The $B \rightarrow \pi K$ Puzzle: 2021 Status Report

David London

Université de Montréal

Max-Planck-Institute, Heidelberg Monday, May 31, 2021

Talk based in part on work done in collaboration with N. Boisvert Beaudry, A. Datta, A. Rashed and J.-S. Roux, [arXiv:1709.07142 [hep-ph]].

Back to the 1990s

CP violation (CPV) observed only in Kaon system, in $K^{0}-\bar{K}^{0}$ mixing $(\epsilon_{K} \sim \text{Im}\langle \bar{K}^{0} | \mathcal{H} | K^{0} \rangle)$. SM explanation: CKM matrix. Charged current: $\bar{U}_{L} V_{CKM} \gamma^{\mu} D_{L} W^{+}_{\mu} + h.c.$:

$$V_{\mathcal{CKM}} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
 .

 V_{CKM} is unitary, parametrized by 3 angles and 1 phase. Experiment: CKM matrix elements obey a hierarchy:

$$V_{CKM} \sim egin{pmatrix} 1 & \lambda & \lambda^3 \ \lambda & 1 & \lambda^2 \ \lambda^3 & \lambda^2 & 1 \end{pmatrix} \;,$$

where $\lambda = \sin \theta_C \simeq 0.22$ (θ_C is Cabibbo angle).

Wolfenstein parametrization: 3 angles \rightarrow 3 real parameters, 1 phase \rightarrow 1 complex parameter:

$$V_{\mathcal{C}\mathcal{K}\mathcal{M}} \;\simeq\; egin{array}{c} d&s&b\ 1-rac{\lambda^2}{2}&\lambda&A\lambda^3\left(
ho-i\eta
ight)\ -\lambda&1-rac{\lambda^2}{2}&A\lambda^2\ A\lambda^3\left(1-
ho-i\eta
ight)&-A\lambda^2&1 \end{array}
ight) \;.$$

 V_{CKM} is unitary to $O(\lambda^3)$:

Note: at this order, the complex phase appears only in the corner elements V_{ub} and V_{td} .

$K^0 - \overline{K}^0$ mixing:

Involves $V_{td} \Longrightarrow \operatorname{Im}\langle \bar{K}^0 | \mathcal{H} | K^0 \rangle$ is nonzero.

However, \exists problem. $|\epsilon_{\mathcal{K}}|$ measured (very precisely) at meson level, but diagram calculated at quark level \Longrightarrow sizeable hadronic uncertainty in relating $|\epsilon_{\mathcal{K}}|$ to the parameters of the CKM matrix.

How can we test this explanation?

Write $V_{ub} = |V_{ub}| \exp(-i\gamma)$, $V_{td} = |V_{td}| \exp(-i\beta)$. Orthogonality of first and third columns implies

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 = |V_{ud}||V_{ub}|e^{i\gamma} + |V_{cd}||V_{cb}^*| + |V_{td}||V_{tb}|e^{-i\beta}.$

This is a triangle relation in the complex plane \implies unitarity triangle:

Interior angles α , β and γ all proportional to $\eta \implies$ a nonzero value of any of these angles implies CPV. The angles are not independent: $\alpha + \beta + \gamma = \pi$.

Key point: α , β and γ can all be measured in *B*-meson decays.

David London (UdeM)

CP Violation

Suppose the decay $B \rightarrow f$ has two contributing amplitudes, X and Y:

$$A(B
ightarrow f) \equiv A = X + Y = |X|e^{i\phi_X}e^{i\delta_X} + |Y|e^{i\phi_Y}e^{i\delta_Y}$$

where $\phi_{X,Y}$ and $\delta_{X,Y}$ are weak (CP-odd) and strong (CP-even) phases, respectively. The (direct) CP asymmetry is

$$\begin{aligned} A_{\rm CP}^{\rm dir} &= \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \\ &= \frac{2|X||Y|\sin(\phi_X - \phi_Y)\sin(\delta_X - \delta_Y)}{|X|^2 + |Y|^2 + 2|X||Y|\cos(\phi_X - \phi_Y)\cos(\delta_X - \delta_Y)} \;. \end{aligned}$$

Point: a nonzero A_{CP}^{dir} requires $\phi_X - \phi_Y \neq 0$ and $\delta_X - \delta_Y \neq 0$.

This is problematic. The strong phases are unknown \implies cannot extract weak-phase information without significant hadronic uncertainty.

David London (UdeM)

There is an alternative. $\exists B^0 - \overline{B}^0 \text{ mixing} \implies$ a particle "born" as a B^0 will become in time a mixture of B^0 and \overline{B}^0 : $B^0(t)$.

The $B^0(t)$ can decay as a B^0 or a \overline{B}^0 . If we consider a final state f to which both B^0 and \overline{B}^0 can decay, the decay $B^0(t) \to f$ has 2 amplitudes: $B^0 \to f$ and $\overline{B}^0 \to f$. These can interfere, resulting in (indirect) CPV.

The corner CKM matrix elements that have phases $(V_{ub} = |V_{ub}| \exp(-i\gamma))$, $V_{td} = |V_{td}| \exp(-i\beta)$ appear in some *B* mixing and decay amplitudes:

Find $|A(B^0(t) \rightarrow f)|^2$ contains two time-dependent CPV pieces:

$$egin{aligned} & A_{\mathrm{CP}}^{\mathrm{dir}}\cos(\Delta Mt)+A_{\mathrm{CP}}^{\mathrm{indir}}\sin(\Delta Mt)\;, \ & A_{\mathrm{CP}}^{\mathrm{dir}}=rac{|A|^2-|ar{A}|^2}{|A|^2+|ar{A}|^2}\;\;, \quad & A_{\mathrm{CP}}^{\mathrm{indir}}=\mathrm{Im}\left[e^{-2i\phi_M}rac{ar{A}}{A}
ight]\;, \end{aligned}$$

where ϕ_M is the phase of $B^0 - \overline{B}^0$ mixing ($\phi_M = \beta$ (B^0), $\phi_M \simeq 0$ (B_s^0)). Suppose $A(B \to f)$ has only one contributing amplitude:

$$A = |X|e^{i\phi_X}e^{i\delta_X} \implies \bar{A} = |X|e^{-i\phi_X}e^{i\delta_X}.$$

This implies that

$$\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} = 0 \ , \quad \mathcal{A}_{\mathrm{CP}}^{\mathrm{indir}} = -\sin(2\phi_M + 2\phi_X) \ .$$

Key point: strong phase cancels in $A_{CP}^{indir} \implies$ weak-phase information extracted with no hadronic uncertainties!

David London (UdeM)

\exists 4 possibilities:

- **9** B^0 with $b \rightarrow u$: phase = β (mixing) + γ (decay).
- **2** B^0 with $b \to c$: phase = β (mixing) + 0 (decay).
- **3** B_s^0 with $b \to u$: phase = 0 (mixing) + γ (decay).
- B_s^0 with $b \to c$: phase = 0 (mixing) + 0 (decay).

By considering different final states f, all three CP angles can be extracted from measurements of CPV in $B^0(t) \rightarrow f$:

Test the SM by measuring the sides and angles of the unitarity triangle in many different ways. If a discrepancy among the measurements is found \implies new physics. With this goal, the *B*-factories BaBar and Belle were built in the 1990s, took data in the 2000s.

Results

1. SM predicts that $\alpha + \beta + \gamma = \pi$. Latest results:

1

$$B^{0}(t) \to \pi\pi, \rho\pi, \rho\rho : \alpha = \left(86.4^{+4.5}_{-4.3}\right)^{\circ},$$

charmonium : $\beta = \left(22.14^{+0.69}_{-0.67}\right)^{\circ},$
 $B \to D^{(*)}K^{(*)} : \gamma = \left(72.1^{+5.4}_{-5.7}\right)^{\circ},$
 $\alpha + \beta + \gamma = \left(180.6^{+6.9}_{-7.1}\right)^{\circ}.$

2. SM predicts that $A_{CP}^{\text{indir}}(\text{charmonium}) = A_{CP}^{\text{indir}}(B^0(t) \rightarrow \phi K_S)$. Latest results:

$$\begin{split} A^{indir}_{CP}(\text{charmonium}) &: \quad \sin 2\beta = 0.699 \pm 0.017 \ , \\ A^{indir}_{CP}(B^0(t) \to f) \ (\bar{b} \to \bar{s}q\bar{q} \text{ penguin}) &: \quad \sin 2\beta = 0.648 \pm 0.038 \ . \end{split}$$

3. SM predicts phase in $B_s^0 - \overline{B}_s^0$ mixing, $\varphi_s^{c\overline{c}s}$, is very small, $O(1^\circ)$. Latest results (LHCb):

$$arphi_s^{car{c}s}=(2.9\pm1.1)^\circ$$
 .

4. 2010: DØ measures CP asymmetry in $b\bar{b} \rightarrow \mu^{\pm}\mu^{\pm}X$: $A_{\rm sl}^{b} = -(7.87 \pm 1.72 \pm 0.93) \times 10^{-3}$. Disagrees with SM prediction by 3.9σ .

Measurement not repeated (Tevatron had $p\bar{p}$ collisions, LHC has pp collisions). But result is inconsistent with other related measurements \implies looks like it was a statistical fluctuation.

As of 2018:

If new physics is present, its effects are small.

David London (UdeM)

The $B \rightarrow \pi K$ Puzzle

There was a discrepancy from BaBar/Belle observed in 2003.

 $\exists 4 B \to \pi K$ decays: $B^+ \to \pi^+ K^0$ (designated +0), $B^+ \to \pi^0 K^+$ (0+), $B^0 \to \pi^- K^+$ (-+) and $B^0 \to \pi^0 K^0$ (00). Decays not independent: their amplitudes are related by isospin:

$$\sqrt{2}A^{00} + A^{-+} = \sqrt{2}A^{0+} + A^{+0}$$
.

With these, can measure 4 branching ratios, 4 direct CP asymmetries, one indirect CP asymmetry (in $B^0(t) \rightarrow \pi^0 K^0$). When all data combined, it was found (in 2003) that there was an inconsistency among the measurements.

This is the $B \rightarrow \pi K$ puzzle, and it remains even today, some 20 years after its observation.

Amplitudes

Isospin: (u, d) form a doublet under $SU(2)_I \implies (\pi^+, \pi^0, \pi^-)$ form a triplet, (K^+, K^0) form a doublet, etc. Matrix elements can be evaluated using Clebsch-Gordan coefficients and the Wigner-Eckart theorem.

Flavour symmetry: (u, d, s) form a triplet under $SU(3)_f \implies \{\pi^+, \pi^0, \pi^-, K^+, K^0, K^-, \overline{K}^0, \eta_1\}$ form an octet. Matrix elements much more difficult to calculate.

Instead, use topological diagrams. Note: these are not Feynman diagrams, but they do represent the currents involved. The set of diagrams can be mapped to the set of $SU(3)_f$ matrix elements.

E, E'

A, A'

PA, PA' < □ > < @ > < ≥ > < ≥ >

 $B \rightarrow \pi K$ Puzzle, 2021

Max-Planck-Institute, Heidelberg

15 / 26

э

 $B \to \pi K$ decays involve the transitions $\bar{b} \to \bar{s}q\bar{q}$, q = u, d. The amplitudes involve T', C', P', P'_{EW} , P'_{EW} , E', A', PA'. Observations:

- E', A', PA' suppressed by $f_B/m_B = O(1\%) \Longrightarrow$ these diagrams can be neglected to a first approximation.
- C' is colour-suppressed w.r.t. T'. Naively, this suppression is 1/3, but more detailed theoretical estimates find $|C'/T'| \simeq 0.2$.
- P' contains t, c, u quarks in the loop. Using CKM unitarity, can write $P' = P'_{tc} + P'_{uc}$, where $|P'_{uc}/P'_{uc}| = |V^*_{ub}V_{us}/V^*_{tb}V_{ts}| \sim O(\lambda^2) = 0.04$.
- Can show that, assuming $SU(3)_f$ symmetry, to a good approximation P'_{EW} and P'^C_{EW} are proportional to T' and C', respectively:

$$P'_{EW} = \frac{3}{2} \frac{c_9}{c_1} \frac{|V_{tb}^* V_{ts}|}{|V_{ub}^* V_{us}|} T' \quad , \qquad P'_{EW}^C = \frac{3}{2} \frac{c_9}{c_1} \frac{|V_{tb}^* V_{ts}|}{|V_{ub}^* V_{us}|} C' \; .$$

 $c_9 \ll c_1$, so that P'_{EW} and T' are roughly the same size, as are P'_{EW}^C and C'.

 \implies the relative sizes of all the $B \rightarrow \pi K$ diagrams are roughly

$$\begin{split} 1:|P_{tc}'| \ , \quad \mathcal{O}(\bar{\lambda}):|T'|, \ |P_{EW}'| \ , \quad \mathcal{O}(\bar{\lambda}^2):|C'|, \ |P_{uc}'|, \ |P_{EW}'| \ , \end{split}$$
 where $\bar{\lambda}\sim 0.2.$

The $B \rightarrow \pi K$ decay amplitudes are given by

$$\begin{split} A^{+0} &= -P'_{tc} + P'_{uc}e^{i\gamma} - \frac{1}{3}P'^C_{EW} ,\\ \sqrt{2}A^{0+} &= -T'e^{i\gamma} - C'e^{i\gamma} + P'_{tc} - P'_{uc}e^{i\gamma} - P'_{EW} - \frac{2}{3}P'^C_{EW} ,\\ A^{-+} &= -T'e^{i\gamma} + P'_{tc} - P'_{uc}e^{i\gamma} - \frac{2}{3}P'^C_{EW} ,\\ \sqrt{2}A^{00} &= -C'e^{i\gamma} - P'_{tc} + P'_{uc}e^{i\gamma} - P'_{EW} - \frac{1}{3}P'^C_{EW} . \end{split}$$

Note: The weak-phase dependence is written explicitly; the diagrams contain both strong phases and the magnitudes of the CKM matrix elements. The amplitudes for the CP-conjugate processes are obtained by changing the sign of the weak phase γ .

David London (UdeM)

The Naive $B \rightarrow \pi K$ Puzzle

Neglect $\mathcal{O}(\bar{\lambda}^2)$ diagrams in amplitudes:

$$\begin{array}{rcl} A^{+0} &=& -P_{tc}' \; , \\ \sqrt{2}A^{0+} &=& -T'e^{i\gamma} + P_{tc}' - P_{EW}' \; , \\ A^{-+} &=& -T'e^{i\gamma} + P_{tc}' \; , \\ \sqrt{2}A^{00} &=& -P_{tc}' - P_{EW}' \; . \end{array}$$

With these amplitudes, $A_{CP}^{dir}(B^+ \to \pi^0 K^+) = A_{CP}^{dir}(B^0 \to \pi^- K^+)$. 2017:

Mode	$BR[10^{-6}]$	$A_{ m CP}^{ m dir}$	$A_{ m CP}^{ m indir}$
$B^+ o \pi^+ K^0$	23.79 ± 0.75	-0.017 ± 0.016	
$B^+ o \pi^0 K^+$	12.94 ± 0.52	0.040 ± 0.021	
$B^0 o \pi^- K^+$	19.57 ± 0.53	-0.082 ± 0.006	
$B^0 o \pi^0 K^0$	9.93 ± 0.49	-0.01 ± 0.10	0.57 ± 0.17

David London (UdeM)

 $B \rightarrow \pi K$ Puzzle, 2021

Max-Planck-Institute, Heidelberg

Not only are $A_{CP}(B^+ \to \pi^0 K^+)$ and $A_{CP}(B^0 \to \pi^- K^+)$ not equal, they are of opposite sign! We have $(\Delta A_{CP})_{exp} = (12.2 \pm 2.2)\%$. This differs from 0 by 5.5 σ . This is the naive $B \to \pi K$ puzzle.

Can quantify this. $P'_{EW} \propto T' \Longrightarrow \exists 5$ unknown theoretical parameters: |T'|, $|P'_{tc}|$, one relative strong phase, and γ and β (appears in $A_{\rm CP}^{\rm indir}$). Constraints: the 9 $B \rightarrow \pi K$ observables and the independent measurements of β and γ . With more observables (11) than theoretical unknowns (5), a fit can be performed.

Terrible fit: $\chi^2_{\rm min}/{\rm d.o.f.} = 30.9/6$, corresponding to a p-value of 3.0×10^{-5} . This is the true $B \to \pi K$ puzzle.

$\chi^2_{\rm min}/{ m d.o.f.} = 30.9/6$,		
p-value $= 3.0 imes 10^{-5}$		
Parameter	Best-fit value	
γ	$(67.2 \pm 4.7)^{\circ}$	
β	$(21.80 \pm 0.68)^{\circ}$	
<i>T'</i>	7.0 ± 1.4	
$ P'_{tc} $	50.5 ± 0.6	
$\delta_{P'_{tc}} - \delta_{T'}$	$(-15.6 \pm 3.4)^{\circ}$	

SM Fits

1. Add small diagrams \implies with EWP-tree relations, now have 9 unknown theoretical parameters: $|T'|, |C'|, |P'_{tc}|, |P'_{uc}|$, three relative strong phases, and γ and β . Have 11 observables \implies can do a fit.

Fit is OK. However, $|C'/T'| = 0.75 \pm 0.32$, considerably larger than the estimate of $|C'/T'| = O(\bar{\lambda}) = 0.2$.

χ^2 /d.o.f. = 3.5/2,		
	p-value = 0.17	
Parameter	Best-fit value	
γ	$(72.0 \pm 5.8)^{\circ}$	
β	$(21.85 \pm 0.68)^{\circ}$	
<i>T'</i>	5.2 ± 1.5	
<i>C'</i>	3.9 ± 1.2	
$ P'_{tc} $	50.7 ± 0.9	
$ P'_{uc} $	1.1 ± 2.4	
$\delta_{C'} - \delta_{T'}$	$(209.8 \pm 21.3)^{\circ}$	
$\delta_{P'_{tc}} - \delta_{T'}$	$(-16.2 \pm 7.3)^{\circ}$	
$\delta_{P'_{\mu c}} - \delta_{T'}$	$(4.9 \pm 51.3)^{\circ}$	

SM fit prefers a large value of |C'/T'|. Theory: QCD factorization: $|C'/T'| \simeq 0.2$. But pQCD: |C'/T'| may be as large as $0.5 \Longrightarrow$ fix |C'/T'| = 0.2 or 0.5. Also, $|P'_{uc}/P'_{tc}|$ found to be $= \mathcal{O}(\bar{\lambda}^3) \Longrightarrow$ negligible.

2. |C'/T'| = 0.2, $P'_{uc} = 0$, constraint on γ added.

Poor fit: $\chi^2_{\rm min}/{\rm d.o.f.} = 12.1/5$, corresponding to a p-value of 3%.

Conclusion: if |C'/T'| = 0.2, the $B \rightarrow \pi K$ puzzle cannot be explained by the SM.

$\chi^2_{ m min}/ m d.o.f. = 12.1/5$,		
p-value = 0.03		
Parameter	Best-fit value	
γ	$(67.2 \pm 4.6)^{\circ}$	
β	$(21.80 \pm 0.68)^{\circ}$	
<i>T'</i>	7.9 ± 1.2	
$ P'_{tc} $	50.7 ± 0.6	
$\delta_{P'_{tc}} - \delta_{T'}$	$(346.5 \pm 2.6)^{\circ}$	
$\delta_{C'} - \delta_{T'}$	$(253.1 \pm 23.5)^{\circ}$	

 $B \rightarrow \pi K$ Puzzle, 2021

Max-Planck-Institute, Heidelberg

21 / 26

3. |C'/T'| = 0.5, $P'_{uc} = 0$, constraints on γ added

Good fit: $\chi^2_{\rm min}/{\rm d.o.f.} = 4.9/5$, for a p-value of 43%.

Conclusion: if |C'/T'| = 0.5, there is no $B \rightarrow \pi K$ puzzle – the data can be explained by the SM.

$\chi^2_{\rm min}$ /d.o.f. = 4.9/5,		
p-value = 0.43		
Parameter	Best-fit value	
γ	$(70.6 \pm 5.3)^{\circ}$	
β	$(21.82 \pm 0.68)^{\circ}$	
T'	6.2 ± 0.9	
$ P'_{tc} $	50.5 ± 0.5	
$\delta_{P'_{tc}} - \delta_{T'}$	$(162.4 \pm 3.5)^{\circ}$	
$\delta_{C'} - \delta_{T'}$	$(42.8 \pm 18.1)^{\circ}$	

 $B \rightarrow \pi K$ Puzzle, 2021

2 / 26

Now, γ constrained by its independently-measured value. However, what happens if we treat γ as an unknown parameter? After all, if the SM explains the $B \rightarrow \pi K$ data, we would expect the extracted value of γ to be the same as that measured in tree-level decays.

4. |C'/T'| = 0.5, $P'_{uc} = 0$, γ free. Reasonable fit: $\chi^2_{\min}/d.o.f. = 4.3/4$, for a p-value of 36%.

However: preferred value of γ is $\gamma = (51.2 \pm 5.1)^{\circ}$, which deviates from its measured value of $(72.1 \pm 5.8)^{\circ}$ by 2.7σ .

Conclusion: even if |C'/T'| = 0.5, this is a reason not to be entirely satisfied that the SM explains the $B \rightarrow \pi K$ puzzle.

$\chi^2_{\rm min}/{ m d.o.f.} = 4.3/4$,		
p-value = 0.36		
Parameter	Best-fit value	
γ	$(51.2 \pm 5.1)^{\circ}$	
β	$(21.78 \pm 0.68)^{\circ}$	
T'	10.1 ± 3.4	
$ P'_{tc} $	51.8 ± 1.0	
$\delta_{P'_{tc}} - \delta_{T'}$	$(168.6 \pm 4.6)^{\circ}$	
$\delta_{C'} - \delta_{T'}$	$(131.2 \pm 24.7)^{\circ}$	

Experimental Updates since 2017

Analysis based on 2017 data. Since then:

• 2020, LHCb: $A_{CP}^{indir}(B^+ \to \pi^0 K^+) = 0.025 \pm 0.016$ (was previously 0.040 ± 0.021), $A_{CP}^{dir}(B^0 \to \pi^- K^+) = 0.084 \pm 0.004$ (was previously 0.082 ± 0.006).

An LHCb experimentalist repeated our analysis, found preferred value is |C'/T'| = 0.67 (was previously 0.75 [page 20]).

• 2021, Belle II presented measurements of the *BR* and $A_{\rm CP}^{\rm dir}$ for $B^+ \rightarrow \pi^0 K^+$ and $B^0 \rightarrow \pi^0 K^0$. Consistent with previous data, but errors not yet competitive.

Previous analysis of the $B \rightarrow \pi K$ puzzle still valid.

But Belle II has started to make measurements of $B \rightarrow \pi K$ decays \implies we will learn more in the coming years.

New-Physics Explanations

Need NP contribution to $\bar{b} \rightarrow \bar{s}u\bar{u}$ and/or $\bar{b} \rightarrow \bar{s}d\bar{d}$.

• Z' models with a flavour-changing $\bar{b}sZ'$ coupling. Add this NP contribution, get reasonably good fit, but only if the Z' couples to RH quarks, with $g_R^{dd} \neq g_R^{uu}$. B anomalies involving $\bar{b} \rightarrow \bar{s}\mu^+\mu^-$ decays: One simple explanation: Z' boson. Many Z' models proposed, in some the Z' couples to RH $u\bar{u}$

and/or $d\bar{d}$, with $g_R^{dd} \neq g_R^{uu}$. These models can potentially also explain the $B \rightarrow \pi K$ puzzle.

- Diquarks D: contribute at tree level to $\bar{b} \rightarrow \bar{s}q\bar{q}$ (q = u, d) via $\bar{b} \rightarrow qD^*(\rightarrow \bar{s}\bar{q})$. The diquark that provides a reasonably-good fit transforms as $(6, 1, \frac{2}{3})$ and couples to $q_L^i q_L^j$ and $u_R^i d_R^j$.
- Axion-like particle a that mixes with the π⁰ and has a mass close to the π⁰ mass. a decays to γ; its addition modifies only those amplitudes involving a π⁰, A⁰⁺ and A⁰⁰. Get a reasonably good fit. (B. Bhattacharya, A. Datta, D. Marfatia, S. Nandi and J. Waite, [arXiv:2104.03947 [hep-ph]])

Conclusions

Unitarity triangle constrained by many independent measurements. All consistent, lead to well-defined unitarity triangle. If NP is present, its effects are small.

One exception: one can measure 9 observables using the 4 $B \rightarrow \pi K$ decays. Problem: measurements not entirely consistent. This is the $B \rightarrow \pi K$ puzzle. It was first noticed in 2003, but it remains even today.

Caveat: not a "clean" discrepancy – \exists theoretical input. In particular, if |C'/T'| = 0.5, data can be explained by the SM. But if |C'/T'| = 0.2, which is the preferred theoretical value, new physics is required.

One interesting NP solution is a Z' boson. If it couples to $\mu^+\mu^-$, might also be able to explain the $\bar{b} \rightarrow \bar{s}\mu^+\mu^- B$ anomalies.

Belle II has started to make measurements of $B \rightarrow \pi K$ decays \implies hopefully we will learn more in the coming years.

David London (UdeM)