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Dark matter: 
evidence and searches
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Motivation
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Status of the Low-mass (GeV-scale) Dark Matter Searches

 27

Future improvement relies on suppression of known/unknown background with a 
reasonable large target mass.

Discovery Limits due to CEvNS 
(Ruppin, Billard et al.)

XENON1T 
S1+S2

XENON1T 
S2-Only

DarkSide-50 S2-Only

CRESST-III

Figure from talk by Kaixuan Ni at DPF 2019

Motivation

Kozaczuk 2

Direct detection of dark matter has motivated many experimental efforts

Conventional channel: 2 à 2 dark matter – nucleus scattering 

From Schumann, 1903.03026

c

q

Traditional approach to direct 
detection of dark matter: 

DM-nucleus scattering



Challenges for sub-GeV DM
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Kinematics of nuclear recoils from light dark matter

Drops quickly below mχ ∼ 10 GeV

Motivation

Kozaczuk 3

Recoiling nucleus loses energy in material. Observables: heat, scintillation light, 
ionization

Sub-GeV DM is difficult to detect with conventional nuclear recoil searches 
Light DM deposits small recoil energy. 

Current state-of-the art:

ER =
|q|2

2mN


2µ2
�Nv2

mN

Ethreshold
R & 30 eV ! m� & 0.5GeV

Figure courtesy of the 
XENON1T collaboration

Best nuclear recoil threshold is currently  
(CRESST-III) with DM reach of .

ER > 30 eV
mχ > 160 MeV

The kinematics of DM scattering against free nuclei is inefficient, and 
it does not describe target response accurately at low energies.



Material response to DM

Nuclear response is phonon-dominated at low energies. 
Electronic response depends on details of band structure/eigenstates.
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Inelastic nuclear recoils or 2  3 processes can extract more DM 
kinetic energy, and give charge signals from nuclear recoils.

→

Inelastic 
processes
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Material response to DM



Outline
Describing DM-electron scattering in terms of 

dielectric response ϵ(ω, k)

Inelastic processes: describing the Migdal effect 
in terms of ϵ(ω, k)



Electron recoils
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electron; it is also well below current phonon detection thresholds. As a result, DM masses below a
few hundred MeV escape detection no matter how large their cross section.

� �

p p-q

e- e-

N + N +X X *{ }
Figure 3. The scattering of a DM particle with a bound electron. The DM transfers momentum ~q to the target, exciting it
from the ground state X to an excited state X⇤, which can be either a higher-energy bound state or an ionized state.

Now consider a DM particle colliding directly with a bound electron, exciting it to a higher
energy level or an unbound state, as illustrated in Fig. 3. The kinematics are very different from those
of a nuclear recoil. Firstly, being in a bound state, the electron does not have definite momentum –
in fact it may have arbitrarily high momentum (albeit with low probability). This breaks the direct
relation between recoil energy and momentum transfer given in Eq. (3.1). The energy transferred to
the electron, �Ee, can still be related to the momentum lost by the DM, ~q, via energy conservation:

�Ee = ��E� ��EN = �
|m�~v � ~q|2

2m�
+

1

2
m�v

2
�

q2

2mN
= ~q · ~v �

q2

2µ�N

. (3.2)

Here the �EN term accounts for the fact that the whole atom also recoils. In practice this term is
small, which also allows us to replace µ�N with m�. We thus define

Ee ⌘ �Ee = ��E� (3.3)

as the energy transferred to the electron.3 Since an arbitrary-size momentum transfer is now possible,
the largest allowed energy transfer is found by maximizing �Ee with respect to ~q, giving

�Ee 
1

2
µ�Nv

2
'

1

2
eV ⇥

⇣ m�

MeV

⌘
. (3.4)

This shows that all the kinetic energy in the DM-atom collision is (in principle) available to excite the
electron. For a semiconductor with an O(eV) bandgap, ionization can be caused by DM as light as
O(MeV).

What is the likelihood of actually obtaining a large enough q to excite the electron? This brings
us to the second major difference compared to DM-nuclear scattering: the electron is both the lightest
and fastest particle in the problem. The typical velocity of a bound electron is ve ⇠ Ze↵↵, where
Ze↵ is 1 for outer shell electrons and larger for inner shells. This is much greater than the typical DM

3We emphasize that Ee is the energy transferred to the electron, not its kinetic energy. Some of this energy goes
to overcoming the binding energy. As we will discuss further in §5, in semiconductors the remaining energy is rapidly
redistributed by secondary scattering processes, which can produce further electron-hole pairs.

– 10 –

Essig, Mardon, Volansky 2011; 
Essig, Fernandez-Serra, Mardon, 

Soto, Volansky, Yu 2015

e- in materials are not free or isolated particles

Opportunity: constrained by available energy 
eigenstates rather than free-particle kinematics. 

Complication: need to know eigenstates and 
wavefunctions in a many-body system.
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~ 10 eV}} ~eV

sub-eV gap in 
superconductor, 

Dirac material, etc 
[Hochberg, Pyle, Zhao, Zurek 2015 

Dirac: 1708.08929, 1910.02091, etc]

(Xe)Ge, Si

Electronic band structure

Single or few e- thresholds achieved 
in a number of experiments

Opportunity: constrained by available energy 
eigenstates rather than free-particle kinematics.
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sub-eV gap in 
superconductor, 

Dirac material, etc 
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When calculating rates, we assume a Maxwell-Boltzmann distribution with a sharp cutoff (we
describe this in more detail, and give analytic formulas for ⌘(vmin), in Appendix B). The requirement
of energy conservation is captured by vmin(q, Ee), the minimum speed a DM particle requires in order
for the electron to gain an energy Ee with momentum transfer q (note that Ee was also denoted as
�Ee in §3.1). This is given by

vmin(q, Ee) =
Ee

q
+

q

2m�
. (3.12)

Figure 4. Scissor corrected band structure for silicon (left) and germanium (right) as calculated with Quantum

ESPRESSO [69] with a very fine k-point mesh. The horizontal dashed line indicates the top of the highest valence band. The
four bands below the horizontal dashed line are the valence bands while the bands above the dashed line are the conduction
bands. We also show the density-of-states (DOS) as a function of the energy for a very fine k-point mesh (blue) and for our
243 k-point mesh (red). A Gaussian smearing of 0.15 eV was used to generate a smooth function.

Differential rate. As we show in Appendix A.4, the differential electron scattering rate in a semi-
conductor target (with the approximation of a spherically symmetric DM velocity distribution) can be
written as

dRcrystal

d lnEe
=

⇢�
m�

Ncell �e ↵

⇥
m2

e

µ2
�e

Z
d ln q

✓
Ee

q
⌘
�
vmin(q, Ee)

�◆
FDM(q)2

��fcrystal(q, Ee)
��2 , (3.13)

where ⇢� ' 0.4 GeV/cm3 is the local DM density, Ee is the total energy deposited, and Ncell =

Mtarget/Mcell is the number of unit cells in the crystal target. (Mcell = 2 ⇥ mGe = 145.28 amu =

135.33 GeV for germanium, and Mcell = 2 ⇥ mSi = 56.18 amu = 52.33 GeV for silicon.)
We have written this in such a way that the first line gives a rough estimate of the rate, about
29 (11) events/kg/day for silicon (germanium) for ⇢� = 0.4 GeV/cm3, m� = 100 MeV, and �e '

– 13 –

χ

Semiconductor target
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Essig, Mardon, Volansky 2011; 
Essig, Fernandez-Serra, Mardon, 

Soto, Volansky, Yu 2015

dσ
d3kdω

∝ σ̄e F2
med(k)∑

ℓ,ℓ′ 
∑
p,p′ 

|⟨p′ , ℓ′ |eik⋅r |p, ℓ⟩ |2

× f 0(ωp,ℓ)(1 − f 0(ωp′ ,ℓ′ )) δ(ω + ωp,ℓ − ωp′ ,ℓ′ )

Wavefunction overlap{

Sum over occupied bands  and Bloch 
momentum  to excited state  

Does this capture all many-body effects?

ℓ
p |p′ , ℓ′ ⟩

Independent particle approximation:

ω

k

Complication: need to know about excitations 
in a many-body system.



All dielectrics
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Today: how to describe DM-electron scattering in all these materials in terms of 
dielectric response function.

57 

 
Figure 4-7: Open parameter space for galactic dark matter scattering off electrons that can be probed with 
advanced detectors with demonstrated or near-term technologies (solid lines) and with either medium-term 
(dashed lines) to longer-term (dotted lines) R&D.  The readout technique is indicated in parentheses below the 
target material.  Dark matter interacting with electrons through a heavy mediator is assumed. 
 

 
Figure 4-8: Open parameter space for galactic dark matter scattering off electrons that can be probed with 
advanced detectors with demonstrated or near-term technologies (solid lines) and with either medium-term 
(dashed lines) to longer-term (dotted lines) R&D.  The readout technique is indicated in parentheses below the 
target material.  Dark matter interacting with electrons through either a heavy mediator an ultralight mediator is 
aƐƐƵŵed͘  The ŽƌaŶge ƌegiŽŶƐ ;ůabeůůed ͞KeǇ MiůeƐƚŽŶe͟Ϳ ƉƌeƐeŶƚ a ƌaŶge Žf ŵŽdeů eǆaŵƉůeƐ iŶ ǁhich daƌk ŵaƚƚeƌ 
obtains the observed relic abundance from its thermal contact with Standard Model particles (regions are as in 
͞US Cosmic Visions͟ report, Ref. 8. 

From Basic Research Needs Report: 
“Dark Matter Small Projects New Initiatives”

Now many papers studying 
different targets, proposed 

experiments, and new 
experiments in development.



Dielectric response
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Eext

Eind

∇ ⋅ E = 4π ρext
ϵ

E = Eext
ϵ

E(ω, k) = Eext(ω, k)
ϵ(ω, k)

More generally:

1
ϵ(ω, k) = 1 + 4πe2

k2 χ(ω, k)

Amount of screening is related to induced charge:

Susceptibility, charge density response



Energy loss function (ELF)
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1
ϵ(ω, k) = 1 + 4πe2

k2 χ(ω, k)

External probe that couples to charge density:

∝ 2 Im (−χ(ω, k)) = k2

2παem
Im ( −1

ϵ(ω, k) )S(ω, k) ELF
Dissipation

Knapen, Kozaczuk, TL 2101.08275, 2104.12786  
Hochberg, Kahn, Kurinsky, Lehmann, Yu, and Berggren 2021

DM-electron scattering rate is determined by ELF:
dσ

d3kdω
∝ σ̄e F2

med(k) Im ( −1
ϵ(ω, k) )



ELF for Dark Matter
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nk, ω
gχχ

ge
n

dσ
d3kdω

∝ σ̄e F2
med(k) Im ( −1

ϵ(ω, k) )

DM-electron scattering with scalar or vector mediators:

• Packages details of material in one function 
• Includes additional screening effects not captured in 

original approach (impact on rates)
• ELF describes response to SM probes — many 

existing materials science approaches
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FIG. 1. ELF for Si, calculated using the Lindhard, Mermin and GPAW methods, as described in the text. The blue line
in the left-hand panel indicates the location of plasmon pole, which is a Dirac delta-function in the Lindhard method. Only
the GPAW method (right-hand panel) correctly models the low ! regime, close to the band gap. For halo DM scattering o↵
electrons, the accessible phase space is bounded by ! < kv, which is indicated by the dashed line with v = 2.5 ⇥ 10�3.

modeled qualitatively with the Lindhard ELF. This
is shown in the left-hand panel of Fig. 1. The Lind-
hard ELF does not provide an accurate description
of realistic semiconductors at low k and high !, and
therefore cannot be used for absorption processes.

• The Mermin method is a generalization of the
Lindhard method which includes dissipation and
can also be used for absorption processes. Con-
cretely, a dissipation parameter � can be added
to the Lindhard model in a self-consistent way by
defining the Mermin dielectric function [19]

✏Mer(!, k) = 1 +
(1 + i�

! )(✏Lin(! + i�, k) � 1)

1 + (i�

! ) ✏Lin(!+i�,k)�1

✏Lin(0,k)�1

. (3)

In the Mermin method, the ELF is modeled as a
superposition of ELFs obtained with the Mermin
dielectric function, where the plasma frequencies,
dissipation parameters and the weights of the dif-
ferent terms are fitted to experimental data. In
an ad hoc way, this weighted linear combination
accounts for the inhomogeneities in the electron
number density within the unit cell. The fitted
data typically includes the measured ELF from re-
flection electron energy loss spectroscopy (REELS)
and/or optical data (k = 0 limit), and therefore can
reproduce absorption processes. The theoretically
motivated ansatz in (3) provides a way to perform
a controlled extrapolation of the ELF to finite k,
while conserving local electron number. Experi-
mental collaborations [51–53] moreover occasion-
ally present their results in terms of fits to models
whose parameters can be reinterpreted in terms of
the Mermin model. This reinterpretation is done
with the chapidif package [20], which builds on
the work in [54–56]. For more details about our
procedure we refer to our earlier work in [15].

The middle panel of Fig. 1 shows the ELF for Si, as
obtained with the Mermin method applied to the
experimental data in [52]. The low k region near
the plasmon pole is much more realistic than for
the Lindhard ELF, as this is the regime where the
ansatz is fit to the experimental data. However, the
Mermin method does not incorporate the detailed
band structure of the material. In particular, in the
middle panel of Fig. 1 one can see that it e↵ectively
predicts a vanishing band gap, which is of course
not realistic for a semiconductor such as Si.1As we
will see, it is also less appropriate to model the high
momentum (k >

⇠ 15 keV) regime.

• The GPAW method is the most sophisticated of
the three methods we employ, as it relies on a first-
principles TDDFT calculation with the software
package GPAW [17, 18]. In this method one approxi-
mates the many-body electron wave functions with
a Kohn-Sham (KS) system [60] of e↵ective, single
particle wave functions subject to an e↵ective po-
tential. This system is then solved numerically on a
periodic lattice. The GPAW method does the best
job in modeling the detailed properties of the ma-
terial, in particular for ! near the band gap. This
is shown in the right-hand panel of Fig. 1, where
the band gap is now clearly visible at low !. The
GPAW method is however by far the most compu-
tationally intensive of the three and is most the dif-
ficult to validate for non-experts in TDDFT meth-
ods. At this time we therefore only provide ELF

1
The band gap can be approximated by the ad hoc addition of

a Heaviside step function ✓(! � Egap) [57] or with the Mermin-

Levine-Louie ansatz (MLL) [58]. See [54, 59] for comparisons

between these various approaches.
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FIG. 1. ELF for Si, calculated using the Lindhard, Mermin and GPAW methods, as described in the text. The blue line
in the left-hand panel indicates the location of plasmon pole, which is a Dirac delta-function in the Lindhard method. Only
the GPAW method (right-hand panel) correctly models the low ! regime, close to the band gap. For halo DM scattering o↵
electrons, the accessible phase space is bounded by ! < kv, which is indicated by the dashed line with v = 2.5 ⇥ 10�3.
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the Mermin model. This reinterpretation is done
with the chapidif package [20], which builds on
the work in [54–56]. For more details about our
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package GPAW [17, 18]. In this method one approxi-
mates the many-body electron wave functions with
a Kohn-Sham (KS) system [60] of e↵ective, single
particle wave functions subject to an e↵ective po-
tential. This system is then solved numerically on a
periodic lattice. The GPAW method does the best
job in modeling the detailed properties of the ma-
terial, in particular for ! near the band gap. This
is shown in the right-hand panel of Fig. 1, where
the band gap is now clearly visible at low !. The
GPAW method is however by far the most compu-
tationally intensive of the three and is most the dif-
ficult to validate for non-experts in TDDFT meth-
ods. At this time we therefore only provide ELF
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Response of Silicon semiconductor to 
electron interactions

Knapen, Kozaczuk, TL 2101.08275, 2104.12786
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dσ
d3kdω

∝ σ̄e F2
med(k) Im ( −1

ϵ(ω, k) )
∝ σ̄e F2

med(k) Im ϵ(ω, k)
|ϵ(ω, k) |2

Proportional to DM-electron 
scattering form factor in 

the independent-electron 
approximation (RPA)

Im ϵRPA(ω, k) = 4π2αem

Vk2 ∑
ℓ,ℓ′ 

∑
p,p′ 

|⟨p′ , ℓ′ |eik⋅r |p, ℓ⟩ |2

× f 0(ωp,ℓ)(1 − f 0(ωp′ ,ℓ′ )) δ(ω + ωp,ℓ − ωp′ ,ℓ′ )
 screening for vector 

mediators considered in 
superconductors, Dirac materials. 

Not previously included in signal 
rates for semiconductors.  

Also not previously included for 
scalar mediators.

|ϵ(ω, k) |2

Screening effects



Impact for DM-electron scattering
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FIG. 3. Comparison of cross section sensitivity. The solid lines show the 95% CL reach with kg-yr exposure for scalar or vector
mediated interactions, and account for screening. The dashed lines show the reach if the screening is not included. Following
the standard convention, we assume zero background down to single electron sensitivity for Si and Ge. For the Al lines, we
assume an energy range of 10 meV < ! <1 eV, and also zero background. In the left panel, the unscreened Al reach is many
orders of magnitude stronger and is not shown on the plot.

FIG. 4. Ratio of the screened rate to the unscreened rate, for di↵erent thresholds corresponding to 1, 2 and 3 electrons. We
use Q = 1 + b(! � Eg)/"c where for Si Eg = 1.11 eV, " = 3.6 eV and for Ge Eg = 0.67 eV, " = 2.9 eV, following Ref. [3].

case, since the DM form factor FDM (k) enhances the rate
from lower k values.

We show the corresponding e↵ect on the DM mass
and cross section reach in Fig. 3. The solid lines show
the reach for scalar and vector mediators, accounting
for screening e↵ects. We assume kg-year exposure, zero
background, and 95% CL projected reach to match with
the convention in the literature. The threshold is set
by the electron band gap. For m�

>
⇠ 10 MeV, there

is roughly a factor of (1.4) 2.5 suppression in the total
rate for (massive) massless mediators. The ratio becomes
larger near threshold in m�, since for those points the
rate is restricted to ! near the band gap, where screen-
ing is more important. The screening e↵ect is therefore
reduced somewhat with higher thresholds in !, as shown
in Fig. 4. For instance, the threshold to detect 2 electron-

hole pairs is roughly 4.7 eV (3.6 eV) in Si (Ge). Setting
this as the threshold, we find a screening suppression
instead of 2–2.1 for massless mediators and m�

>
⇠ 10

MeV. For massive mediators the dependence on the en-
ergy threshold is smaller.

The O(1) screening e↵ects we find for Si and Ge align
with our expectations for semiconductors with eV-scale
electron band gaps, and it is therefore interesting to com-
pare with a lower gap material where the screening is
much stronger. We also show in Fig. 3 the reach in a
metal, taking Al as an example. Such targets have been
proposed to be used in their superconducting phase as
low-threshold dark matter detectors [16, 17, 26, 55]. We
thus consider sensitivity to electron recoils in the energy
range 10 meV – 1 eV, such that the material can still
be approximated with the dielectric response of a metal.

Knapen, TL, Kozaczuk 2101.08275 
Additional effects of core electrons included in Griffin, Inzani, Trickle, Zhang, Zurek 2105.05253 

Using the ELF automatically incorporates screening effects:



The energy loss function (ELF)
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Im ( −1
ϵ(ω, k) )

Theory Experiment

Many established approaches to  

Include screening, local field effects 

Include electron-electron interactions

ϵ Optical measurements 

X-ray scattering 

Fast electron scattering (EELS)
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FIG. 4. For DM-electron scattering, a comparison of the cross sections needed to obtain 3.6 events for a kg-year exposure. For
all for 8 materials, the ELF is obtained with the Mermin method. The threshold was taken to be the 2e� threshold for Ge, Si
and GaAs, 5 eV for Al and 2 ⇥ Egap for the remaining materials. For the massive mediator, we restricted the phase space to
k < 12 keV. As such, these cross sections curves should be viewed as a conservative upper bound.

The latter results however do not yet include the O(1)
screening e↵ects. We leave such computations for future
work.

Details on the usage of DarkELF for electron recoil
processes can be found in Appendix A.

IV. NUCLEAR RECOILS THROUGH THE
MIGDAL EFFECT

The first generations of direct detection experiments
were optimized to find elastic nuclear recoils in a large
target volume. For m�

<
⇠ 1 GeV, the energy deposited in

the nuclear recoil can however easily be below the detec-
tor threshold, and one either has to consider a dedicated,
ultra-low threshold detector with a low mass target such
as liquid He [5, 66, 67], or make use of inelastic processes
such as bremsstrahlung [68] or the Migdal e↵ect [10, 23].
The Migdal e↵ect [21, 22] refers to the process where the
atom shakes o↵ one or more electrons immediately after
being struck by an external probe, which in our case is
the DM. This process was studied extensively in the con-
text of DM scattering o↵ atomic targets [10–12, 23–32]
and estimates were obtained for semiconductor targets
[26, 32].

In atomic targets, the calculation can be performed
most conveniently by boosting to the rest frame of
the recoiling atom and writing the matrix element in

terms of the transition dipole moments for the atom.
Ibe. et. al. [24] comprehensively review this formal-
ism in the context of DM scattering and numeri-
cally calculated the relevant matrix elements with the
Flexible Atomic Code (FAC) [69]. Whenever we dis-
cuss the atomic Migdal e↵ect in this work, we will be re-
ferring to the Ibe et. al. computation, though others are
available as well, as referenced above. DarkELF incorpo-
rates the numerical form factors obtained in [24] and can
therefore be used to perform atomic Migdal calculations
for select materials.

A full calculation of the Migdal e↵ect in semiconduc-
tors is more subtle, due to the delocalized nature of the
electron clouds. This prevents one from using the boost-
ing method, as the rest frame of the lattice is now a
preferential frame. A full calculation in the rest frame
of the lattice was completed simultaneously by us [33]
and Liang et. al. [34] and revealed a qualitatively di↵er-
ent answer from directly applying the Ibe et. al. method
to a crystal. In this work we also showed that plasmon
production [70, 71] is included in the Migdal rate, but
is very subleading for a DM candidate with a standard
velocity profile.

Here we only present the final result and discuss
its regime of validity and implementation in DarkELF ;
for the full derivation and discussion, see [33]. For a
monatomic material, we found that the rate in number
of counts per unit exposure is given by

R =
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Fast target material comparison

2e- threshold using data-driven Mermin method for ELF 
Si, Ge particularly good due to lower thresholds

Knapen, TL, Kozaczuk, 2104.12786
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ELF for Dark Matter
DarkELF: python package for dark matter energy loss processes with 

tabulated ELFs for a variety of materials (incl. Si, Ge, GaAs) 
https://github.com/tongylin/DarkELF 

DM-nucleus scattering 
via Migdal effect
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Knapen Kozaczuk, TL 2003.12077, 2011.09496

https://github.com/tongylin/DarkELF


With Jonathan Kozaczuk (2003.12077) 
and with Jonathan Kozaczuk and Simon Knapen (2011.09496)
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Detecting nuclear recoils via 
the Migdal effect

�

�

Recoiling ion 
(nucleus + core 

electrons)



Dark Matter “Gold Rush”
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 Scintillation photons→

Graphic from talk by Kaixuan Ni

 Phonons→

ionized atoms or electron-hole pairs in 
semiconductors

The charge and light yield for 
nuclear recoils below few hundred 

eV is not well understood, but 
expected to be ~0 on average.

Challenges of low-energy nuclear recoils



Strategies for detecting nuclear recoils 
from sub-GeV DM

• Detectors in development to reach heat/phonon 
thresholds of ~ eV and below (e.g. SuperCDMS SNOLAB) 

• Direct phonon excitations from DM scattering  
 for acoustic and optical phonons in crystals 

(e.g. phonons: Griffin, Knapen, TL, Zurek 2018; molecules: Essig, Perez-Rios, Ramani, Slone 2019)
ω ≈ 1 − 100 meV
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1. Decreasing the heat threshold

DM-phonon 

scattering

� � Kinematics of phonons 

relevant (and advantageous) 

for sub-MeV dark matter



Strategies for detecting nuclear recoils 
from sub-GeV DM
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2. Increasing the charge signal

Motivation

Kozaczuk 4

At low energies, many-body effects in the material can become important and 
provide additional sensitivity

Examples:
• Phonons

• Migdal effect
(ionization from nuclear recoil)

• Plasmons (this talk)

Knapen, Lin, Pyle, Zurek, 1712.06598; Griffin, Knapen, Lin, Zurek, 1807.10291; 
Cox, Melia, Rajendran, 1905.05575; Campbell-Deem, Cox, Knapen, Lin, Melia, 1911.03482; 
Schutz, Zurek, 1604.08206; Knapen, Lin, Zurek, 1611.06228; Acanfora, Esposito, Polosa, 1902.02361

Ibe, Nakano, Shoji, Suzuki, 1707.07258; Dolan, Kahlhoefer, McCabe, 1711.09906;
Bell, Dent, Newstead, Sabharwal, Weiler, 1905.00046; Baxter, Kahn, Krnjaic, 1908.00012; 
Essig, Pradler, Sholapurkar, Yu, 1908.10881

Kurinsky, Baxter, Kahn, Krnjaic, 2002.06937; Kozaczuk, Lin, 2003.12077  

From 1711.09906

From 1711.09906 (Dolan et al.)

• Atomic Migdal effect 
Ionization of electrons 
which have to ‘catch up’ 
to recoiling nucleus 
(e.g. Ibe, Nakano, Shoji, Suzuki 2017) 

• Bremsstrahlung of (transverse) photons in LXe
Kouvaris & Pradler 2016



Strategies for detecting nuclear recoils 
from sub-GeV DM

2. Increasing the charge signal 5

is more conservative than the Noble Element Simulation
Technique (NEST) v2 model [24]. Fig. 3 shows the com-
parison between the expectation from our signal response
model and the S1-S2 data, as well as the (cS2b, cS1) dis-
tribution of ERs from MIGD. Signal contours for di↵er-
ent DM masses are similar since the energy spectra from
MIGD and BREM are not sensitive to incident dark mat-
ter velocity as long as it is kinematically allowed. We
have ignored the contribution of NRs in the signal model
of MIGD and BREM, since it is small compared with
ERs from MIGD and BREM in this analysis and there
is no measurement of scintillation and ionization yields
in LXe for simultaneous ER and NR energy depositions.
We use the inference only for DM mass below 2GeV/c2,
above which the contribution of an NR in the signal rate
becomes comparable with or exceeds the signal model
uncertainty.

The S1-S2 data are interpreted using an unbinned
profile likelihood ratio as the test statistic, as detailed
in [19]. The unbinned profile likelihood is calculated us-
ing background models defined in cS2b, cS1, and spa-
tial coordinates. The uncertainties from the scintillation
and ionization yields of ER backgrounds, along with the
uncertainties in the estimated rates of each background
component, are taken into account in the inference [19].
The inference procedure for the S2-only data is detailed
in [23], which is based on simple Poisson statistics using
the number of events in the S2 ROI. The event rates of
spin-independent (SI) and -dependent (SD) DM-nucleon
elastic scattering are calculated following the approaches
described in [8, 34] and [35], respectively.

The results are also interpreted in a scenario where
LDM interacts with the nucleon through a scalar force
mediator � with equal e↵ective couplings to the proton
and neutron as in the SI DM-nucleon elastic scattering.
In this scenario, the di↵erential event rates are corrected
by m�

4/(m�
2 + q2/c2)2 [36, 37], where q =

p
2mNER

and mN are the momentum transfer and the nuclear
mass, respectively. We take the light mediator (LM)
regime where the momentum transfer is much larger than
m� and thus the interaction cross section scales with m4

�.
In this regime, the contribution of NRs is largely sup-
pressed compared with SI DM-nucleon elastic scattering
due to the long-range nature of the interaction. There-
fore, the results are interpreted for DM mass up to 5
GeV/c2 for SI-LM DM-nucleon elastic scattering.

In addition, we also take into account the fact that DM
particle may be stopped or scatter multiple times when
passing through Earth’s atmosphere, mantle, and core
before reaching the detector (Earth-shielding e↵ect) [38–
40]. If the DM-matter interaction is su�ciently strong,
the sensitivity for detecting such DM particles in ter-
restrial detectors, especially in underground laboratory,
can be reduced or even lost totally. Following [26], verne
code [41] is used to calculate the Earth-shielding e↵ect
for SI DM-nucleon interaction. A modification of the
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FIG. 5. Limits on the SI (upper panel), SD proton-only (mid-
dle panel), and SD neutron-only (lower panel) DM-nucleon in-
teraction cross-sections at 90% C.L. using signal models from
MIGD and BREM in the XENON1T experiment with the
S1-S2 data (blue contours and lines) and S2-only data (black
contours and lines). The solid and dashed (dotted) lines rep-
resent the lower boundaries (also referred to as upper limits)
and MIGD (BREM) upper boundaries of the excluded param-
eter regions. Green and yellow shaded regions give the 1 and
2� sensitivity contours for upper limits derived using the S1-
S2 data, respectively. The upper limits on the SI DM-nucleon
interaction cross sections from LUX [25], EDELWEISS [26],
CDEX [27], CRESST-III [28], NEWS-G [29], CDMSLite-
II [30], and DarkSide-50 [31], and upper limits on the SD
DM-nucleon interaction cross sections from CRESST [28, 32]
and CDMSLite [33] are also shown. Note that the limits de-
rived using the S1-S2 and S2-only data are inferred using
unbinned profile likelihood method [18] and simple Poisson
statistics with the optimized event selection [23], respectively.
The sensitivity contours for the S2-only data is not given since
the background models used in the S2-only data are conser-
vative [23].

verne code based on the methodology in [42] is applied
for the calculations of SD and SD-LM DM-nucleon inter-
actions. To account for the Earth-shielding e↵ect for SD
DM-nucleon interaction, 14N in the atmosphere and 29Si
in Earth’s mantle and core are considered, and their spin
expectation values, hSni and hSpi, are taken from [43].
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pressed compared with SI DM-nucleon elastic scattering
due to the long-range nature of the interaction. There-
fore, the results are interpreted for DM mass up to 5
GeV/c2 for SI-LM DM-nucleon elastic scattering.

In addition, we also take into account the fact that DM
particle may be stopped or scatter multiple times when
passing through Earth’s atmosphere, mantle, and core
before reaching the detector (Earth-shielding e↵ect) [38–
40]. If the DM-matter interaction is su�ciently strong,
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Results from XENON1T search (PRL 2019)  
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Strategies for detecting nuclear recoils 
from sub-GeV DM

• Atomic Migdal effect 
Ionization of electrons 
which have to ‘catch up’ 
to recoiling nucleus 
(e.g. Ibe, Nakano, Shoji, Suzuki 2017) 

• Bremsstrahlung of (transverse) photons in LXe 

• Migdal effect in semiconductors with lower thresholds 
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2. Increasing the charge signal

Motivation

Kozaczuk 4

At low energies, many-body effects in the material can become important and 
provide additional sensitivity

Examples:
• Phonons

• Migdal effect
(ionization from nuclear recoil)

• Plasmons (this talk)

Knapen, Lin, Pyle, Zurek, 1712.06598; Griffin, Knapen, Lin, Zurek, 1807.10291; 
Cox, Melia, Rajendran, 1905.05575; Campbell-Deem, Cox, Knapen, Lin, Melia, 1911.03482; 
Schutz, Zurek, 1604.08206; Knapen, Lin, Zurek, 1611.06228; Acanfora, Esposito, Polosa, 1902.02361

Ibe, Nakano, Shoji, Suzuki, 1707.07258; Dolan, Kahlhoefer, McCabe, 1711.09906;
Bell, Dent, Newstead, Sabharwal, Weiler, 1905.00046; Baxter, Kahn, Krnjaic, 1908.00012; 
Essig, Pradler, Sholapurkar, Yu, 1908.10881

Kurinsky, Baxter, Kahn, Krnjaic, 2002.06937; Kozaczuk, Lin, 2003.12077  

From 1711.09906

Kouvaris & Pradler 2016

From 1711.09906 (Dolan et al.)



Atomic Migdal effect
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From 1711.09906 (Dolan, Kahlhoefer, McCabe)

Ibe, Nakano, Shoji, Suzuki 2017 
Dolan, Kahlhoefer, McCabe 2017 
Bell, Dent, Newstead, Sabharwal, Weiler 2019
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Kozaczuk 4

At low energies, many-body effects in the material can become important and 
provide additional sensitivity

Examples:
• Phonons

• Migdal effect
(ionization from nuclear recoil)

• Plasmons (this talk)
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Essig, Pradler, Sholapurkar, Yu, 1908.10881
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Boost initial state to frame 
of moving nucleus:

<latexit sha1_base64="4KL3K/S0RVS796xhK6TIfTN4Khs="></latexit>

|ii ! eimevN ·
P

� r� |ii

3

We can apply Fermi’s golden rule with second-order
perturbation theory to compute the cross section for
DM–nucleus inelastic scattering. We take the initial ions
to be in a ground state of a harmonic crystal potential.
Following the impulse approximation, we use plane waves

for intermediate and final states. Meanwhile, the electron
states are treated as Bloch states. The details of the
calculation are provided in Appendix A, with the final
result:
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where qN and pf are the final ion and DM momentum,
respectively, and k+K is the momentum deposited to the
electrons. V is the volume of the crystal. We sum over all
initial and final electron states pe and pe+k, weighted by
the occupation numbers f , and where band indices have
been suppressed. The electronic wavefunction overlaps
[pe + k|e

ir·K
|pe]⌦ are performed over the unit cell. The

form factor F encodes the details of the ion ground state,
and for a harmonic crystal it is given by
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where !̄ is an oscillator frequency, averaged with respect
to the density of states D(!) and the thermal Bose factor,
with typical value !̄ ⇠ !ph.

In (3), the bracketed quantity can be rewritten in terms
of the imaginary part of the dielectric function in the ran-
dom phase approximation, Im [✏KK(k, !)]. Then we can
write Im [✏KK(k, !)]/|✏KK(k, !)|2 = Im [�1/✏KK(k, !)],
which is the energy loss function (ELF) governing en-
ergy loss of charged particles in a material. Physically,
the ion-electron interaction in the inelastic process can be
encapsulated in the same ELF as ions passing through a
material. Since the ELF is a well-measured and calcu-
lated quantity in many materials, this provides a useful
starting point for numerical evaluations of (3).

In the soft limit |k+K| ⌧ |qN |, the cross section fac-
torizes as in (1), and the form factor F only modifies the
elastic recoil cross section. Then the di↵erential ioniza-
tion probability is
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with vN ⌘ qN/mN . This simplified formula is only valid
for k in the first Brillouin zone, see Appendix A for the

full expressions used in our numerical results. Eq. (6) was
also derived in [6], but that work did not account for the
ion ground state or electron momentum transfers outside
of the first BZ, since it was focused on long-wavelength
plasmons. Furthermore, [6] used an analytic approxima-
tion for ✏(k, !) near the plasmon pole. In the results
below, we will study the impact of accounting for the ion
ground state and use numerical calculations of ✏(k, !)
valid away from the plasmon resonance. Before doing so,
we clarify the relation of this process with the atomic
Migdal e↵ect.
Comparison with atomic Migdal e↵ect — In

Migdal’s original calculation [7, 8] for an atomic tar-
get, the ground state of the electron cloud (|ii) is first
boosted to the rest frame of the moving nucleus |ii !

e
imevN ·
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� r� |ii. He then computes the overlap with the

excited states hf |

Mif = hf | e
imevN ·

P
� r� |ii ⇡ ime hf |vN ·

P
�r� |ii (7)

where � runs over all the electrons in the atom. The tran-
sition probabilities |Mif |

2 can then be evaluated with
known atomic wave functions, and it was found that sin-
gle ionizations dominate for sub-GeV dark matter [3].

To demonstrate the connection with the semiconduc-
tor Migdal e↵ect derived above, we instead rewrite (7)
using the following operator identity: hf |
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2, where

again ! = Ef � Ei is the total energy deposited and H0

the electron Hamiltonian. We assume a non-relativistic3

Hamiltonian such that the H0 is a sum of kinetic terms,
Coulomb interaction terms between electrons, and the
Coulomb interaction of the electrons with the nucleus.
Then the commutator

P
� [p� , H0] will be proportional

3
Relativistic corrections can be important for inner shell electrons,

but the rate is dominated by the non-relativistic outer shells.

Transition probability |ℳif |
2 Nucleus recoils with velocity vN

Electrons have to ‘catch up’ to recoiling nucleus

Small probability for “shake-off” electron, but allows low-energy 
nuclear recoil to be above the e- recoil threshold
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of moving nucleus:
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|ii ! eimevN ·
P

� r� |ii
Nucleus recoils with velocity vN

Problem: applying this to semiconductors does not work. 
Boosting argument does not apply because of crystal lattice.

Atomic Migdal effect



The Migdal effect as bremsstrahlung

30

Bremsstrahlung calculation

�

�

Recoiling ion 
(nucleus + core 

electrons)

χ + N → χ + N + e−

Usual DM-nucleus scattering

Form factor accounting  
for multiphonon response 

in a harmonic crystal

dσ
dω

= 2π2A2σn

m2χvχ ∫
d3qN

(2π)3 ∫
d3pf

(2π)3 δ(Ei − Ef − ω − EN) × ∫ d3k
(2π)3 F(pi − pf − qN − k)2

× 4αemZ2
ion[ 1

ω − qN ⋅ k /mN
− 1

ω ]
2

Im( −1
ϵ(ω, k) )

Differential probability of ion to excite an electron

treating  as nucleus with tightly bound core 
electrons.  Valid for .

N
10 MeV ≲ mχ ≲ 1 GeV

Knapen Kozaczuk, TL 2011.09496
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dP (EN )

d!
⇡

✓
4⇡ZN↵

!2

◆2 X

i,f

�����

Z
d3k

(2⇡)3
vN · k
k2

hf |eik·r|ii

�����

2

� (Ei + ! � Ef )

Atomic Migdal effect
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dP

d!
⇡ (4⇡Zion↵)2

!4V

X

pe

Z
d3k

(2⇡)3
|vN · k|2

k4
|[pe + k|pe]⌦|2

|✏(k,!)|2 ⇥ (f(pe)� f(pe + k)) �(!pe+k � !pe � !)

Semiconductor Migdal effect

3

We can apply Fermi’s golden rule with second-order
perturbation theory to compute the cross section for
DM–nucleus inelastic scattering. We take the initial ions
to be in a ground state of a harmonic crystal potential.
Following the impulse approximation, we use plane waves

for intermediate and final states. Meanwhile, the electron
states are treated as Bloch states. The details of the
calculation are provided in Appendix A, with the final
result:

d�

d!
=

2⇡
2
A

2
�n

m2
�v�

Z
d
3qN

(2⇡)3

Z
d
3pf

(2⇡)3
�(Ei � Ef � ! � EN ) ⇥ 4↵Z

2
ion

X

K

Z
d
3k

(2⇡)3

"
1

! � qN · (k + K)/mN
�

1

!

#2

(3)

⇥
F (pi � pf � qN � k � K)2

|✏KK(k, !)|2
⇥

4⇡
2
↵

V

X

pe

|[pe + k|e
ir·K

|pe]⌦|
2

|k + K|2
(f(pe) � f(pe + k)) �(!pe+k � !pe � !)

| {z }
Im [✏KK(k, !)]

where qN and pf are the final ion and DM momentum,
respectively, and k+K is the momentum deposited to the
electrons. V is the volume of the crystal. We sum over all
initial and final electron states pe and pe+k, weighted by
the occupation numbers f , and where band indices have
been suppressed. The electronic wavefunction overlaps
[pe + k|e

ir·K
|pe]⌦ are performed over the unit cell. The

form factor F encodes the details of the ion ground state,
and for a harmonic crystal it is given by

F (pi � pf � q) ⌘

✓
4⇡

mN !̄

◆3/4

e

�|pi�pf�q|2

2mN !̄ (4)

where !̄ is an oscillator frequency, averaged with respect
to the density of states D(!) and the thermal Bose factor,
with typical value !̄ ⇠ !ph.

In (3), the bracketed quantity can be rewritten in terms
of the imaginary part of the dielectric function in the ran-
dom phase approximation, Im [✏KK(k, !)]. Then we can
write Im [✏KK(k, !)]/|✏KK(k, !)|2 = Im [�1/✏KK(k, !)],
which is the energy loss function (ELF) governing en-
ergy loss of charged particles in a material. Physically,
the ion-electron interaction in the inelastic process can be
encapsulated in the same ELF as ions passing through a
material. Since the ELF is a well-measured and calcu-
lated quantity in many materials, this provides a useful
starting point for numerical evaluations of (3).

In the soft limit |k+K| ⌧ |qN |, the cross section fac-
torizes as in (1), and the form factor F only modifies the
elastic recoil cross section. Then the di↵erential ioniza-
tion probability is

dP

d!
=

(4⇡Zion↵)2

!4V

X

pe

Z
d
3k

(2⇡)3
|vN · k|

2

k4

|[pe + k|pe]⌦|
2

|✏(k, !)|2

⇥ (f(pe) � f(pe + k)) �(!pe+k � !pe � !) (5)

=
4↵

2
Z

2
ion

!4

Z
d
3k

(2⇡)3
|vN · k|

2

k2
Im

✓
�1

✏(k, !)

◆
. (6)

with vN ⌘ qN/mN . This simplified formula is only valid
for k in the first Brillouin zone, see Appendix A for the

full expressions used in our numerical results. Eq. (6) was
also derived in [6], but that work did not account for the
ion ground state or electron momentum transfers outside
of the first BZ, since it was focused on long-wavelength
plasmons. Furthermore, [6] used an analytic approxima-
tion for ✏(k, !) near the plasmon pole. In the results
below, we will study the impact of accounting for the ion
ground state and use numerical calculations of ✏(k, !)
valid away from the plasmon resonance. Before doing so,
we clarify the relation of this process with the atomic
Migdal e↵ect.
Comparison with atomic Migdal e↵ect — In

Migdal’s original calculation [7, 8] for an atomic tar-
get, the ground state of the electron cloud (|ii) is first
boosted to the rest frame of the moving nucleus |ii !

e
imevN ·

P
� r� |ii. He then computes the overlap with the

excited states hf |

Mif = hf | e
imevN ·

P
� r� |ii ⇡ ime hf |vN ·

P
�r� |ii (7)

where � runs over all the electrons in the atom. The tran-
sition probabilities |Mif |

2 can then be evaluated with
known atomic wave functions, and it was found that sin-
gle ionizations dominate for sub-GeV dark matter [3].

To demonstrate the connection with the semiconduc-
tor Migdal e↵ect derived above, we instead rewrite (7)
using the following operator identity: hf |

P
� r� |ii =

�ihf |
P

� p� |ii/me! = ihf |
P

� [p� , H0]|ii/me!
2, where

again ! = Ef � Ei is the total energy deposited and H0

the electron Hamiltonian. We assume a non-relativistic3

Hamiltonian such that the H0 is a sum of kinetic terms,
Coulomb interaction terms between electrons, and the
Coulomb interaction of the electrons with the nucleus.
Then the commutator

P
� [p� , H0] will be proportional

3
Relativistic corrections can be important for inner shell electrons,

but the rate is dominated by the non-relativistic outer shells.
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= vN · 1
!
hf |⌃�p� |ii

= �vN · 1

!2
hf |⌃� [p� , H0]|ii =

�i

!2
hf |

X

�

ZN↵vN · r̂�
|r� � rN |2 |ii.

Dipole potential from recoiling nucleus

From boosting argument:



Full rate in semiconductors

Migdal rate in semiconductors is much larger 
due to lower gap for excitations.
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1 kg-year exposure, with Q > 2 (similar to proposed experiments)

The Migdal effect in semiconductors can enhance 
sensitivity to nuclear recoils from sub-GeV dark matter

Elastic 
NR

Essig, Pradler, Sholapurkar, Yu 2020 
Barak et al. 2020 (SENSEI) 
Elastic NR reach from Agnese et al. 2017 Knapen Kozaczuk, TL 2011.09496
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Im ( −1
ϵ(ω, k) )

The energy loss function (ELF) in dielectric materials describes 
response to any electromagnetic probe (Standard Model or DM):

DM-nucleus scattering 
via Migdal effect

�

�

nk, ω
gχχ

ge
n

DM-electron 
scattering

Appears in multiple types of DM interactions, 
applies for arbitrary target material
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Im ( −1
ϵ(ω, k) )

The energy loss function (ELF) in dielectric materials describes 
response to any electromagnetic probe (Standard Model or DM):

We welcome use of DarkELF, a python package for 
DM interactions in terms of the ELF:  

 https://github.com/tongylin/DarkELF 

Appears in multiple types of DM interactions, 
applies for arbitrary target material

https://github.com/tongylin/DarkELF

