Dark matter direct detection with dielectrics

Tongyan Lin UCSD

January 24, 2022 Heidelberg

Based on work with Simon Knapen and Jonathan Kozaczuk 2003.12077, 2011.09496, 2101.08275, 2104.12786

Dark matter: evidence and searches

Gravitational evidence

Particle searches

Motivation

Kinematics of nuclear recoils from light dark matter

$$E_R = \frac{\left|\mathbf{q}\right|^2}{2m_N} \le \frac{2\mu_{\chi N}^2 v^2}{m_N}$$

$$E_R^{\text{threshold}} \gtrsim 30 \,\text{eV} \rightarrow m_\chi \gtrsim 0.5 \,\text{GeV}$$

Drops quickly below $m_\chi \sim 10 \,\text{GeV}$

Best nuclear recoil threshold is currently $E_R > 30 \text{ eV}$ (CRESST-III) with DM reach of $m_{\gamma} > 160 \text{ MeV}$.

The kinematics of DM scattering against **free** nuclei is inefficient, and it does not describe target response accurately at low energies.

Material response to DM

Nuclear response is phonon-dominated at low energies. Electronic response depends on details of band structure/eigenstates.

Material response to DM

Inelastic nuclear recoils or $2 \rightarrow 3$ processes can extract more DM kinetic energy, and give charge signals from nuclear recoils.

Outline

Describing DM-electron scattering in terms of dielectric response $\epsilon(\omega, \mathbf{k})$

Inelastic processes: describing the Migdal effect in terms of $\epsilon(\omega, \mathbf{k})$

Electron recoils

e- in materials are not free or isolated particles

Opportunity: constrained by available energy eigenstates rather than free-particle kinematics.

Complication: need to know eigenstates and wavefunctions in a many-body system.

Essig, Mardon, Volansky 2011; Essig, Fernandez-Serra, Mardon, Soto, Volansky, Yu 2015 Opportunity: constrained by available energy eigenstates rather than free-particle kinematics.

Electronic band structure

Complication: need to know about excitations in a many-body system.

Semiconductor target

Independent particle approximation:

$$\begin{split} & \underset{d\sigma}{\underbrace{d\sigma}} \propto \bar{\sigma}_{e} F_{\text{med}}^{2}(k) \sum_{\ell,\ell'} \sum_{\mathbf{p},\mathbf{p}'} |\langle \mathbf{p}',\ell'| e^{i\mathbf{k}\cdot\mathbf{r}} | \mathbf{p},\ell \rangle|^{2} \\ & \times f^{0}(\omega_{\mathbf{p},\ell}) \left(1 - f^{0}(\omega_{\mathbf{p}',\ell'})\right) \,\delta(\omega + \omega_{\mathbf{p},\ell} - \omega_{\mathbf{p}',\ell'}) \end{split}$$

Sum over occupied bands ℓ and Bloch momentum p to excited state $|p', \ell'\rangle$

Does this capture all many-body effects?

Essig, Mardon, Volansky 2011; Essig, Fernandez-Serra, Mardon, Soto, Volansky, Yu 2015

Now many papers studying different targets, proposed experiments, and new experiments in development.

All dielectrics

Today: how to describe DM-electron scattering in all these materials in terms of dielectric response function.

Dielectric response

Amount of screening is related to induced charge:

$$\frac{1}{\epsilon(\omega, \mathbf{k})} = 1 + \frac{4\pi e^2}{k^2} \chi(\omega, \mathbf{k})$$

Susceptibility, charge density response

Energy loss function (ELF) $\frac{1}{\epsilon(\omega, \mathbf{k})} = 1 + \frac{4\pi e^2}{k^2} \chi(\omega, \mathbf{k})$

External probe that couples to charge density:

$$S(\omega, \mathbf{k}) \propto 2 \operatorname{Im} \left(-\chi(\omega, \mathbf{k}) \right) = \frac{k^2}{2\pi\alpha_{em}} \operatorname{Im} \left(\frac{-1}{\epsilon(\omega, \mathbf{k})} \right) \text{ ELF}$$

Dissipation

DM-electron scattering rate is determined by ELF:

$$\frac{d\sigma}{d^3 \mathbf{k} d\omega} \propto \bar{\sigma}_e F_{\text{med}}^2(\mathbf{k}) \operatorname{Im}\left(\frac{-1}{\epsilon(\omega, \mathbf{k})}\right)$$

Knapen, Kozaczuk, TL 2101.08275, 2104.12786 Hochberg, Kahn, Kurinsky, Lehmann, Yu, and Berggren 2021

ELF for Dark Matter

DM-electron scattering with scalar or vector mediators:

$$\chi \overset{\mathbf{k},\omega}{g_{\chi}} \underset{g_{e}}{\overset{g_{e}}{\overbrace{}}} \underset{n}{\overset{d\sigma}{\overbrace{}}} \frac{d\sigma}{d^{3}\mathbf{k}d\omega} \propto \bar{\sigma}_{e} F_{\mathrm{med}}^{2}(\mathbf{k}) \operatorname{Im}\left(\frac{-1}{\epsilon(\omega,\mathbf{k})}\right)$$

- Packages details of material in one function
- Includes additional screening effects not captured in original approach (impact on rates)
- ELF describes response to SM probes many existing materials science approaches

Response of Silicon semiconductor to electron interactions

Knapen, Kozaczuk, TL 2101.08275, 2104.12786 ¹⁵

Screening effects

Proportional to DM-electron scattering form factor in the independent-electron approximation (RPA)

$$\mathbf{m} \, \epsilon^{\mathrm{RPA}}(\omega, \mathbf{k}) = \frac{4\pi^2 \alpha_{em}}{Vk^2} \sum_{\ell, \ell'} \sum_{\mathbf{p}, \mathbf{p}'} |\langle \mathbf{p}', \ell'| e^{i\mathbf{k}\cdot\mathbf{r}} |\mathbf{p}, \ell\rangle|^2$$
$$\times f^0(\omega_{\mathbf{p}, \ell}) \left(1 - f^0(\omega_{\mathbf{p}', \ell'})\right) \, \delta(\omega + \omega_{\mathbf{p}, \ell} - \omega_{\mathbf{p}', \ell'})$$

 $|\epsilon(\omega, \mathbf{k})|^2$ screening for vector mediators considered in superconductors, Dirac materials.

Not previously included in signal rates for semiconductors. Also not previously included for scalar mediators.

Impact for DM-electron scattering

Using the ELF automatically incorporates screening effects:

Knapen, TL, Kozaczuk 2101.08275

Additional effects of core electrons included in Griffin, Inzani, Trickle, Zhang, Zurek 2105.05253

The energy loss function (ELF)

 $\operatorname{Im}\left(\frac{-1}{\epsilon(\omega,\mathbf{k})}\right)$

Theory

Experiment

Many established approaches to ϵ

Include screening, local field effects

Include electron-electron interactions

Optical measurements

X-ray scattering

Fast electron scattering (EELS)

Fast target material comparison

2e- threshold using data-driven Mermin method for ELF Si, Ge particularly good due to lower thresholds

ELF for Dark Matter

DarkELF: python package for dark matter energy loss processes with tabulated ELFs for a variety of materials (incl. Si, Ge, GaAs) <u>https://github.com/tongylin/DarkELF</u>

Knapen, Kozaczuk, TL 2101.08275, 2104.12786 Knapen Kozaczuk, TL 2003.12077, 2011.09496

With Jonathan Kozaczuk (2003.12077) and with Jonathan Kozaczuk and Simon Knapen (2011.09496)

Challenges of low-energy nuclear recoils

ionized atoms or electron-hole pairs in semiconductors

The charge and light yield for nuclear recoils below few hundred eV is not well understood, but expected to be ~0 on average.

1. Decreasing the heat threshold

- Detectors in development to reach heat/phonon thresholds of ~ eV and below (e.g. SuperCDMS SNOLAB)
- Direct phonon excitations from DM scattering $\omega \approx 1 - 100 \text{ meV}$ for acoustic and optical phonons in crystals (e.g. phonons: Griffin, Knapen, TL, Zurek 2018; molecules: Essig, Perez-Rios, Ramani, Slone 2019)

Kinematics of phonons relevant (and advantageous) for sub-MeV dark matter

2. Increasing the charge signal

Atomic Migdal effect
 Ionization of electrons
 which have to 'catch up'
 to recoiling nucleus
 (e.g. Ibe, Nakano, Shoji, Suzuki 2017)

From 1711.09906 (Dolan et al.)

• Bremsstrahlung of (transverse) photons in LXe Kouvaris & Pradler 2016

2. Increasing the charge signal

Results from XENON1T search (PRL 2019)

2. Increasing the charge signal

Atomic Migdal effect
 Ionization of electrons
 which have to 'catch up'
 to recoiling nucleus
 (e.g. Ibe, Nakano, Shoji, Suzuki 2017)

From 1711.09906 (Dolan et al.)

- Bremsstrahlung of (transverse) photons in LXe Kouvaris & Pradler 2016
- Migdal effect in semiconductors with lower thresholds

Atomic Migdal effect

Electrons have to 'catch up' to recoiling nucleus

Transition probability $|\mathcal{M}_{if}|^2$

Nucleus recoils with velocity \mathbf{v}_N

 $\mathcal{M}_{if} = \langle f | e^{im_e \mathbf{v}_N \cdot \sum_{\beta} \mathbf{r}_{\beta}} | i \rangle \approx im_e \langle f | \mathbf{v}_N \cdot \sum_{\beta} \mathbf{r}_{\beta} | i \rangle$

Small probability for "shake-off" electron, but allows low-energy nuclear recoil to be above the e- recoil threshold

Ibe, Nakano, Shoji, Suzuki 2017 Dolan, Kahlhoefer, McCabe 2017 Bell, Dent, Newstead, Sabharwal, Weiler 2019

Atomic Migdal effect

Boost initial state to frame of moving nucleus:

$$|i\rangle \to e^{im_e \mathbf{v}_N \cdot \sum_\beta \mathbf{r}_\beta} |i\rangle$$

Nucleus recoils with velocity \mathbf{v}_N

Problem: applying this to semiconductors does not work. Boosting argument does not apply because of crystal lattice.

The Migdal effect as bremsstrahlung

Bremsstrahlung calculation

 $\chi + N \rightarrow \chi + N + e^{-}$

treating N as nucleus with tightly bound core electrons. Valid for 10 MeV $\leq m_{\chi} \leq 1$ GeV.

 $\frac{d\sigma}{d\omega} = \frac{2\pi^2 A^2 \sigma_n}{m_\chi^2 v_\chi} \int \frac{d^3 \mathbf{q}_N}{(2\pi)^3} \int \frac{d^3 \mathbf{p}_f}{(2\pi)^3} \,\delta(E_i - E_f - \omega - E_N) \times \int \frac{d^3 \mathbf{k}}{(2\pi)^3} F(\mathbf{p}_i - \mathbf{p}_f - \mathbf{q}_N - \mathbf{k})^2 \\
\times \left(4\alpha_{em} Z_{\text{ion}}^2 \left[\frac{1}{\omega - \mathbf{q}_N \cdot \mathbf{k}/m_N} - \frac{1}{\omega}\right]^2 \text{Im}\left(\frac{-1}{\epsilon(\omega, \mathbf{k})}\right) \right) \quad \text{Form factor accounting for multiphonon response in a harmonic crystal}}$

Differential probability of ion to excite an electron

Relation with atomic Migdal effect

From boosting argument:

$$\begin{split} im_e \langle f | \mathbf{v}_N \cdot \sum_{\beta} \mathbf{r}_{\beta} | i \rangle \\ &= \mathbf{v}_N \cdot \frac{1}{\omega} \langle f | \Sigma_{\beta} \mathbf{p}_{\beta} | i \rangle \\ &= -\mathbf{v}_N \cdot \frac{1}{\omega^2} \langle f | \Sigma_{\beta} [\mathbf{p}_{\beta}, H_0] | i \rangle = \frac{-i}{\omega^2} \langle f | \sum_{\beta} \frac{Z_N \alpha \mathbf{v}_N \cdot \hat{\mathbf{r}}_{\beta}}{|\mathbf{r}_{\beta} - \mathbf{r}_N|^2} | i \rangle. \end{split}$$

Dipole potential from recoiling nucleus

Atomic Migdal effect

$$\frac{dP(E_N)}{d\omega} \approx \left(\frac{4\pi Z_N \alpha}{\omega^2}\right)^2 \sum_{i,f} \left| \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{\mathbf{v}_N \cdot \mathbf{k}}{k^2} \left\langle f | e^{i\mathbf{k}\cdot\mathbf{r}} | i \right\rangle \right|^2 \delta\left(E_i + \omega - E_f\right)$$

Semiconductor Migdal effect

$$\frac{dP}{d\omega} \approx \frac{(4\pi Z_{\rm ion}\alpha)^2}{\omega^4 V} \sum_{\mathbf{p}_e} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{|\mathbf{v}_N \cdot \mathbf{k}|^2}{k^4} \frac{\left| [\mathbf{p}_e + \mathbf{k} |\mathbf{p}_e]_\Omega \right|^2}{|\epsilon(\mathbf{k}, \omega)|^2} \times \left(f(\mathbf{p}_e) - f(\mathbf{p}_e + \mathbf{k}) \right) \delta(\omega_{\mathbf{p}_e + \mathbf{k}} - \omega_{\mathbf{p}_e} - \omega)$$

Full rate in semiconductors

Migdal rate in semiconductors is much larger due to lower gap for excitations.

Sensitivity in semiconductors

1 kg-year exposure, with Q > 2 (similar to proposed experiments)

The Migdal effect in semiconductors can enhance sensitivity to nuclear recoils from sub-GeV dark matter

Essig, Pradler, Sholapurkar, Yu 2020 Barak et al. 2020 (SENSEI) Elastic NR reach from Agnese et al. 2017

Conclusions

The energy loss function (ELF) in dielectric materials describes response to any electromagnetic probe (Standard Model or DM):

$$\operatorname{Im}\left(\frac{-1}{\epsilon(\omega,\mathbf{k})}\right)$$

Appears in multiple types of DM interactions, applies for arbitrary target material

DM-electron scattering

DM-nucleus scattering via Migdal effect

Conclusions

The energy loss function (ELF) in dielectric materials describes response to any electromagnetic probe (Standard Model or DM):

$$\operatorname{Im}\left(\frac{-1}{\epsilon(\omega,\mathbf{k})}\right)$$

Appears in multiple types of DM interactions, applies for arbitrary target material

We welcome use of DarkELF, a python package for DM interactions in terms of the ELF: <u>https://github.com/tongylin/DarkELF</u>