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cosmology: what one knows and what not (yet)

® on large scales, spacetime exhibits the FLRW-symmetries, i.e. homogeneity and isotropy
® gravity is repulsive on large scales, well described by the cosmological constant A

® most of the matter is dark and interacts only gravitationally

® there are small, Gaussian and adiabatic fluctuations from an inflationary epoch

® one begins to understand galaxy formation quantitatively

® new gravitational phenomena on large scales?

® particle physics connection for dark matter? axions?

® shape of the inflationary potential V' (), reheating and particle generation?
® dark ages and reionisation? AGN activity and regulation?
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why cosmology is peculiar

¢ incredibly well-working standard model ACDM

® all parameters are of order unity or close to zero

® self-view of the community: era of precision cosmology (what about accuracy, though?)
® 6+ parameters, difficult/impossible to measure independently

® hierarchy of precision:

Q06,92 ... hyngawy ... a,B,we,fan .- TNL &NL

® tensions at marginal significance generate a lot of discussion lately
® non-parametric questions: cosmological principle
® fundamental physics in astrophysical observations: biases

® many sources of information: CMB, galaxy clustering, weak lensing, 21cm, supernova
distance-redshift, time delays, cluster counts
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weird questions that are difficult to ask (incomplete list)

® when do we stop believing in and old model and start believing in a new model?
— (Bayesian) evidence

® how much information on a model is contained in data?
— information entropy

® experimental design: decision between competing models or optimised discovery
potential? or simply maximum precision in the standard model?
— surprise statistic

e likelihoods, priors and posteriors independent from a given parameterisation? treatment
of nuisance parameters?
— information geometry

® quantification of tensions in posterior distributions and of data compatibility?
— Fisher-metric? Wasserstein-metric?
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Bayes’ law for statistical inference

® Bayes’ law makes a statement about conditional probabilities

L(y|8)m(6)

p(0ly)= o)

with data y and parameter choice 0, specifically:
® prior distribution 7(0): state of knowledge before experiment
likelihood L£(y|6): probability that y is observed if 0 is true
posterior p(6]|y): state of knowledge after the experiment
evidence as normalising factor, probability to obtain the data averaged over the prior

p()= J d"0 L(y|6)n(0)

e for a given model and a known error process, L(y|6) is computable

® thermodynamics is a theory of information (E.T. Jaynes)... but can one use
thermodynamics to understand information (of physical experiments) better?
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two standard techniques in cosmology: Fisher-matrix and MCMC
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supernova likelihood in (£2,,,, w): analytics vs. MCMC

® MCMC: random walk on the In £-surface: samples from the posterior
® Fisher-matrix: approximate In L as F,,,0"6"
® more accurate parameterisations for the non-Gaussian case exist: DALI
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Gauss-Markov-theorem and Gaussian posteriors

Gauss-Markov-theorem: if the model is linear and the error process Gaussian, then
® model parameters can be estimated with a linear estimator
estimate is unbiased
smallest error realised: Cramér-Rao inequality
likeihood is a Gaussian-function in the parameters, and the posterior a Gaussian distribution
(for a flat prior)

basis of all least squares estimation

® posterior is necessarily Gaussian

p(6") = ; €xXp (_%GM((‘PI)WQV)

v (2m)ndetC

with covariance matrix C*” = (6"6")
® Fisher matrix F,,,, = (C _l)w as inverse covariance

* good measurement with small uncertainty: small values in C*”, large values in F,,,
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absolute entropy: ACDM versus wCDM
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® information content: entropies are commensurate with Fisher-invariants

information entropy S in units of nats
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absolute entropy of the posterior distribution

information entropy S in units of nats
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relative entropies

® relative entropies measure the relative amount of randomness in two distributions
® invariant under reparameterisation, in contrast to absolute entropies
® Kullback-Leibler divergence: relative entropy

p(0)
= | d9p(0)InE==
AS J p( )nq(e)

® a-divergence

B 1 . @ a—1
AS, = a—llnfd Qp(Q)(q(Q))

incompatible with Bayes’ law if a # 1
® non-symmetric, exception a = 1/2: Battacharyya-entropy

ASyp=—2 lnf d"o /p(0)q(0)

5
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relative entropy: ACDM versus wCDM
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relative entropy of the posterior distribution

® reduction in uncertainty by probe combination

Bjorn Malte Schiifer — Heidelberg University —

+ +
alaxy Clustering "eak lensing

9/20



Fisher-metric: distance between distributions

e likelihood £(y|0) = p(¥|0): conditional probability of the data y for a parameter set 0

® depending on the random process generating the experimental error, there is an entire
distribution of y

e difference of two distributions p(y|6) and p(y|6 + €):
p(y16) 1 »

~ —F, e"e

AS = | d" 0)ln —2"2 _ ~
J yp(yl )np(y|9+e) 5 Fu

quantify with Kullback-Leibler-divergence
® symmetric to lowest non-vanishing order
® quadratic distance measure with a positive definite F,,

® curvature on the manifold associated with non-Gaussianity in distributions, Gaussian
distribution equivalent with flatness

* F,,: Fisher-metric, for Gaussians: F,,e’e” = A 22

Bjorn Malte Schéfer — Heidelberg University — 10/20



Bayes’ manifolds

® Bayes’ law links up two conditional probabilities:

_ L(y16)n(6)

0
p(0ly) o)

with prior p(6) and evidence p(y)
¢ Fisher-metric F,,, in parameter space derived from £(y|6)
® Fisher-metric F;; in data space derived from posterior p(6]y)
® invariants exist on the manifolds, quantify uncertainty
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Bayes’ manifolds

® Kullback-Leibler divergence in data space between posteriors p(8|x) and p(6|y): two
data sets x and y, identical prior p(6)

AS(x,y) = —f do p(@lx)lﬂ(g;:g;%) =
substitute
...=—f d6 p(Glx)ln(ﬁglllz;)+ln§E§; =—f d6 p(61x)r +B
identify

® likelihood ratio r
® evidence ratio B

® really weird: entropy = average logarithmic likelihood ratio + logarithmic evidence ratio
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tensions in cosmology
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® many tensions in cosmology

® origin unclear: could be a signature of "new physics" or a badly understood systematic
® even quantification is unclear, entropies would be asymmetric

perhaps it’s rather a question of data consistency? F;;?
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Bayes’ evidence and partition function

® Bayes-evidence
p(y)= J d"6 L(y16)p(6)
e distributions are members of the exponential family

p)= [ 00 exp (~327010) ) exot-(0)

® build in Laplace transform and an inverse temperature f3:
mathematical structure of a partition function, y2/2 + ¢ plays the role of a potential

Z[p,J,]= J d"0 exp(—B[x*(y16)/2+ ¢(6)]) exp(BJ,6")

® cumulants of the posterior
o"lnz
J" |10 p=1

K, =
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Bayes’ evidence and partition function

dark energy equation of state w
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approximations to the supernova likelihood in (£2,,,, w)

* GaufR-Markov: a linear model leads to a parabolic ¥ and therefore to a Gaussian integral
® in general: factorisation of the partition function into a Gaussian and a non-Gaussian part

® series expansion of the non-Gaussian part: recover Gram-Charlier-series
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weird and interesting relations

* define Helmholtz-free energy F(f3) from Z[3,J, ]

F(ﬁ)z—%an[[j,JH] with Z=J.d"9 [L(y|0)n(6)]°

® derive information entropy of the posterior distribution at § =1

9F _ _

B

® related partition with 1/ weighting yields Kullback-Leibler divergence AS between
posterior p(6|y) and prior 7w(6)

S=p* fd"G p(6ly)Inp(6ly)

Z=Jd"9£(y|9)ﬁn(9)f5+1/ﬂ - A8=fd"9p(9|y)1np(9|y)
n(0)

Bjorn Malte Schéfer — Heidelberg University — 16/20



virialisation, equipartition and thermalisation of MCMC
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Gellmann-Rubin R versus virialisation

® Gellmann-Rubin criterion R for convergence of MCMC sampling: sampling fair and
stationary

® Hamilton Monte-Carlo: degrees of freedom should separate and carry same amounts of
total energy o< 1/
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statistical inference in more complicated cases: functional inference

error band around the dark energy eos w(a)
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physical models might depend on a function w(a)
instead of (countably many) paramters 0
partition function becomes a path integral over
the space of functions w(a)

Gaussian path integrals feature the
Fisher-functional F,,,) () as a generalisation to
the Fisher-matrix F,,

example from cosmology: dark energy equation
of state w(a),a=0...1

generalisation to partition functions for
differential equations? to Lagrange functions?
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sampling with the macrocanonical ensemble: Kill & Spawn-algorithm
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sampling from the macrocanonical ensemble

® ensemble of samplers, controlled by a chemical potential u:
1
BB, Ju il = D, —Z[B,J,]" exp(npp)
— n!

* samplers are produced in regions of low y?, increase sampling efficiency

Bjorn Malte Schiifer — Heidelberg University — 19/20



summary

® thermodynamics as a theory of information extracted from data in the inference process
® central element: partition functions, suitable for analytical work

® analogous quantities in thermodynamics and information theory

® thermodynamics of MCMC-sampling, burn-in and equilibration

® generalisation to functional spaces

® ensembles of samplers: macrocanonical sampling

many thanks to: Lennart Rover, Benedikt Schosser, Rebecca Maria (Maria) Kuntz, Maxi
Herzog, Heinrich von Campe
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