Recent Results from

the KATRIN experiment

Thierry Lasserre

on behalf of the KATRIN collaboration

cea

Gentner-series on astroparticle physics Max-Planck-Institute für Kernphysik January 11th 2023

Direct Neutrino Mass Measurement

Neutrino mass(es)

ß-decay kinematics

Kinematic neutrino mass measurement

- ✓ based on kinematics and energy conservation
- ✓ m_{ν}^2 spectral distortion, maximal at endpoint energy E₀
- \checkmark incoherent neutrino mass : $m_{\nu}^2 = \sum |U_{ei}|^2 \cdot m_i^2$

- ✓ measurement of the electron β —spectrum
 - independent of cosmology
 - independent of neutrino nature

KATRIN experimental challenges

- ✓ strong tritium source: 10¹¹ decays/s
- ✓ < 0.1 cps background level
- ✓ \sim 1 eV energy resolution
- ✓ 0.1% level understanding of the spectrum shape
- ✓ 0.1% level hardware stability controlled over the years

Cea

Where did we stand?

✓ limit before KATRIN 1st Results: Mainz and Troitsk Experiments

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003 Kraus, C., Bornschein, B., Bornschein, L. et al. Eur. Phys. J. C (2005)

Where do we stand now (this talk)?

✓ limit before KATRIN 1st Results: Mainz and Troitsk Experiments

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003 Kraus, C., Bornschein, B., Bornschein, L. et al. Eur. Phys. J. C (2005)

 ✓ intermediate KATRIN results (~5% of the total expected statistics) – This Talk

Where will we stand by 2025?

✓ limit before KATRIN 1st Results: Mainz and Troitsk Experiment

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003 Kraus, C., Bornschein, B., Bornschein, L. et al. Eur. Phys. J. C (2005)

 ✓ intermediate KATRIN results (~5% of the total expected statistics) – This Talk

✓ KATRIN goal:

distinguish between degenerate and hierarchical scenario

Where could we stand by 203X?

✓ limit before KATRIN 1st Results: Mainz and Troitsk Experiment

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003 Kraus, C., Bornschein, B., Bornschein, L. et al. Eur. Phys. J. C (2005)

- ✓ intermediate KATRIN results (~5% of the total expected statistics) – This Talk
- ✓ KATRIN goal: distinguish between degenerate and hierarchical scenario

✓ beyond KATRIN:

resolve **normal** vs **inverted** neutrino mass hierarchy

KATRIN

- ✓ Experimental site: Karlsruhe Institute of Technology (KIT)
- ✓ International Collaboration (150 members)
- ✓ Design sensitivity: 0.2 eV (90% CL) (1000 days of measurement time)

Karlsruhe	r Institut für Technologie	MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG	Westfälische	UN I Y E R S I T Y O F WASHINGTON		
	Russian Academy of Sciences	THE of NO	UNIVERSITY ORTH CAROLINA	1117	Massachusetts Institute of Technology	
	UNUVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386 Max-Planck-Institut (Wenne-Heisenberg-Inc	t at Cr	TAPEL HILL	The Cz of Scie	ech Academy nces	
Fechnology (KIT)	HOCNSCHUIE FUIAA University of Applied Sciences		P PURCH PENNSYLUMIT	COMP	E R S I D A D LUTENSE M A D R I D	
rs)	BICOCCA	LOHANWES GUTI		unive	ersitätbonn	
	PE-TO BERLIN	BERGI UNIVE WUPP	SCHE ERSITÄT ERTAL	NISCHE ERSITAT ICHEN	BERKELEY LAB	
			POI	AILANO 1863	Sattle Bay to	

Working Principle

Measurement strategy

Analysis strategy

✓ fit of theoretical prediction: $\Gamma(qU) \propto \mathbf{A} \cdot \int_{aU}^{E_0} D(E; \mathbf{m}_{\mathbf{v}}^2, \mathbf{E}_0) \cdot R(qU, E) dE + \mathbf{B}$ $\times 10^{-15}$ 1.0 1.0 R(E,qU) D(E) Rate per energy (a.u.) 70 90 80 80 80 0.8 Rate (cps) .01 Transmission 0.0 4 m_{ν}^2, E_0 Fermi theory Spectrometer transmission Theo. corrections 10^{0} 0.2 Energy losses in the source Molecular excitations 0.0 + 0.0 0.0 18540 18550 18560 18570 7.5 10.0 12.5 15.0 17.5 2.5 5.0 20 40 60 80 100 Retarding energy (eV) Energy (keV) Surplus energy (eV)

 \checkmark neutrino mass fit parameters: m_{ν}^2 , E_0 , B, A

✓ fit model informed by theoretical and experimental inputs (e-gun, krypton, monitoring, ...)

Experimental inputs: e-gun, ^{83m}Kr

Theoretical input: molecular final states

- ✓ β —electron and tritium molecule share the energy released in the decay
- ✓ precise calculation of molecular ground and excited final states

A. Saenz et al, Phys. Rev. Lett. 84, 242 (2000) + updates

- ✓ unavoidable energy broadening
- \checkmark no limitation for KATRIN

3-tiered blind analysis

KATRIN Data Taking Overview

1st & 2nd campaigns figures

	1 st campaign PRL 123 (2019) & PRD 104 (2	2021)	2 nd campaign Nat. Phys. (2022)		
Campaign date	April-May 2019			Sept-Nov 2019	
Total scan time	522 h			744 h	
Source activity	25 GBq	nominal activity	\rightarrow	98 GBq	
Background	290 mcps	reduction -25%	\rightarrow	220 mcps	
Tritium purity	97.6%			98.7%	
Electrons in Rol	2 Mio			4.3 Mio	

Latest ν –mass results

Tracture physics

First campaign (spring 2019):

✓ total statistics: 2 million events
 ✓ best fit: $m_{\nu}^2 = \left(-1.0^{+0.9}_{-1.1}\right) \text{ eV}^2$ (stat. dom.)
 ✓ limit: $m_{\nu} < 1.1 \text{ eV}$ (90% CL)

Second campaign (autumn 2019):

- ✓ total statistics: 4.3 million events
- ✓ best fit: $m_{\nu}^2 = (0.26^{+0.34}_{-0.34}) \text{ eV}^2$ (stat. dom.)
- \checkmark limit: $m_{
 m v} < 0.9$ eV (90% CL)

Combined result: $m_{ m u} < 0.8$ eV (90% CL)

Systematics uncertainties overview

Cea

Uncertainty budget in second campaign

Improvements achieved by 2022

>70e6 e⁻ registered

Outlook –2023

 $\times 10^{7}$ KNM3 KNM6 KNM5 KNM4 KNM2 KNN 7 electrons in ROI 6 5 4 3 Cumulative 2 1 0 09 Jul 21 Oct 21 Oct 14 Oct 12 Jun 26 Apr 21 Apr 29 Apr 2018 2019 2019 2020 2021 2022 2020 2021 commissioning 1st campaign 1st + 2nd campaigns next data unblinding in 2023 • • 1st, 2nd, 3rd, 4th, 5th campaigns only 0.5% tritium 2e6 e⁻ in ROI 6e6 e⁻ in ROI • • EPJ C 80, 264 (2020) \sim 30e6 e⁻ in ROI – sensitivity <0.5 eV (90% C.L.) $m_{\nu} < 1.1 \, eV$ $m_{\nu} < 0.8 \text{ eV}$ ٠ PRL. 123, 221802 (2019) Nat. Phys. 18, 160–166 (2022) Thierry Lasserre - Heidelberg 24 PRD. D 104, 012005 (2021) **MPIK 2023**

Outlook – 2025

2022:

- ✓ first direct neutrino-mass experiment to reach sub-eV sensitivity and limit
- $\sim m_{\nu} < 0.8 \text{ eV}$ (90% CL) KATRIN Collab. Nat. Phys. 18, 160–166 (2022)
- ✓ statistics dominated

2025:

- ✓ targeted sensitivity $m_{\nu} < 0.2 - 0.3 \text{ eV}$ (90% CL)
- ✓ measurement or upper limit ?

Drexlin-Weinheimer's Law is currently in force

Are there additional neutrinos (mainly steriles) ?

 V_{e} $[U_{ei}|^{2}$ V_{μ} $[U_{\mu i}|^{2}$ V_{τ} $[U_{\tau i}|^{2}$ V_{s} $[U_{si}|^{2}$

Search for eV-scale sterile neutrinos

Sterile neutrino modeling

Fit Parameters:

- m² neutrino mass (fixed/free/constrained)
- **E**_{0,fit} endpoint
- N signal normalization
- **B** background rate
- m_4^2 4th neutrino mass $|U_{e4}|^2$ 4th neutrino mixing

KSN2 Results: no evidence for light sterile neutrinos

- Scenario i) : $m_{1,2,3} \ll m_4$: $m_
 u^2 = 0 \ \mathrm{eV}^2$
- Best fit:
- $|U_{e4}|^2=1.0$, $m_4^2=0.28~{
 m eV}^2
 ightarrow{
 m KNM-2}$
- $\chi^2_{\rm min} = 27.5 \ (23 \ {\rm dof})$, p = 0.24
- $\Delta \chi^2 = \chi^2_{\text{Null}} \chi^2_{\text{bf}} = 0.7$
- ightarrow No significant improvement (0.8 σ) over no-sterile hypothesis
- Scenario ii) : $m_{
 u}^2$ unconstrained nuisance parameter
- Best fit:
- $|U_{e4}|^2 = 0.027$, $m_4^2 = 98 \text{ eV}^2 \& m_\nu^2 = 1.1 \text{ eV}^2$
- $\chi^2_{\rm min} = 25.0 \; (22 \; {\rm dof}) \; , p = 0.30$
- $\Delta \chi^2 = \chi^2_{\text{Null}} \chi^2_{\text{bf}} = 2.5$
- ightarrow No significant improvement (1.4 σ) over no-sterile hypothesis

3+1 neutrino fit (1st & 2nd campaign, 2019)

✓ scenario i) : $0 = m_{\nu} \equiv m_{1,2,3} \ll m_4$ ✓ best fit KNM2: $|U_{e4}|^2 = 1.0, m_4^2 = 0.28 \text{ eV}^2$ p-value = 0.24

\checkmark scenario ii) : $m_{ u}^2$ as a free parameter

✓ best fit KNM2: $|U_{e4}|^2 = 0.027$, $m_4^2 = 98 \text{ eV}^2$, *p-value* = 0.30 $m_\nu^2 = 1.1 \text{ eV}^2$ (unconstrained nuisance parameter)

✓ no significant improvement over the no-sterile ν hypothesis (1.4 σ) → exclusion limits

Systematic uncertainties

- $\checkmark \ \sigma_{\rm syst}(\,|U_{e4}|^2) =$
 - $\sqrt{\sigma_{\text{stat+syst}}^2 \sigma_{\text{stat}}^2}$
- $\checkmark~$ statistics dominated for all m_4^2
- ✓ dominant syst. effects
 - ✓ background overdispersion
 - ✓ time-dependent background
 - ✓ T-source plasma potential

Complementarity with oscillation experiments

- Oscillation Electron Disappearance Experiments
 - $\Delta m_{41}^2 = m_4^2 m_1^2 \approx \Delta m_{42}^2 \approx \Delta m_{43}^2$
 - $\sin^2 2\Theta = 4 |U_{e4}|^2 (1 |U_{e4}|^2)$
- KATRIN
 - m_β and m_4
 - $\sin^2 \Theta = |U_{e4}|^2$
- Conversion KATRIN -to- Oscillation
 - $\Delta m_{41}^2 \simeq m_4^2 m_\beta^2$
 - $\sin^2 2\Theta = 4 \sin^2 \Theta (1 \sin^2 \Theta)$
- Projected KATRIN final sensitivity (1000 days of data – reduced background)

Comparison to anomalies

- ✓ tackling short baseline oscillation anomalies from a different perspective (shape-only search)
- ✓ start probing interesting parameter space KATRIN Collab., PRL. 126, 091803 (2021) KATRIN Collab., PRD 105, 072004 (2022)

Remark on the Gallium Anomaly – BEST results

- BEST investigate the Gallium Anomaly (GA) with high-intensity ⁵¹C sources
- 3.4-MCi ⁵¹Cr v_e source at the center of two nested Ga volumes. ⁷¹Ge production through the CC reaction, ⁷¹Ga(v_e, e⁻)⁷¹Ge

 $R_{in/prediction} = 0.791 \pm 0.05$! Significant Deficit

• R_{out/prediction} = 0.766±0.05 ! Significant Deficit

 R_{out}/R_{in} = .97±0.07 → but no specific sterile neutrino signature

• Puzzling...

34

Synergy with oscillation experiments

- ✓ tackling short baseline oscillation anomalies from a different perspective (shape-only search)
- ✓ start probing interesting parameter space KATRIN Collab., PRL. 126, 091803 (2021) KATRIN Collab., PRD 105, 072004 (2022)

✓ complementary probe to oscillation-based experiments

DANSS, arXiv:1911.10140 (2019) STEREO, Phys. Rev. D 102, 052002 (2020) PROSPECT, Phys. Rev. D 103, 032001 (2021) Neutrino-4, JETP Lett. 109 (2019) 4, 213-221 Gallex, Phys. Lett. B 342, 440 (1995); 420, 114 (1998) Sage, Phys. Rev. Lett. 77, 4708 (1996); Phys. Rev. C 59, 2246 (1999) BEST, arXiv:2109.11482, to appear in PRL

. . .

✓ KATRIN will soon probe the favored regions at $\Delta m^2 > 5 \text{ eV}^2$

Forthcoming sterile neutrino results in 2023

Current KATRIN results - PRD

KATRIN Sensitivity Study – data 2019 - 2022

- 30-ish millions of events in ROI
- Reduced background
 - Improvement at low Δm_{41}^2
- Significant improvement with respect to KSN 1+2
- Neutrino-4 claim fully covered
- Significant constraint for $\Delta m_{41}^2 < 10 \text{ eV}^2$

Cosmic neutrino background

 \checkmark in the early Universe, v's are in thermal equilibrium with matter

- ✓ Big-Bang+1 sec (1 MeV) v decouple → Relic (Cosmic) Neutrino Background emission
- \checkmark today: <n_v> ~ 56 O(meV) v per cm³ per specie
- \checkmark Not yet directly detected on Earth

Light and matter Inflation Formation of Light and matter Dark ages First stars Galaxy evolution The present Universe are coupled separate light and matter Atoms start feeling Accelerated expansion The first stars and · Protons and electrons the gravity of the galaxies form in the of the Universe Dark matter evolves cosmic web of dark independently: it starts form atoms densest knots of the matter cosmic web clumping and forming Light starts travelling a web of structures freely: it will become the **Cosmic Microwave** Background (CMB)

Cosmic neutrino background overdensity

Thresholdless meV- ν capture on Tritium

Sensitivity to the overdensity ratio η

Karlsruhe Tritium Laboratory (TLK)

Overall gaseous tritium quantity at TLK: currently 25 g

KATRIN has only the sensitivity to probe large clustering of cosmic neutrinos around the solar system

 $\eta = n_v / \langle n_v \rangle$

Relic neutrino modeling

Fit Parameters:

Relic neutrino search fit with systematics

Thierry Lasserre – Now 2022

Relic neutrino fit results (best fit)

✓ KNM1 2019 dataset:

- ✓ 522 hours
- ✓ 3.4 μ g for capture on tritium

✓ KNM2 2019 dataset

- ✓ 744 hours
- ✓ 13.0 μ g for capture on tritium

Relic neutrino fit results (best fit)

- ✓ KNM1 2019 dataset:
 - ✓ 522 hours
 - ✓ 3.4 μ g for capture on tritium

✓ KNM2 2019 dataset

- ✓ 744 hours
- ✓ 13.0 μ g for capture on tritium
- ✓ no evidence for relic neutrino overdensity → upper limits

✓ KNM 1+2 combination

Uncertainty budget for relic neutrino search

Relic Neutrino Results (2022)

 \checkmark test for <u>large overdensity η </u> of relic neutrinos in our surrounding (based on **1**st and **2**nd campaigns)

✓ η < 1.1 · 10¹¹ at 95% CL – the search is statistically limited

✓ improved limit by 2 orders of magnitude compared to previous laboratory limits

Theoretical input: molecular final states

- ✓ β —electron and tritium molecule share the energy released in the decay
- ✓ precise calculation of molecular ground and excited final states

A. Saenz et al, Phys. Rev. Lett. 84, 242 (2000) + KATRIN updates

- ✓ unavoidable energy broadening due to molecular effects
- ✓ zero-point energy broadening (irreducible)

Impact of Molecular Tritium (zero-point energy)

Impact of molecular Tritium on CNB search

- ✓ Free Atomic Tritium: relic peak $2m_v$ above $E_0(m)$
- ✓ Molecular Tritium:
 - ✓ FSD ground state smears out the tritium spectrum → relic peak separation in the data reduced to: $2m_v - E_{GS}$
 - ✓ For m_v < 0.85 eV:
 - $\checkmark\,$ relic signal with β electrons overlap
 - ✓ for η = 1: S/B ratio = 10⁻⁷
 - ✓ the detection of relic neutrinos with molecular tritium is deemed infeasible

Conclusion & Outlook

✓ first sub-eV neutrino mass limit from a direct experiment,

 m_{ν} < 0.8 eV (90% C.L.). Currently running with various

improvements on background and systematics

 \checkmark target sensitivity: $m_{\nu} < 0.2-0.3 \text{ eV}$ by 2025

✓ complementary limits for eV-scale sterile neutrinos

✓ new limit on relic neutrino overdensity

✓ search for **keV-scale sterile** neutrinos will follow

Thank you for

your attention

Thierry Lasserre - Heidelberg MPIK 20

00

0.8ev

TA

TRITTIUM NEUTRINO EXTENSIO

KARLSRUK