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cosmology: what one knows and what not (yet)

• on large scales, spacetime exhibits the FLRW-symmetries, i.e. homogeneity and isotropy
• gravity is repulsive on large scales, well described by the cosmological constant Λ
• most of the matter is dark and interacts only gravitationally
• there are small, Gaussian and adiabatic fluctuations from an inflationary epoch
• one begins to understand galaxy formation quantitatively

but...

• new gravitational phenomena on large scales?
• particle physics connection for dark matter? axions?
• shape of the inflationary potential V (ϕ), reheating and particle generation?
• dark ages and reionisation? AGN activity and regulation?
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why cosmology is peculiar

• incredibly well-working standard model ΛCDM
• all parameters are of order unity or close to zero
• self-view of the community: era of precision cosmology (what about accuracy, though?)
• 6+ parameters, difficult/impossible to measure independently
• hierarchy of precision:

Ωm,ΩΛ,σ8,Ωb . . . h, ns, w0 . . . α,β , wa, fNL . . . τNL, gNL

• tensions at marginal significance generate a lot of discussion lately
• non-parametric questions: cosmological principle
• fundamental physics in astrophysical observations: biases
• many sources of information: CMB, galaxy clustering, weak lensing, 21cm, supernova

distance-redshift, time delays, cluster counts
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weird questions that are difficult to ask (incomplete list)

• when do we stop believing in and old model and start believing in a new model?
→ (Bayesian) evidence
• how much information on a model is contained in data?
→ information entropy
• experimental design: decision between competing models or optimised discovery

potential? or simply maximum precision in the standard model?
→ surprise statistic
• likelihoods, priors and posteriors independent from a given parameterisation? treatment

of nuisance parameters?
→ information geometry
• quantification of tensions in posterior distributions and of data compatibility?
→ Fisher-metric? Wasserstein-metric?
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Bayes’ law for statistical inference

• Bayes’ law makes a statement about conditional probabilities

p(θ |y) =
L(y|θ )π(θ )

p(y)

with data y and parameter choice θ , specifically:
• prior distribution π(θ ): state of knowledge before experiment
• likelihood L(y|θ ): probability that y is observed if θ is true
• posterior p(θ |y): state of knowledge after the experiment
• evidence as normalising factor, probability to obtain the data averaged over the prior

p(y) =

∫

dnθ L(y|θ )π(θ )

• for a given model and a known error process, L(y|θ ) is computable
• thermodynamics is a theory of information (E.T. Jaynes)... but can one use

thermodynamics to understand information (of physical experiments) better?
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two standard techniques in cosmology: Fisher-matrix and MCMC

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
matter density Ωm

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6
eq

ua
tio

n 
of

 st
at

e 
pa

ra
m

et
er

 w

0

500

1000

1500

2000

2500

3000

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

matter density Ωm0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

e.
o.

s
pa

ra
m

et
er
w

0.0

4.5

9.0

13.5

18.0

22.5

27.0

31.5

no
rm

al
iz

ed
p

os
te

ri
or

supernova likelihood in (Ωm, w): analytics vs. MCMC

• MCMC: random walk on the lnL-surface: samples from the posterior
• Fisher-matrix: approximate lnL as Fµνθ

µθν

• more accurate parameterisations for the non-Gaussian case exist: DALI

Björn Malte Schäfer — Heidelberg University — 5/20



Gauss-Markov-theorem and Gaussian posteriors

• Gauss-Markov-theorem: if the model is linear and the error process Gaussian, then
• model parameters can be estimated with a linear estimator
• estimate is unbiased
• smallest error realised: Cramér-Rao inequality
• likeihood is a Gaussian-function in the parameters, and the posterior a Gaussian distribution

(for a flat prior)

basis of all least squares estimation
• posterior is necessarily Gaussian

p(θµ) =
1
p

(2π)ndetC
exp
�

−
1
2
θµ(C−1)µνθ

ν

�

with covariance matrix Cµν = 〈θµθν〉
• Fisher matrix Fµν = (C

−1)µν as inverse covariance
• good measurement with small uncertainty: small values in Cµν, large values in Fµν
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absolute entropy: ΛCDM versus wCDM
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absolute entropy of the posterior distribution

• information content: entropies are commensurate with Fisher-invariants
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relative entropies

• relative entropies measure the relative amount of randomness in two distributions
• invariant under reparameterisation, in contrast to absolute entropies
• Kullback-Leibler divergence: relative entropy

∆S =

∫

dnθ p(θ ) ln
p(θ )
q(θ )

• α-divergence

∆Sα =
1
α− 1

ln

∫

dnθ p(θ )
�

p(θ )
q(θ )

�α−1

incompatible with Bayes’ law if α ̸= 1
• non-symmetric, exception α= 1/2: Battacharyya-entropy

∆S1/2 = −2 ln

∫

dnθ
Æ

p(θ )q(θ )
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relative entropy: ΛCDM versus wCDM
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relative entropy of the posterior distribution

• reduction in uncertainty by probe combination
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Fisher-metric: distance between distributions

• likelihood L(y|θ ) = p(y|θ ): conditional probability of the data y for a parameter set θ
• depending on the random process generating the experimental error, there is an entire

distribution of y
• difference of two distributions p(y|θ ) and p(y|θ + ε):

∆S =

∫

dn y p(y|θ ) ln
p(y|θ )

p(y|θ + ε)
≃

1
2

Fµνε
µεν

quantify with Kullback-Leibler-divergence
• symmetric to lowest non-vanishing order
• quadratic distance measure with a positive definite Fµν
• curvature on the manifold associated with non-Gaussianity in distributions, Gaussian

distribution equivalent with flatness
• Fµν: Fisher-metric, for Gaussians: Fµνε

µεν =∆χ2
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Bayes’ manifolds

Tx D TθM

likelihood L(x |θ )
metric Fµν

posterior p(θ |x)

metric Fi j

evidence p(x) prior π(θ )

D with x i M with θµ

• Bayes’ law links up two conditional probabilities:

p(θ |y) =
L(y|θ )π(θ )

p(y)

with prior p(θ ) and evidence p(y)
• Fisher-metric Fµν in parameter space derived from L(y|θ )
• Fisher-metric Fi j in data space derived from posterior p(θ |y)

• invariants exist on the manifolds, quantify uncertainty
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Bayes’ manifolds

• Kullback-Leibler divergence in data space between posteriors p(θ |x) and p(θ |y): two
data sets x and y , identical prior p(θ )

∆S(x , y) = −
∫

dθ p(θ |x) ln
�L(x |θ )
L(y|θ )

p(y)
p(x)

�

= . . .

substitute

. . .= −
∫

dθ p(θ |x) ln
�L(x |θ )
L(y|θ )

�

+ ln
p(x)
p(y)

= −
∫

dθ p(θ |x)r + B

identify
• likelihood ratio r
• evidence ratio B

• really weird: entropy = average logarithmic likelihood ratio + logarithmic evidence ratio
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tensions in cosmology

posteriors for h (arXiv:1911.06456)

• many tensions in cosmology
• origin unclear: could be a signature of "new physics" or a badly understood systematic
• even quantification is unclear, entropies would be asymmetric
• perhaps it’s rather a question of data consistency? Fi j?
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Bayes’ evidence and partition function

• Bayes-evidence

p(y) =

∫

dnθ L(y|θ )p(θ )

• distributions are members of the exponential family

p(y) =

∫

dnθ exp
�

−
1
2
χ2(y|θ )
�

exp(−φ(θ ))

• build in Laplace transform and an inverse temperature β:
mathematical structure of a partition function, χ2/2+φ plays the role of a potential

Z[β , Jµ] =

∫

dnθ exp
�

−β
�

χ2(y|θ )/2+φ(θ )
��

exp(βJµθ
µ)

• cumulants of the posterior

κn =
∂ n ln Z
∂ Jn

�

�

�

�
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Bayes’ evidence and partition function
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approximations to the supernova likelihood in (Ωm, w)

• Gauß-Markov: a linear model leads to a parabolic χ2 and therefore to a Gaussian integral
• in general: factorisation of the partition function into a Gaussian and a non-Gaussian part
• series expansion of the non-Gaussian part: recover Gram-Charlier-series
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weird and interesting relations

• define Helmholtz-free energy F(β) from Z[β , Jµ]

F(β) = −
1
β

ln Z[β , Jµ] with Z =

∫

dnθ [L(y|θ )π(θ )]β

• derive information entropy of the posterior distribution at β = 1

S = β2 ∂ F
∂ β
= −
∫

dnθ p(θ |y) ln p(θ |y)

• related partition with 1/β weighting yields Kullback-Leibler divergence ∆S between
posterior p(θ |y) and prior π(θ )

Z =

∫

dnθ L(y|θ )βπ(θ )β+1/β → ∆S =

∫

dnθ p(θ |y) ln
p(θ |y)
π(θ )
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virialisation, equipartition and thermalisation of MCMC
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Gellmann-Rubin R versus virialisation

• Gellmann-Rubin criterion R for convergence of MCMC sampling: sampling fair and
stationary
• Hamilton Monte-Carlo: degrees of freedom should separate and carry same amounts of

total energy∝ 1/β
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statistical inference in more complicated cases: functional inference
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• physical models might depend on a function w(a)
instead of (countably many) paramters θ
• partition function becomes a path integral over

the space of functions w(a)
• Gaussian path integrals feature the

Fisher-functional Fw(a),w(a′) as a generalisation to
the Fisher-matrix Fµν
• example from cosmology: dark energy equation

of state w(a), a = 0 . . . 1
• generalisation to partition functions for

differential equations? to Lagrange functions?
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sampling with the macrocanonical ensemble: Kill & Spawn-algorithm

sampling from the macrocanonical ensemble

• ensemble of samplers, controlled by a chemical potential µ:

Ξ[β , Jα,µ] =
∑

n

1
n!

Z[β , Jα]
n exp(nβµ)

• samplers are produced in regions of low χ2, increase sampling efficiency
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summary

• thermodynamics as a theory of information extracted from data in the inference process
• central element: partition functions, suitable for analytical work
• analogous quantities in thermodynamics and information theory
• thermodynamics of MCMC-sampling, burn-in and equilibration
• generalisation to functional spaces
• ensembles of samplers: macrocanonical sampling

many thanks to: Lennart Röver, Benedikt Schosser, Rebecca Maria (Maria) Kuntz, Maxi
Herzog, Heinrich von Campe
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