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Dark matter:
evidence and searches
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Traditional approach to direct
detection of dark matter:
DM-nucleus scattering
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Motivation

Figure from talk by Kaixuan Ni at DPF 2019
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Challenges for sub-GeV DM

Kinematics of nuclear recoils from light dark matter
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Drops quickly below m, ~ 10 GeV

Best nuclear recoil threshold is currently £, > 30 eV
(CRESST-III) with DM reach of m, > 160 MeV.

The kinematics of DM scattering against free nuclei is inefficient, and
it does not describe target response accurately at low energies.



Material response to DM
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Nuclear response is phonon-dominated at low energies.
Electronic response depends on details of band structure/eigenstates.



Material response to DM
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Inelastic nuclear recoils or 2 — 3 processes can extract more DM
kinetic energy, and give charge signals from nuclear recoils.
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Outline

Describing DM-electron scattering in terms of
dielectric response ¢(w, K)

Inelastic processes: describing the Migdal effect
in terms of e(w, K)



Electron recoils
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e- in materials are not free or isolated particles

Opportunity: constrained by available energy
eigenstates rather than free-particle kinematics.

Complication: need to know eigenstates and
wavefunctions in a many-body system.

Essig, Mardon, Volansky 2011;
Essig, Fernandez-Serra, Mardon,
Soto, Volansky, Yu 2015 8



Opportunity: constrained by available energy
eigenstates rather than free-particle kinematics.

Electronic band structure

f }

Metal & Semiconductor Insulator

sub-eV gap in Ge, Si (Xe) Y,
superconductor, Tme—————————————
Dirac material etc Single or few e- thresholds achieved
[Hochberg, Pyle, Zhao, Zurek 2015 in @ number of experiments

Dirac: 1708.08929, 1910.02091, etc]
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Opportunity: constrained by available energy
eigenstates rather than free-particle kinematics.

Electronic band structure
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[Hochberg, Pyle, Zhao, Zurek 2015 in @ number of experiments
Dirac: 1708.08929, 1910.02091, etc]
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Complication: need to know about excitations
in @ many-body system.

Semiconductor target

Independent particle approximation:
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Does this capture all many-body effects?

Essig, Mardon, Volansky 2011;
Essig, Fernandez-Serra, Mardon,
Soto, Volansky, Yu 2015 10



From Basic Research Needs Report:

2 “Dark Matter Small Projects New Initiatives”
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Existing
Direct
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experiments, and new
experiments in development.
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L2 \s~n0ble liquid (charge).

Today: how to describe DM-electron scattering in all these materials in terms of
dielectric response function.
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Dielectric response
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Energy loss function (ELF)
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@K =14 2 x(w,K)

External probe that couples to charge density:

S(w, k __ Ky <‘1 >:ELF
(@, k) - Zﬂaem:m e(w,k) /|

DM-electron scattering rate is determined by ELF:

do I —1
x 6,F (k)Im
d3kdw e(w, K)

13

Knapen, Kozaczuk, TL 2101.08275, 2104.12786
Hochberg, Kahn, Kurinsky, Lehmann, Yu, and Berggren 2021



ELF for Dark Matter

DM-electron scattering with scalar or vector mediators:

d —1
5o ° & 6,F% (k)Im < >
g, g, d3kdw e(w, K)
X n

* Packages details of material in one function

* Includes additional screening effects not captured in
original approach (impact on rates)

* ELF describes response to SM probes — many
existing materials science approaches
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Response of Silicon semiconductor to

electron interactions
40
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w [eV]

k [keV]
Momentum transfer

Knapen, Kozaczuk, TL 2101.08275, 2104.12786 15



Screening effects

do —
~ 2

d3kdw o 0, Iy 0q(k) Im (e(a) k)) Proportional to DM-electron

Ime(w. k) < scattering form factor in

X O, Féed(k) ’ ; the independent-electron

| e(w, k)| approximation (RPA)
4ﬂ2a€m 1 prl iker
I Im e*" (o, k) = e ZZl(P,flek p.2) 17

le(w, K) |° screening for vector 0 Of’f/ br
, , , X fAwp (1 = A0y ) S+ ay,,— oy )
mediators considered in

superconductors, Dirac materials.

Not previously included in signal
rates for semiconductors.
Also not previously included for
scalar mediators.
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Impact for DM-electron scattering

Using the ELF automatically incorporates screening effects:

Massless mediator (scalar or vector)
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Knapen, TL, Kozaczuk 2101.08275
Additional effects of core electrons included in Griffin, Inzani, Trickle, Zhang, Zurek 2105.05253

17



The energy loss function (ELF)

Im( —! )
e(w, K)

Theory Experiment
Many established approaches to € Optical measurements
Include screening, local field effects X-ray scattering

Include electron-electron interactions Fast electron scattering (EELS)
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Fast target material comparison
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2e- threshold using data-driven Mermin method for ELF
Si, Ge particularly good due to lower thresholds

19 Knapen, TL, Kozaczuk, 2104.12786



ELF for Dark Matter

DarkELF: python package for dark matter energy loss processes with
tabulated ELFs for a variety of materials (incl. Si, Ge, GaAs)
https://github.com/tongylin/DarkELF
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https://github.com/tongylin/DarkELF

Detecting nuclear recoils via
the Migdal eftect

1
S,V
4

X/.Recoiling ion

(nucleus + core

X

electrons)

With Jonathan Kozaczuk (2003.12077)
and with Jonathan Kozaczuk and Simon Knapen (2011.09496)
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Challenges of low-energy nuclear recoils

— Phonons

X*X
@—@ — Scintillation photons

'

ionized atoms or electron-hole pairs in
semiconductors

The charge and light yield for
nuclear recoils below few hundred
eV is not well understood, but
expected to be ~0 on average.

22 Graphic from talk by Kaixuan Ni



Strategies for detecting nuclear recoils
from sub-GeV DM

1. Decreasing the heat threshold

» Detectors in development to reach heat/phonon
thresholds of ~ eV and below (e.g. SuperCDMS SNOLAB)

* Direct phonon excitations from DM scattering

@ =~ 1 — 100 meV for acoustic and optical phonons in crystals
(e.g. phonons: Griffin, Knapen, TL, Zurek 2018; molecules: Essig, Perez-Rios, Ramani, Slone 2019)

X X ot
DM_phonon Kinematics of phonons
, relevant (and advantageous)
scattering for sub-MeV dark matter
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Strategies for detecting nuclear recoils
from sub-GeV DM

2. Increasing the charge signal

« Atomic Migdal effect

lonization of electrons
which have to ‘catch up’
to recoiling nucleus

(e.g. Ibe, Nakano, Shoji, Suzuki 2017)

From 1711.09906 (Dolan et al.)

e Bremsstrahlung of (transverse) photons in LXe
Kouvaris & Pradler 2016
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Strategies for detecting nuclear recoils
from sub-GeV DM

2. Increasing the charge signal
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Strategies for detecting nuclear recoils
from sub-GeV DM

2. Increasing the charge signal

e Atomic Migdal effect

-
lonization of electrons D'M\@ Q/ > \
which have to ‘catch up’ o % X —% Q
to recoiling nucleus \

(e.g. Ibe, Nakano, Shoji, Suzuki 2017)
From 1711.09906 (Dolan et al.)

e Bremsstrahlung of (transverse) photons in LXe
Kouvaris & Pradler 2016

* Migdal effect in semiconductors with lower thresholds

27



Atomic Migdal eftect

Electrons have to ‘catch up’ to recoiling nucleus

Boost initial state to frame
of moving nucleus:
i) = MV T 0 @ .

|2 Nucleus recoils with velocity vy,

Transition probability |

Mg = (fl e Sams i) s im, (f vy - 15 i

Small probability for “shake-oft” electron, but allows low-energy
nuclear recoil to be above the e- recoil threshold

Ibe, Nakano, Shoji, Suzuki 2017
Dolan, Kahlhoefer, McCabe 2017
Bell. Dent, Newstead, Sabharwal, Weiler 2019 28



Atomic Migdal eftect
O mong mdecss &) y @

i) — eMeVN 2 TE ;)

Nucleus recoils with velocity vy

Problem: applying this to semiconductors does not work.
Boosting argument does not apply because of crystal lattice.
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The Migdal effect as bremsstrahlung

4

Bremsstrahlung calculation 0% Rl

X+N—=>y+N+e \ Pl

treating NV as nucleus with tightly bound core /.Recoiling ion

electrons. Valid for 10 MeV < m, S 1 GeV. X (nucleus + core

electrons)

Usual DM-nucleus scattering

do  2n°A’, [ d’qy J d’py S(E,— E Ey) X [ dk F( k)
—_— = e — ) — L — —_ —_
do | mv, JQop J@mp V7 [ R P AN
- — Form factor accounting
5 1 1 -1 for multiphonon response
X 4aemZion W — qy - K/my - ; Im( e(w,K) ) in a harmonic crystal

Differential probability of ion to excite an electron

30 Knapen Kozaczuk, TL 2011.09496



Relation with atomic Migdal effect

From boosting argument:

ime (fI VN - 25T 0)
1
= VN - a<f|zﬁpﬁ|i>

1 —1 Z T
= —vi - S5 (f1Zslps, Holli) = — (f1 Y TP 1i).
B

Dipole potential from recoiling nucleus

Atomic Migdal effect

dP(En) _ (47Zna QZ
dv w?

i, f

2
d’k vy -k r -
/(277)3 N2 F1T) | 8 (B 4w - By)

Semiconductor Migdal effect

47TZlon d3k k 2 e + k e
w4V& Z/ ‘VN P le(k, Llj)|lﬂ| X (f(Pe) — f(Pe + k)) 6(wp +k — wp, —w)
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Full rate in semiconductors

Silicon, m, = 100 MeV, ¢, = 107% c¢m?

——— Impulse
Impulse, k£ < 2.5 keV
=== Free

Free, k < 2.5 keV
Atomic target

dR/dInw [1/kg/yr]

10" /

Plasmon

w eV]

Migdal rate in semiconductors is much larger
due to lower gap for excitations.

33
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Sensitivity in semiconductors

1 kg-year exposure, with Q > 2 (similar to proposed experiments)
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The Migdal effect in semiconductors can enhance
sensitivity to nuclear recoils from sub-GeV dark matter

Essig, Pradler, Sholapurkar, Yu 2020
Barak et al. 2020 (SENSEI) 34
Elastic NR reach from Agnese et al. 2017 Knapen Kozaczuk, TL 2011.09496



Conclusions

The energy loss function (ELF) in dielectric materials describes
response to any electromagnetic probe (Standard Model or DM):

Im( . >
e(w, K)

Appears in multiple types of DM interactions,
applies for arbitrary target material

4

X u
8 8e
X g n /

X

DM-electron DM-nucleus scattering
scattering via Migdal effect
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Conclusions

The energy loss function (ELF) in dielectric materials describes
response to any electromagnetic probe (Standard Model or DM):

Im< . )
e(w, K)

Appears in multiple types of DM interactions,
applies for arbitrary target material

We welcome use of DarkELF, a python package for
DM interactions in terms of the ELF:
https://github.com/tongylin/DarkELF
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