The Einstein-Telescope Listening to the murmurs of the Universe

(Status and Prospects)

Harald Lück AEI Hannover Max-Planck Institute for Gravitational physics Leibniz Universität Hannover, Institute for Gravitational physics

ET EINSTEIN TELESCOPE

- Gravitational waves
 - What are we talking about?
 - What have we detected so far?
 - What do we intend to measure?

- GW Detectors
 - How do they work?
 - What have we got?
 - How to improve?
 - Einstein Telescope!

In 1916 Einstein predicted Gravitational Waves as a consequence of his Theory of General Relativity

Gravitational waves are ripples in space and time caused by changing gravitational fields The problem is:

$$h = \frac{\Delta L}{L} = \frac{2}{c^4} \frac{d^2 Q}{dt^2} \frac{1}{d}$$

with
$$\frac{2G}{c^4} = \mathbf{10^{-44}} s^2 k g^{-1} m^{-1}$$

Gravitational waves propagate at the speed of light and cause measurable changes in the distance between objects

Credit: ESA-C.Carreau

The Gravitational Wave Spectrum

102

Source Giles Hammond: Adapted from M. Evans (LIGO G1300662-v4); adapted by H. Lück

Working principle of a GW Detector: Michelson Interferometer

102

Lots of external disturbances

Power lines

The advanced GW Network

GEO600, 2011

600

Advanced Virgo 2016

Advanced LIGO INDIA, 2024

KAGRA 2018

Sensitivity improvement LIGO <-> aLIGO

102

"Observation of Gravitational Waves from a Binary Black Hole Merger"

PHYSICAL REVIEW **ETTERS**[™] 12 FEBRUARY 2016

Articles published week ending

THE Detection GW150914

14. September 2015 09:50:45 UTC = 11:50:45 CEST

Detection of a transient signal in **both** advanced LIGO detectors

102

100

Published by American Physical Society physics

Volume 116, Number 6

LVK Observation runs

LIGO

Median O3a: LHO: 108MPc (1.64xO2) LLO: 135 MPc (1.53xO2) Virgo: 45 MPc (1.73XO2)

01

80

Mpc

O3

110-130

Mpc

02

100

Mpc

https://arxiv.org/pdf/2010.14527.pdf

GW170817: A Binary Neutron star merger

Localisation by Trilateration

Slide: Stefan Hild (modified)

LVK Observation runs

Median O3a: LHO: 108MPc (1.64xO2) LLO: 135 MPc (1.53xO2) Virgo: 45 MPc (1.73XO2)

https://arxiv.org/pdf/2010.14527.pdf

102

	01	02 🛑 03	— 04 —	O5
LIGO	80 100 Мрс Мрс	110- <mark>130</mark> Mpc	160-190 Мрс	Target 330 Mpc
Virgo	30 Мр	c Mpc	90-120 Mpc	150-260 Mpc
KAGRA		8-25 Mpc	25-130 Mpc	130+ Mpc
LIGO-India		J3a	O3b	Target 330 Mpc
I 2015 LIGO-G2002127-v3	I I 2016 2017 2	I I I 018 2019 2020 20	I I I I 021 2022 2023 2024	I I 4 2025 2026

Observing plans and public alerts: https://www.ligo.org/scientists/GWEMalerts.php

Gravitationswellendetektionen

10

https://dcc.ligo.org/LIGO-G2001862/public

Coalescing binaries observed so far O1 – O3a

102

Detection Highlights from O3a

- Only measured by two detectors (LLO and Virgo)
 - Poorer localisation compared to GW170817
- No EM counterpart found
- Unexpectedly heavy pair: total mass of 3.4 $_{\rm +0.3\ -0.1}$ M_{\odot} is 5 σ from galactic mean

Image: T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (MPI for Gravitational Physics). W. Tichy (Florida Atlantic University) and the CoRe-collaboration

GW190521 – the "big fish"

[1] Phys. Rev. Lett. 125, 101102 (2020) [2]

- Most massive system observed: objects 85 and 66 $M_{\odot}{}^{(1)}$
- Remnant intermediate mass black hole
 first direct observation of IMBH
- One or both components in the pair instability mass gap (50 120 M_{\odot})

Image: LIGO/Caltech/MIT/R. Hurt (IPAC)

Sensitivities of the 2nd Generation

102

Infrastructure will reach an end of lifetime and a limit in performance (self noise, size) → New infrastructures

ET EINSTEIN TELESCOPE

Design Pläne

Design Report Update 2020

for the Einstein Telescope

ET Steering Committee Editorial Team released September 2020

rel. Längenänderung : $\Delta L/L = 2\%$

Noise Budget (aLIGO example)

1004

Sensitivities of the 2nd Generation

102

Infrastructure will reach an end of lifetime and a limit in performance (self noise, size) → New infrastructures

Challenge: Low Frequency improvement factor

102

Newtonian Noise

- The Virgo suspension is almost good enough for filtering the seismic disturbances and keeping the mirrors quiet enough
 - A longer suspension is needed to improve filtering at low frequencies
- Newtonian Noise circumvents this isolation chain

ET - Xylophone Concept

ET - LF low-power, cryogenic low-frequency detector

EINSTEIN

TELESCOPE

EЛ

ET – HF high-power, room-temperature high-frequency detector

ET-HF:

- High power laser
- High circulating light power
- Thermal compensation
- Large test masses
- New coatings
- Frequency dependent squeezing

ET-LF:

10 – 20 K

102

300 K

100 4

- Cryogenics
- Seismic suspensions
- Silicon (Sapphire) test masses
- Large test masses
- New coatings
- New laser wavelength
- Frequency dependent squeezing, Filter cavities

Detector Subsystems

1004

40 km

40 km

Cosmic Explorer (USA) Oberirdisch Empfindlichkeit 10x advanced Det. 2 Phasen

Sensitivities in the 3G era

102

EINSTEIN TELESCOPE

ΕT

Reaching for the "whole universe"...

Slide layout: Sheila Rowan, modified

ASTROPHYSICS OF STELLAR COLLAPSE AND SUPERNOVAE

- few x 10⁵³ erg
- Explosion energy
- 10⁵¹ erg

- Time frame for explosion
 300 1500 ms after bounce
 Formation of black hole
 - At baryonic mass > 1.8-2.5 M

Sub-slides credit: B. Sathyaprakash, Dawn III Workshop, https://wiki.ligo.org/LSC/LIGOworkshop2017/WebHome

3G Gravitational Wave Science

PRECISION COSMOLOGY

- Compact binaries are standard sirens; GW observations can measure the luminosity distance
- But can we measure distance and redshift both from GW observations alone?
- Tidal interactions between neutron stars have the opposite effect of cosmology; this helps break the mass-redshift degeneracy

Read and Messenger PRL 2012; Messenger+ PRX 2014

FORMATION AND EVOLUTION OF COMPACT BINARIES

Einstein Telescope Where are we?

ESFRI Roadmap

European Strategy Forum on Research Infrastructures

ESFRI ROADMAP 2021

New Deadline September 9th, 2020

Proposal submitted by:

- Italy (Lead Country)
- Netherlands
- Belgium
- Spain
- Poland

2

ET ESFRI Proposal:

the consortium level

- The ET ESFRI consortium is composed by the institutions signing the ET consortium agreement (CA)
 - Very light CA at this level
 - 41 Institutions signed the ET consortium
 - The ET consortium is coordinated by INFN and Nikhef (Stan Bentvelsen, Antonio Zoccoli)

Slide: Michele Punturo

ET Governance Scheme (proposal)

H. Lueck @ GWADW 2021

ET Boards

- The Instrument Science Board (ISB)
 - deliver the ET Technical Design Report (ET-TDR) for infrastructure and detectors
 - identify the missing technologies and suggest a (living) plan for R&D activities. first version ca. March 2021.
- The Observational Science Board (OSB)
 - will detail the ET science case
 - will prepare the data analysis requirements
 - will indicate the computing requirements for ET
- The Site Preparation Board (SPB)
 - will coordinate the effort on the site related activities
 - formulate the site specifications for Einstein Telescope
 - prepare the choice of the site for the Einstein Telescope observatory
- The E-Infrastructures Board (EIB) -> Computing Infrastructure Board
 - will define the computing and storage resources, networking, local and distributed e-infrastructures
 - will study the computing models that can be adopted in ET and the synergies with the e-infrastructures available or expected in Europe in the next decade.
- The Internal Finance Board (IFB)
 - will have the mandate to evaluate the financial needs
 - collecting and harmonizing the inputs received from the other technical boards
 - will suggest the funding tools needed to elaborate a financial strategy to be proposed to the Council.

ISB: Instrument Science Board

EIN STEIN TELESCOPE

E

Check out the website of the ISB Wiki.et-gw.eu/ISB/WelcomePage

and contact a working group chair or a division chair

They will assist you join the collaboration, where you can **shape the next generation** of gravitational wave observatories

OSB: Observational Science Board

Site Candidates

02

Two candidate sites in

- Italy and
- The Netherlands

Both sites geologically and seismically suited. Investigations ongoing.

Activities in the Euregio Meuse-Rhine

- A 250-m deep borehole has been drilled and is equipped with
 - Seismic data under acquisition and analysis
- 3-5 more boreholes in 2021/22
- Extensive active and passive site characterisation with sensor arrays in 2021
- ET pathfinder lab under construction making good progress

ET Seismic noise at the Terziet site

soft top layer

——— on hard rock
> good for tunnel construction ③

ET EINSTEIN TELESCOPE

Sardinia Site Activities

Slide: Domenico D'Urso

The Sos Enattos site

Sardinia Radio Telescope

"ARIA" project (for Gran Sasso Dark Side DM det.)

Slide: Domenico D'Urso

Slide: Domenico D'Urso

Measurement in Sardinia

Characterization of the Bitti and Onani corners: Surface and underground seismic and environmental measurements will start soon

4 broadband seismometers, 3 short-period seismometers, 2 magnetometers,

1 tiltmeter distributed over underground and surface stations

54 Credits to L. Naticchioni

Measurement Results

- First year of seismic characterization measurements at Sos Enattos published (JPCS 1468, 2020, SRL <u>https://doi.org/10.1785/0220200186</u>): extremely low-noise conditions in the range 2-10Hz. SOE2 measurements are biased by the low-gain setting of the ACQ (compliant to the national monitoring program).
- Preliminary sensitivity of Archimedes Prototype balance (tiltmeter) (<u>https://doi.org/10.1103/PhysRevD.90.022002</u>)

Slide: Domenico D'Urso

EINS

ET Community in Germany

ET activites are ramping up in several countries in Europe, e.g. in **Germany** Joint Research Activity of 17 university partners funded by BMBF

ET EINSTEIN TELESCOPE EINSTEIN EINSTEIN EINSTEIN EINSTEIN EINSTEIN

Video by Marco Kraan, Nikhef

https://www.youtube.com/watch?v=HJGVs6-wJG4

Einstein Telescope

Check out the ISB page: <u>https://wiki.et-gw.eu/ISB/WelcomePage</u> and contact a working group chair to join the adventure ©