WHEN IT'S OK TO WISH SOMEONE "HAPPY NEW YEAR!" f WHOO! ~JAN. 5 "HUH?" OK, YOU SOUND LIKE A WEIRDO JORGE CHAM @ 2011 JANUARY 1 WWW. PHDCOMICS. COM

Happy new year! 2018

Direct/indirect detection prospects for dark matter scenarios involving light, long lived mediators

Suchita Kulkarni

Based on:

- 1. F. Kahlhoefer, S. Kulkarni, S. Wild, JCAP 1711 (2017) no.11, 016
- 2. X. Chu, S. Kulkarni, P. Salati, JCAP 1711 (2017) no.11, 023

3. + works in progress

Der Wissenschaftsfonds.

STERREICHISCHE AKADEMIE DER VISSENSCHAFTEN

Dark matter interactions

- Direct and indirect detection of dark matter are crucial avenues to search for dark matter
- Go beyond and complement direct searches for dark matter at the LHC
- Question: how can we maximally exploit the potential of current experiments to constrain exotic interactions in dark matter sector?
- Both direct and indirect detection search strategies are prone to uncertainties in astrophysical environment
- Identification of new effects and realistic evaluation both matters

Be model independent

Kulkarni et. al. JCAP 1711 (2017) no.11, 016

Shamelessly stolen from talk by L. Baudis

Looking inside the blob

Kulkarni et. al. JCAP 1711 (2017) no.11, 016

Be model independent

• Focus only on dark matter nucleus scattering

• Dark matter event rate at direct detection experiment for heavy mediators

$$\frac{\mathrm{d}R_T}{\mathrm{d}E_\mathrm{R}} = \frac{\rho_0}{m_\mathrm{DM}} \,\eta(v_\mathrm{min}(E_\mathrm{R})) \,\frac{g^2 \,F_T^2(E_\mathrm{R})}{2\pi \,m_\mathrm{med}^4}$$

• Dark matter event rate at direct detection experiment for light mediators

$$\frac{\mathrm{d}R_T}{\mathrm{d}E_{\mathrm{R}}} = \frac{\rho_0 \,\xi_T}{2\pi \,m_{\mathrm{DM}}} \frac{g^2 \,F_T^2(E_{\mathrm{R}})}{\left(2 \,m_T \,E_{\mathrm{R}} + m_{\mathrm{med}}^2\right)^2} \,\eta(v_{\mathrm{min}}(E_{\mathrm{R}}))$$

• Shape of differential event rate changes as soon as mediator mass is comparable to momentum transfer

- Sharply falling recoil spectrum: need of very low threshold
- See An et al. arxiv: 1412.8378 (PLB)
 Recoil spectrum shape important: need good energy resolution

See Gelmini et al. arxiv:1612.09137

• Cryogenic detectors are ideal for this!

- g = product of SM mediator and DM mediator coupling
- Best sensitivity of cryogenic experiments for DM masses with light mediators ~ 10 GeV
- Two orders of magnitude improvement for effective coupling g, corresponds to up to four orders of magnitude in terms of the scattering rate.
- Thousands of events can be observed!!

CRESST III

See CRESST arXiv:1503.08065.

- Molecular experiment: target CaWO₄, exposure: 1000 kg days
- Energy threshold: 100 eV
- Background level: $3.5 \times 10^{-2} \text{ keV}^{-1} \text{ kg}^{-1} \text{ day}^{-1} = 3.5 \text{ events each bin}$
- Flat efficiency and Gaussian energy resolution of 20 eV
- SuperCDMS

See SuperCDM arXiv:1610.00006

- High voltage Germanium, exposure 1.6 x 10⁴ kg days
- Energy threshold 100 eV (conservative)
- Background level: 10 keV⁻¹ kg⁻¹ year⁻¹
- Flat signal efficiency, energy resolution of 10 eV

Generate mock data and attempt reconstruction

- Construct likelihood ratio (R), log likelihood follows a chi-square
- Exclude parameters, for two free parameter model if:

$$-2\log \mathcal{R} < 5.99$$

- Let us assume, we know the backgrounds, there are no astrophysical uncertainties, also let's assume DM couples to protons only
- Realistic treatment including detector resolution and background events
- Coupling g a nuisance parameter for reconstruction (fixed at max likelihood)

- Several target elements contribute to CRESST parameter reconstruction
 - For low masses oxygen contributes for high masses tungsten
- Very accurate reconstruction once SuperCDMS data is included
 - Four times more number of events at SuperCDMS

- Several target elements contribute to CRESST parameter reconstruction
 - For low masses oxygen contributes for high masses tungsten
- Very accurate reconstruction once SuperCDMS data is included
 - Four times more number of events at SuperCDMS

- Several target elements contribute to CRESST parameter reconstruction
 - For low masses oxygen contributes for high masses tungsten
- Very accurate reconstruction once SuperCDMS data is included
 - Four times more number of events at SuperCDMS

- Several target elements contribute to CRESST parameter reconstruction
 - For low masses oxygen contributes for high masses tungsten
- Very accurate reconstruction once SuperCDMS data is included
 - Four times more number of events at SuperCDMS

Tungsten contribution

- Characteristic tilt: light mediators needed for heavier masses and vice versa
- Nuisance parameter for background normalisation: shape known, normalisation unknown
- Degeneracy between DM mass, coupling and mediator mass removed by combination of data - accurate reconstruction

- Nuisance parameter for unknown ratio of proton to neutron coupling
- Ability of CRESST to reconstruct parameters significantly reduced when coupling let vary

Alternative benchmarks

- Works for limited ranges
- In each case it is possible to rule out contact interaction or light mediators

Fixed $m_{DM} = 2 \text{ GeV}$ High statistics case

Alternative benchmarks

- Qualitatively similar results
- Decreasing mass -> loss in sensitivity
 - Less statistics, worse reconstruction
 - Oxygen, Tungsten degeneracy

 $m_{med} = 3 \text{ MeV}$ $g = 6 \times 10^{-11}$

Self-interacting DM

- Within **specific model** (not a general conclusion)
- Fermionic DM, scalar mediator
 - Relic via dark sector freeze out and mediator decay via Higgs mixing

Be model independent

Kulkarni et. al. JCAP 1711 (2017) no.11, 023

For non-relativistic mediator propagation see: Rothstein et al arXiv: 0903.3116 For complementary detection techniques from Sun see: Batell et al. arXiv:0910.1567

DM particle undergo annihilation into mediator, which is long lived

$$m_{\chi} \gg m_{\phi} \gg m_{e^{-}}$$

- Mediator is highly boosted and decays to SM particles
- Ideal observatory, our Universe

DM with long lived mediator

- τ_{ϕ} lifetime > a few 10⁵ seconds in order for ϕ produced around the GC to travel close to the Earth
- The constraints from BBN and CMB depend on $\rho_{\varphi} X BR(\varphi \rightarrow \gamma \gamma)$ or $\rho_{\varphi} X BR(\varphi \rightarrow e^{\pm} e^{\pm})$
- For $\rho_{\varphi} \sim 10^{-2} 10^{-5}$ X $\rho_{DM}, \, \tau_{\varphi} \lesssim 10^{6} 10^{8}$ seconds by BBN constraints
- If $\rho_{\phi} \sim 10^{-5} 10^{-11} \text{ X } \rho_{DM}$, the existence of ϕ is constrained not by BBN but by CMB, requiring $\tau_{\phi} \lesssim 10^{12}$ seconds
- + For $\rho_{\varphi} \sim 10^{-11} \cdot \rho_{DM}\,$ there are no constraints even from the CMB observation

$$\frac{d\Phi_{e^{\pm}}}{dE}(E,\vec{x}) = \frac{v_{e^{\pm}}}{4\pi b(E,\vec{x})} \begin{cases} \frac{1}{2} \left(\frac{\rho(\vec{x})}{M_{\rm DM}}\right)^2 \sum_f \langle \sigma v \rangle_f \int_E^{M_{\rm DM}} dE_{\rm s} \frac{dN_{e^{\pm}}^f}{dE}(E_{\rm s}) I(E,E_{\rm s},\vec{x}) & \text{(annihilation)} \\ \left(\frac{\rho(\vec{x})}{M_{\rm DM}}\right) \sum_f \Gamma_f \int_E^{M_{\rm DM}/2} dE_{\rm s} \frac{dN_{e^{\pm}}^f}{dE}(E_{\rm s}) I(E,E_{\rm s},\vec{x}) & \text{(decay)} \end{cases}$$

Green's function from source to observation

$$\frac{d\Phi_{e^{\pm}}}{dE}(E,\vec{x}) = \frac{v_{e^{\pm}}}{4\pi b(E,\vec{x})} \begin{cases} \frac{1}{2} \left(\frac{\rho(\vec{x})}{M_{\rm DM}}\right)^2 \sum_f \langle \sigma v \rangle_f \int_E^{M_{\rm DM}} dE_{\rm s} \frac{dN_{e^{\pm}}^f}{dE}(E_{\rm s}) I(E,E_{\rm s},\vec{x}) & \text{(annihilation)} \\ \left(\frac{\rho(\vec{x})}{M_{\rm DM}}\right) \sum_f \Gamma_f \int_E^{M_{\rm DM}/2} dE_{\rm s} \frac{dN_{e^{\pm}}^f}{dE}(E_{\rm s}) I(E,E_{\rm s},\vec{x}) & \text{(decay)} \end{cases}$$

Injection spectra, depends on decay kinematics

$$\frac{d\Phi_{e^{\pm}}}{dE}(E,\vec{x}) = \frac{v_{e^{\pm}}}{4\pi b(E,\vec{x})} \begin{cases} \frac{1}{2} \left(\frac{\rho(\vec{x})}{M_{\rm DM}}\right)^2 \sum_f \langle \sigma v \rangle_f \int_E^{M_{\rm DM}} dE_{\rm s} \frac{dN_{e^{\pm}}^f}{dE}(E_{\rm s}) I(E,E_{\rm s},\vec{x}) & \text{(annihilation)} \\ \left(\frac{\rho(\vec{x})}{M_{\rm DM}}\right) \sum_f \Gamma_f \int_E^{M_{\rm DM}/2} dE_{\rm s} \frac{dN_{e^{\pm}}^f}{dE}(E_{\rm s}) I(E,E_{\rm s},\vec{x}) & \text{(decay)} \end{cases}$$

Density of DM where e[±] injection takes place

$$\frac{d\Phi_{e^{\pm}}}{dE}(E,\vec{x}) = \frac{v_{e^{\pm}}}{4\pi \, b(E,\vec{x})} \begin{cases} \frac{1}{2} \left(\frac{\rho(\vec{x})}{M_{\rm DM}}\right)^2 \sum_f \langle \sigma v \rangle_f \int_E^{M_{\rm DM}} dE_{\rm s} \frac{dN_{e^{\pm}}^f}{dE}(E_{\rm s}) \, I(E,E_{\rm s},\vec{x}) & \text{(annihilation)} \\ \left(\frac{\rho(\vec{x})}{M_{\rm DM}}\right) \sum_f \Gamma_f \int_E^{M_{\rm DM}/2} dE_{\rm s} \frac{dN_{e^{\pm}}^f}{dE}(E_{\rm s}) \, I(E,E_{\rm s},\vec{x}) & \text{(decay)} \end{cases}$$

$$\rho_{\rm eff}^2(\vec{x}) = \int d^3 \vec{x}_S \; \rho_\chi^2(\vec{x}_S) \; \times \frac{e^{-r/l_{\rm d}}}{4 \,\pi \, l_{\rm d} \, r^2}, \quad \text{where} \; \; r = |\vec{x} - \vec{x}_S|$$

- Effective dark matter density gets smeared
- Does not depend on the masses involved, only on decay length
- Enhancement in the effective DM density around the Earth
- No strong signals associated with DM annihilations

 10^{6} 10⁵ .01 kpc DM density $ho_{
m eff}\,[{
m GeV}\,{
m cm}^{-3}$ 10^{4} 10³ 10^{2} 10^{1} 10^{0} 10^{-1} Enhancemen 10^{-2} 10^{-3} Pure NFW profile 10^{-4} No central DM concentration 10^{-5} 10^{-} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10² 10^{-4} Galactocentric distance r [kpc] see also : Rothstein et al arXiv: 0903.3116

 $P(l) = \frac{1}{l_d} \exp(-l/l_d)$. Mediator probability distribution

$$\rho_{\rm eff}^2(\vec{x}) = \int d^3 \vec{x}_S \; \rho_\chi^2(\vec{x}_S) \; \times \frac{e^{-r/l_{\rm d}}}{4 \,\pi \, l_{\rm d} \, r^2}, \quad \text{where} \; \; r = |\vec{x} - \vec{x}_S|$$

Effective dark matter density gets smeared

- Does not depend on the masses involved, only on decay length
- Enhancement in the effective DM density around the Earth
- No strong signals associated with DM annihilations

$$\rho_{\rm eff}^2(\vec{x}) = \int d^3 \vec{x}_S \; \rho_\chi^2(\vec{x}_S) \; \times \frac{e^{-r/l_{\rm d}}}{4 \,\pi \, l_{\rm d} \, r^2}, \quad \text{where} \; \; r = |\vec{x} - \vec{x}_S|$$

- Effective dark matter density gets smeared
- Enhancement in the effective DM density around the Earth
- No strong signals associated with DM annihilations

$$\rho_{\rm eff}^2(\vec{x}) = \int d^3 \vec{x}_S \; \rho_\chi^2(\vec{x}_S) \; \times \frac{e^{-r/l_{\rm d}}}{4 \,\pi \, l_{\rm d} \, r^2}, \quad \text{where} \; \; r = |\vec{x} - \vec{x}_S|$$

- Effective dark matter density gets smeared
- Enhancement in the effective DM density around the Earth
- No strong signals associated with DM annihilations

$$\rho_{\rm eff}^2(\vec{x}) = \int d^3 \vec{x}_S \; \rho_\chi^2(\vec{x}_S) \; \times \frac{e^{-r/l_{\rm d}}}{4 \, \pi \, l_{\rm d} \, r^2}, \quad \text{where} \; \; r = |\vec{x} - \vec{x}_S|$$

- Effective dark matter density gets smeared
- Enhancement in the effective DM density around the Earth
- No strong signals associated with DM annihilations

$$\rho_{\rm eff}^2(\vec{x}) = \int d^3 \vec{x}_S \; \rho_\chi^2(\vec{x}_S) \; \times \frac{e^{-r/l_{\rm d}}}{4 \,\pi \, l_{\rm d} \, r^2}, \quad \text{where} \; \; r = |\vec{x} - \vec{x}_S|$$

- Effective dark matter density gets smeared
- Enhancement in the effective DM density around the Earth
- No strong signals associated with DM annihilations

Anisotropies

- Two components:
 - Diffused flux; proportional to effective DM density
 - Non-diffused flux: originates due to mediators decaying inside the mean-freepath sphere (much below pc)
- Define anisotropy: information on the directionality of the positrons

$$\Delta(\vec{w}, E_e) \sim \frac{\Phi_e^{\text{non}}(\vec{w}, E_e)}{\Phi_e^{\text{non}}(\vec{w}, E_e) + \Phi_e^{\text{diff}}(E_e)}$$

- Diffused component does not depend on the decay length
- Prompt flux depends on decay length and increases with observed energy, because increasing observed energy increases the diffusion length

 With a very good angular resolution we might be able to "see" the core in the sky

$$\mathcal{A}(E_e) \equiv \frac{3}{\sqrt{4\pi}} \times \sqrt{\frac{\sum_m |a_{1m}^2|}{3}} = 3 \times \frac{\left| \int_{-1}^1 d\cos\beta \, \Phi_e^{\text{total}}(\vec{w}, E_e) \cos\beta \right|}{\int_{-1}^1 d\cos\beta \, \Phi_e^{\text{total}}(\vec{w}, E_e)}$$

1 TeV DM	$E_e = 50 \mathrm{GeV}$	$E_e = 500 \mathrm{GeV}$
small core $(1 pc)$	8.45×10^{-7}	5.37×10^{-4}
large core $(0.5 \mathrm{kpc})$	8.44×10^{-7}	5.36×10^{-4}

• Not within experimental sensitivity yet

- Identification and realistic evaluation of exotic dark matter interactions at experiments is a crucial task for next generation dark matter experiments
- Next generation program will probe new regions of unexplored parameter space
- Exploiting low threshold cryogenic detectors:
 - It is possible to constrain both dark matter and mediator mass at direct detection experiments if the mediator is reasonably light
 - Taking into account various uncertainties does not drastically affect the results
 - Further improvement might be possible by taking into account the discrimination in recoil spectra
- Phenomenology of long lived relativistic mediators
 - Annihilating dark matter behaves as decaying for detection purposes
 - Asymmetry in cosmic rays can be generated, for light mediator lifetimes of O(years). Albeit currently out of reach possibility to have sensitivity in future
 - A wide phenomenology program is possible

Thank you!

 \sim

@suchi kulkarni

If you come to Max Planck institute for nuclear physics, Heidelberg for a seminar, you get your own plate of cookies! #seminartrivia

2:22 PM - 8 Jan 2018

