$ - 10^{-15} g/g	$< 10^{-16} { m g/g}$	$(1.6\pm0.1)\times10^{-17} \text{ g/g}$
²³² Th	Dust	$\sim 10^{-16}$ - 10^{-15} g/g	$< 10^{-16} \text{ g/g}$	$(6.8\pm1.5)\times10^{-18}$ g/g
^{nat} K	Dust	$\sim 10^{-14} \text{ g/g}$	$\sim 10^{-14} \mathrm{g/g}$	Spectral fit: $\leq 3 \times 10^{-16} \text{ g/g}$
²²² Rn	Emanation	100 atoms/cm ³ (air)	$< 10^{-16} \text{ g/g}$	$\sim 10^{-17} { m g/g}$
²¹⁰ Po	Surface cont.		$\sim \! 100 \text{ c/d} / 100 \text{t}$	∼6000 c/d/t (May 2007)
	(from ²²² Rn)			~1 c/d/100t
²¹⁰ Pb	Surface cont.		210 Bi: $\sim 1 \text{ c/d}/100 \text{t}$	²¹⁰ Bi: ~70 c/d/100t
	(from ²²² Rn)			(not in equil. with ²¹⁰ Po)
³⁹ Ar	air/nitrogen	\sim 17 mBq/m 3 (air)	<1 c/d/100t	not measurable
⁸⁵ Kr	air/nitrogen	$\sim 1 \text{ Bq/m}^3$ (air)	< 1 c/d/100t	Spectral fit: $(25\pm5) \text{ c/d}/100t$
				Fast coinc.: (30±5) c/d/100t

In terms of natural radioactivity: radiopurest environment ever measured!

W. Maneschg

3

Borexino operations: 2007-2014

	20	007	2008	2009	20	10	2011	2012	2013	2014		2015
Operation on scintillator			Pha:	Se I Buffer DMP re	em.	Sc. F	Purification 5 cycles)		Pha	ase II	00(
Duty cycle (elect. maint.)		~65%		~80%			-		~95%			-
Physics		7Be 8B pep CN Ge Rai	e v: +-5%, v: 3 MeV 1 o v:+-20%s O v: best 1 o/reactor v re/exotic p	ann. modul. nreshold tat,+-10%sys mit ocess: limits				 → 7Be v: +-3% ?, ann. modu → 8B v: better stat. → pep v: 3(5) σ ? → CNO v: direct meas.? → pp v: direct meas.? → Geo/reactor v: better stat. → Rare/exotic processes. lin: 		ıl. r	Sterile neutrinos	

(日) (圖) (E) (E) (E)

14 / 51

Description of the solar structure

Fusion reactions in the Sun

Borexino: highlights & prospects

Kaffeepalaver, 20-11-2014

イロト イポト イヨト イヨト

16 / 51

- 31

SSM prediction: solar neutrino fluxes

Neutrino fluxes at 1 AU, according to BS05(GS98,OP)

Units: $[cm^{-2}s^{-1}MeV^{-1}]$ for continuum neutrino sources, $[cm^{-2}s^{-1}]$ for mono-energetic neutrino sources.

э

Solar neutrino detection

Experiments and their E-thresholds

Borexino

- lowest energy threshold at 0.05 MeV ۲
- real-time detection

- mono-energetic neutrino sources: ٠ Compton-like edge
- pp and ⁷Be neutrinos: major contribution
- hep neutrinos: too faint

< 回 > < 三 > < 三 >

18 / 51

Tensions in the solar model predictions

14/	N .	l		- I	
VV	. 10	lali	es		2
					-

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Solving tensions in the solar neutrino flux prediction

Electron neutrino survival probability for a simple '2-flavor' World::

In vacuum:

$$P(\bar{\nu}_e \xrightarrow[b]{} \bar{\nu}_e, L, E) = 1 - \sin^2 2\theta \sin^2 \frac{1.27 \Delta m^2 [\mathrm{eV}^2] \mathrm{L}[\mathrm{m}]}{E[\mathrm{MeV}]}$$

In matter: Mikheyev-Smirnov-Wolfenstein effect (MSW):

$$\sin^2(2\vartheta_m) = \frac{\Delta m^2 \sin(2\vartheta)}{\sqrt{(2\sqrt{2}G_F n_e E - \Delta m^2 \cos(2\vartheta))^2 + (\Delta m^2 \sin(2\vartheta))^2}}$$

W. Maneschg

Borexino: highlights & prospects

Tensions in the solar model predictions

" Solar Metallicity Puzzle"

10/ 01	lanocci	h ~
VV. IV	lattesu	II P
		- 0

Borexino: highlights & prospects

Kaffeepalaver, 20-11-2014

3

21 / 51

(日) (周) (三) (三)

Measurement of the ⁷Be neutrino rate and day-night asymmetry

Averaged $^7\text{Be-}\nu$ rate:

Calibrations drastically reduced the syst. uncertainy:

Source	[%]
Trigger efficiency and stability	< 0.1
Live time	0.04
Scintillator density	0.05
Sacrifice of cuts	0.1
Fiducial volume	+0.5
Fit methods	2.0
Energy response	2.7
Total Systematic Error	+3.4 -3.6

• Two independent fit approaches: analytical vs. MC

Combined result: R=(46±1.5(stat)^{+1.5}_{-1.6}(sys)) cpd/100 ton

Comparison to SSM predictions:

Without osc.: (74±5.2) cpd/100 tons (5σ exclusion)

- With osc.: 44 (High-met.) and 48 (Low-met.) cpd/100 ton

Day-Night asymmetry in ⁷Be- ν rate:

- LOW solution: MSW effect might regenerate $\nu_e{\rm 's}$ through Earth, i.e. during night
- Large-Mixing-angle solution: no enhancement expected
- **Results:** $(N-D)/((N+D)/2) = 0.001 \pm 0.012 (stat) \pm 0.007 (sys)$ (exclusion by 8.5 σ)

Annual modulation of ⁷Be neutrino rate

Expectation:

Earth eccentricity ϵ =0.0167 (maximum on January 3):

- \rightarrow Perihelion-Aphelion flux difference of $\pm 7\%$
- \rightarrow 7Be neutrino rate variation: 47.5 and 44.5 c/d/100 ton

Question: Possible to measure? i.e. Proving origin of detected neutrinos?

Challanging 1: Stability of detector response and backgrounds

- Detector response very stable in time
- Energy scale, pulse shape discrimination and position reconstruction stable
- However Untaggable background ²¹⁰Bi in the valley ⁷Be-¹¹C is not stable in time: rms/peak 0.8%

Challanging 2: Statistics

- Fit of subperiods have too large stat. errors; → for a given energy interval group data in time bins of 1-2 months and look for periodicity (3 methods applied; 2 are presented on next slide)
- Increase the fiducial volume from 75.5 to 141.8 tons and follow time-dependent change of nylon vessel

Annual modulation of ⁷Be neutrino flux

2. Method: Lomb-Scargle (extension of Fourier transformation)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solar ⁸B neutrino measurement

Challenging:

- ⁸B neutrinos: energy up to \sim 15 MeV, but low rate
- Detector response: dependency from quenching, geometrical effects, saturation and electronics effects
 - \rightarrow energy scale at higher energies
 - \rightarrow position vertex reconstruction for high energy events
- Background: consider many small background components:
 - → muons and cosmogenic radionuclides (short- and longer-lived)
 - \rightarrow internal U, Th; external ²²⁸Th (limit 2.8 MeV)

Isotopes	τ	Q	Decay
		[MeV]	
¹² B	0.03 s	13.4	β^{-}
⁸ He	0.17 s	10.6	β^{-}
⁹ C	0.19s	16.5	β^+
⁹ Li	0.26s	13.6	β^{-}
⁸ B	$1.11\mathrm{s}$	18.0	β^+
⁶ He	1.17 s	3.5	β^{-}
⁸ Li	$1.21\mathrm{s}$	16.0	β^{-}
¹⁰ C	27.8 s	3.6	β^+
¹¹ Be	19.9 s	11.5	β^{-}

16 N A 16

Solar ⁸B neutrino measurement: results

Data vs. MC of ⁸B recoil energy spectrum

Results and remarks:

- Rate above 3 MeV: 0.217±0.038(stat)±0.008(syst) c/d/100ton
- Flux at 1 AU: $(2.7\pm0.4\pm0.1)\times10^{6}$ cm⁻² s⁻¹
 - \rightarrow good agreement with SuperKamiokaNDE and SNO
 - \rightarrow confirmation of MSW-LMA solution for oscillation in vacuum/matter
- No disentaglement of SSM metallicity scenarios possible
- Data set: used 488 d; \rightarrow can be $\sim 3 \times$ higher

26 / 51

Search for the solar pep / CNO neutrinos

Relevant backgrounds

- Main background is the cosmogenic ¹¹C: $- {}^{12}C + \mu \rightarrow {}^{11}C + n + \mu$
 - ν signal-to-¹¹C background ratio: ~1:10
- Scintillator-intrinsic contaminants (²¹⁰Bi, ⁴⁰K,...)
- External γ -rays (2.6 MeV from ²⁰⁸Tl,...)

< A

pep/CNO neutrinos: The ¹¹C background analysis I

28 / 51

(95% C.L.)

pep/CNO neutrinos: The ¹¹C background analysis II

Pulse-Shape discrimination of residual ¹¹C

- ¹¹C β^+ emitter, while ²¹⁰Bi, ext. γ 's induce β^- emission
- Positron forms in 50% positronium (lifetime of few ns in scintillator) before annihilation
- Training of Boosted Decision Tree with pure β^+/β^- samples to quantify discrimination parameter

98% pure
11
C sample tagged via sharp TFC-cuts

BDT-PS parameter

and used for BDT training

pep/CNO neutrinos: external background analysis

Procedure: based on calibration data and simulated spectra

- External high-energetic γ 's (mainly 2.6 MeV from ²⁰⁸TI) from PMTs, light concentrators, SS-Sphere
- Use 5 MBq ²²⁸Th (²⁰⁸Tl) source at different external positions
- Use data to test MC (energy/radial dist.); \rightarrow simulate ext. background

MC code validation with calibration data

Borexino: highlights & prospects

Measurement of the pep neutrino rate (+CNO limit)

Final strategy:

- Tag ¹¹C candidates via the TFC method and subtract them from spectrum
- Multivariate simultaneous fit of residual spectrum considering:
 - energy spectrum (including MC-simulated external components)
 - radial distribution spectrum
 - BDT Pulse shape parameter for β^+/β^- separation

Results:

Component	[counts/(day-100 ton)]
pep	$3.1 \pm 0.6_{\mathrm{stat}} \pm 0.3_{\mathrm{syst}}$
CNO	$< 7.9 \ (< 7.1_{\rm statonly})$
85 Kr	19^{+5}_{-3}
²¹⁰ Bi	$55^{+\frac{3}{2}}$
¹¹ C	27.4 ± 0.3
^{10}C	0.6 ± 0.2
⁶ He	< 2
^{40}K	< 0.4
234m Pa	< 0.5
Ext. γ	2.5 ± 0.2

- pep: first evidence!; Including the MSW effect and LMA solution: DATA/SSM(AG98)= 1.1 ± 0.2
- CNO: best upper limit to date!; DATA/SSM(AG98)<1.5</p>
- Solar Metallicity problematics not yet solved

э

Solar pp neutrinos: background in Borexino

Expected recoil energy spectrum

(all components analytical/simulated, only pile-up from data)

pp neutrinos: Spectrum:

 $\begin{array}{l} 0{<}E{<}420 \ \text{keV} \\ {\rightarrow} \ E_{rec} < 264 \ \text{keV} \\ \hline \text{Expected rate:} \\ (131{\pm}2) \ \text{c/d/100ton} \\ \hline \text{Energy threshold } E_{th} \\ \hline \text{Borexino:} \ {\sim}50 \ \text{keV} \\ \hline \text{Radiochem. exp: } 233 \ \text{keV} \end{array}$

Scintillator purification campaigns (2010/06 - 2011/08)

Background rates before/after purification* (6 full cycles):

	Phase I	Phase II
Nuclide	c/d/100t (or mass fr.)	c/d/100t (or mass fr.)
²¹⁰ Po	$\sim 6000*$	~200*
⁸⁵ Kr	31±5	<7 (95% C.L.)
²¹⁰ Po	\sim 70	~ 25
²³⁸ U	$(1.6\pm0.1)\times10^{-17}$ g/g	<9.7×10 ⁻¹⁹ g/g (95% C.L.)
²³² Th	$(6.8\pm1.5)\times10^{-18} \text{ g/g}$	$< 1.2 \times 10^{-18}$ g/g (95% C.L.)

* For ²¹⁰Po: Phase I: 2007/05, Phase II: 2013/05 (end of pp data set period)

W. Maneschg

Borexino: highlights & prospects

¹⁴C background: identification strategies

 $^{14}C/^{12}C: 10^{-18} g/g$

W. Maneschg

Borexino: highlights & prospects

Kaffeepalaver, 20-11-2014

Measurement of the pp neutrino rate

Measured recoil energy spectrum Fit in (165-590 keV)

Rates in [c/d/100ton], except for ¹⁴C [Bq/100ton]

Nature, Vol. 512, August 28, 2014

Results:

 $R_{pp} = 144 \pm 13(stat) \pm 10(sys) c/d/100ton$

(absence of pp excluded at 10σ)

Robustness of analysis:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

35 / 51

Interpretation I: convertion of pp rate into a flux

Interpretation II: test the luminosity constraint

Luminosity variability:

- O(10 yr): 22 yr solar cycle ightarrow 0.1%
- O(10⁴-10⁵ yr): ? \rightarrow BX measurement
- O(4.6×10⁹ yr): SSM \rightarrow young faint Sun: -25% less bright than today

SSM/Borexino vs. solar photosphere prediction:

$$-$$
 L $_{
u}=$ 3.84 $imes$ 10 33 erg s $^{-1}$ (\pm 10%)

- L
$$_{\gamma}=$$
 3.846 $imes 10^{33}$ erg s $^{-1}$

- \rightarrow No hint for variability;
- \rightarrow pp meas. 1% precision

< ロト < 同ト < ヨト < ヨト

Interpretation III: Neutrino oscillations in vacuum/matter

Electron neutrino survival probability:

Before Borexino:

Borexino alone (2014):

Borexino results:

- Data points well-consistent with the MSW Large-Mixing-Angle solution
- Improvements expected from:
 - data sets with more statistics/lower systematics (pp, pep, 8B)
 - direct CNO neutrino rate measurement (?)

38 / 51

Description of Earth's interior

Geophysics

 Earth heat: (47±2) TW, estimated from 40,000 deep bore-holes integrating over entire surface: ~0.09 Wm² (compare: solar constant 0.34 kW/m²) → Possibilities: radiogenic heat, primordial planetary accrection/contraction

Seismology: insight about structure/density, but not about composition → Possibilities: Petrologic and meteoritic samples (Chrondrite Th/U=3.9), geo-antineutrinos

Bulk Silicate Earth model (BSE)

- Description of the 'Primitive Mantel's chemical composition before crust differentiation, but after the metal core separation
- Prediction of radiogenic heat (local-dependent variations):
 - Crust: \sim 7 TW
 - Mantle: 1-19 TW (differing for BSE-submodels)
 - Core: 0 TW
 - \rightarrow Probe with geo- $\bar{\nu}$ s:

Expected rate in Borexino: ~10 c/yr/278 ton

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Geo-neutrino detection in Borexino

Inverse beta decay in scintillator

- Reaction: $\bar{\nu} + p \rightarrow n + e^+$
- Prompt signal of positron annihilation $e^- + e^+ \rightarrow 2\gamma$ Herein, threshold is $E_t = 1.806 \text{ MeV}$
- Delayed neutron capture ($\tau \sim 255 \,\mu$ s) on H (or C): $n + p \rightarrow D + 2.2 \, MeV \gamma$
 - \rightarrow Energy intervals, space and-time correlations
 - \rightarrow Inverse beta decay is very efficient rejection method

Main backgrounds

 \rightarrow Reject data periods after purification campaigns (e.g. ²¹⁴Bi-²¹⁴Po from ²²²Rn)

イロト イポト イヨト イヨト

Latest geo-neutrino result from Borexino

New statistics (March 2013)

- Exposure: 1352.6 d live time; after all cuts: (613±26) ton×year, (3.69±0.16)·10³¹ protons×year
- 46 golden candidates found:
 - Geo-*v*̄: (14.3±4.4) ev, (38.8±12.0) TNU*
 - Reactor- $\bar{\nu}$: (31.2^{+7.0}_{-6.1}) ev, (84.5^{+19.3}_{-16.9}) TNU
 - (Expected: w osc. (33.3±2.4) ev; wo osc. (60.4±4.1) ev)
 - Included background: $(0.70\pm0.18) \text{ ev}$
 - *TNU: Terrestial Neutrino Unit=1 ev/yr/10³² protons

Main results and conclusions:

- Null-hypothesis of geo-ν̄ rejected at 4.5 σ
- Subtract calculated local/residual crust contribution from measured geo-*v̄* signal to obtain mantle geo-*v̄* signal: (15.4±12.3) TNU → in agreement with pred. of many BSE-submodels
- Generated heat within the possible BSE models explainable by the observed geo- $\bar{\nu}$
- For the first time U and Th contribution fitted separtely (26.6 TNU vs. 10.6 TNU)
- Reactor-v

 : full agreement with neutrino osc.

A (10) A (10)

Near-future plan: Short-distance $\bar{\nu}/\nu$ oscillation experiment

Motivations for using a $\bar{\nu}/\nu$ source:

Evidence for a fourth neutrino flavor ?

- LNSD: clear excess (3.8σ) ; partially confirmed by MiniBooNE
- W-MAP 9 years: N_{eff}=3.84 \pm 0.40; Planck + H₀ const. meas.: N_{eff}=3.63 \pm 0.27
- Gallium (2.7 σ) and reactor anomalies: deficit on short-distances

 \rightarrow Hints for sterile neutrino(s): in (3+1) scenario L/E \sim 1 m/MeV, $\Delta m_{14}^2 \sim$ 1-2 eV², sin²(θ_{14}) \sim 0.1

- Measurement of Weinberg angle θ_W at low energy (~1 MeV)
- Measurement of neutrino magnetic moment μ_ν
- Check of coupling constants g_V and g_A at low energies

$\bar{\nu}/\nu$ source candidates:

Source	Neutrinos	Decay mode	τ	E [MeV]	Mass [kg/MCi]	Heat [W/kCi]
⁵¹ Cr	ν	e-capt., 320 keV γ 10%	40 d	0.781 (81%)	0.011	0.19
⁹⁰ Sr- ⁹⁰ Y	$\bar{\nu}$	Fission prod. β^-	15160 d	<2.28 (100%)	7.25	6.7
¹⁴⁴ Ce- ¹⁴⁴ Pr	$\bar{\nu}$	Fission prod. β^-	411 d	<2.9975 (97.9%)	0.314	7.6

Short-distance Oscillation in BoreXino (SOX)

Deployment of $\bar{\nu}/\nu$ sources in Borexino:

Phases:

- SOX-A External source deployment in pos. 1, 8.25 m from center: end 2015?: 5 PBq ¹⁴⁴Ce begin 2017?: 200-400 PBq ⁵¹Cr
- SOX-B External source deployment in pos. 2, 7.15 m from center: (mid 2017?): 2-4 PBq ¹⁴⁴Ce
- SOX-C External source deployment in pos. 3, at center: (>2018?): 2-4 PBq ¹⁴⁴Ce

Borexino: Challanges and sensitivity for sterile neutrinos

Challenging: construction/enrichment of active elements ۰ radiation: heat generation and shielding construction fast delivery of ⁵¹Cr source to experimental site 0 activity measurement: requirement of 1% precision; 2 calorimeters under construction 0 safety and permissions: highly complicated 0 detector response: very good knowledge about energy reco. for large fiducial volumes W. Maneschg Borexino: highlights & prospects Kaffeepalaver, 20-11-2014

44 / 51

Summary and outlook

Achieved main results:

- Solar neutrino rates:
 ⁷Be (high precision), ⁸B (lowest E-threshold), *pep* (first direct observation), CNO (best upper limit), *pp* (first direct observation)
- Annual modulation of solar neutrino flux
- Geo- $\bar{\nu}$ signal observed, separation of crust/mantle component, separation of U/Th content
- Calibration campaigns (perservation of cleanliness of scintillator)

Next goals and beyond:

- Improve precision of present results due to lower background (⁷Be rate,..)
- Improve precision of present results due to higher statistics (geo-ν
 ,..)
- Improve limit on CNO or try to quote a rate (²¹⁰Bi most problematic) → solve solar metallicity problem
- External ¹⁴⁴Cr $\bar{\nu}$ and ⁵¹Cr ν source test (SOX)
- Supernova detection: BX member of SNEWS, low E-threshold and 95% duty cycle

イロト 不得下 イヨト イヨト 二日

Further reading

Solar neutrinos

- 7Be rate @ 17%: C. Arpesella at al., First real time detection of 7Be solar neutrinos by Borexino, Phys. Lett. B 658 (2008) 101-108

- 7Be rate @ 10%: C. Arpesella at al., Direct measurement of the 7Be solar neutrino flux with 192 days of Borexino data, Phys. Rev. Lett. 101 (2008) 091302

- 7Be rate @ 5%: G. Bellini et al., Precision measurement of the 0.862 MeV 7Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302

- 7Be day-night asym.: G. Bellini at al., Absence of day-night asymmetry of 862 keV 7Be solar neutrino rate in Borexino and MSW oscillation parameters, Phys. Lett. B 707 (2012) 22-26

- 7Be annual mod.: G. Bellini at al., Final results of Borexino Phase-I on low-energy solar-neutrino spectroscopy, Phys. Rev. D 89 (2014) 112007

- pep rate & CNO limit: G. Bellini at al., First Evidence of pep Solar Neutrinos by Direct Detection in Borexino, Phys. Rev. Lett. 108 (2012) 051302

- 8B rate: G. Bellini at al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006

- pp rate: G. Bellini at al., Neutrinos from the primary proton-proton fusion process in the Sun, Nature 512, August 28, 2014

 Solar p limits: G. Bellini at al., Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS, Phys. Lett. B 696 (2011) 191-196

Geo-Antineutrinos:

- G. Bellini et al., Observation of Geo-Neutrinos: Phys. Lett. B 687 (2010) 299-304
- G. Bellini et al., Measurement of geo-neutrinos from 1353 days of Borexino, arXiv: 1303.2571v1(hep-ex)

Muons and cosmogenic background:

- G. Bellini et al., Cosmic-muon flux and annual modulation in Borexino at 3800 m water-equivalent depth, Jour. Cosm. Astrop. Phys. JCAP05 (2012) 015

- G. Bellini et al., Muon and Cosmogenic Neutron Detection in Borexino: JINST 6 P05005 (2011)

Other rare processes:

- G. Bellini et al., New experimental limits on the Pauli forbidden transition in 12C nuclei obtained with 485 days of Borexino data, Phys. Rev. C, Vol. 81, No. 3, (2010)

- G. Bellini et al., Search for Solar Axions Produced in $p(d, {}^{3}He)A$ Reaction with Borexino Detector, Phys. Rev. D 85, 092003 (2012)