Cosmology Falling in Love with Sterile Neutrinos

Jörn Kersten

UNIVERSITY OF BERGEN

Based on Torsten Bringmann, Jasper Hasenkamp, JK, JCAP **07** (2014)

Outline

Introduction

Self-Interacting Dark Matter

Oark Matter Interacting with Neutrinos

- Introduction
- Self-Interacting Dark Matter

3 Dark Matter Interacting with Neutrinos

The Universe after Planck

Flat ACDM cosmology fits data perfectly Planck, arXiv:1303.5062

The Universe after Planck

Flat ACDM cosmology fits data perfectly Planck, arXiv:1303.5062

Or does it?

Tensions in ACDM cosmology

Hints for Dark Radiation

- Dark radiation: relativistic particles $\neq \gamma, \nu^{\text{SM}}$
- Parameterized via radiation energy density

$$ho_{
m rad} \equiv \left[1 + rac{{
m N}_{
m eff}}{8} \left(rac{T_
u}{T}
ight)^4
ight]
ho_\gamma$$

- $T \equiv T_{\gamma}$
- N_{eff}: effective number of neutrino species
- Standard Model: N_{eff} = 3.046
- Existence of dark radiation $\Leftrightarrow \Delta N_{\text{eff}} \equiv N_{\text{eff}} 3.046 > 0$

Hints for Dark Radiation

- Dark radiation: relativistic particles $\neq \gamma, \nu^{\text{SM}}$
- Parameterized via radiation energy density

$$\rho_{\rm rad} \equiv \left[1 + \frac{{\rm N}_{\rm eff}}{8} \left(\frac{T_{\nu}}{T}\right)^4\right] \rho_{\gamma}$$

- $T \equiv T_{\gamma}$
- N_{eff}: effective number of neutrino species
- Standard Model: N_{eff} = 3.046
- Existence of dark radiation $\Leftrightarrow \Delta N_{\text{eff}} \equiv N_{\text{eff}} 3.046 > 0$
- Measurements of Cosmic Microwave Background (CMB):

$$\Delta \textit{N}_{eff} = 1.51 \pm 0.75$$
 at 68% CL ACT, ApJ **739** (2011)
 $\Delta \textit{N}_{eff} = 0.81 \pm 0.42$ at 68% CL SPT, ApJ **743** (2011)
 $\Delta \textit{N}_{eff} = 0.31^{+0.68}_{-0.64}$ at 95% CL Planck, arXiv:1303.5076

Measurements

Hints for Hot Dark Matter

- 2...3 σ tension: CMB (z > 1000) vs. local (z < 10) observations
- Expansion rate
 - Planck: $H_0 = (67.3 \pm 1.2) \frac{\text{km}}{\text{s Mpc}}$ arXiv:1303.5076
 - \bullet Hubble: $\textit{H}_0 = (73.8 \pm 2.4) \frac{km}{s \, \text{Mpc}}$ Riess et al., ApJ 730 (2011)

Hints for Hot Dark Matter

- 2...3 σ tension: CMB (z > 1000) vs. local (z < 10) observations
- Expansion rate
 - Planck: $H_0 = (67.3 \pm 1.2) \frac{\text{km}}{\text{s Mpc}}$ arXiv:1303.5076
 - \bullet Hubble: $H_0 = (73.8 \pm 2.4) \frac{km}{s \, \text{Mpc}}$ Riess et al., ApJ 730 (2011)

- Magnitude of matter density fluctuations (σ_8)
- ullet Resolved by hot dark matter component \simeq dark radiation
- Best fit:

$$\Delta \emph{N}_{
m eff} = 0.61$$
 $\emph{m}_{
m s}^{
m eff} \equiv \left(rac{\emph{T}_{
m s}}{\emph{T}_{
m \nu}}
ight)^{3}\emph{m}_{
m s} = 0.41~{
m eV}$

Hamann, Hasenkamp, JCAP 10 (2013) Wyman, Rudd, Vanderveld, Hu, PRL 112 (2014) Battye, Moss, PRL 112 (2014) Gariazzo, Giunti, Laveder, JHEP 11 (2013)

Numerical simulations of structure formation with cold dark matter

Springel, Frenk, White, Nature 440 (2006)

Numerical simulations of structure formation with cold dark matter

Springel, Frenk, White, Nature 440 (2006)

Kravtsov, Adv. Astron. (2010) Klypin et al., ApJ **522** (1999)

More galactic satellites predicted than observed

De Blok et al., ApJ **552** (2001)

More cuspy density profiles predicted than observed

Boylan-Kolchin et al., MNRAS **422** (2011)

Most massive satellites predicted denser than observed

Kravtsov, Adv. Astron. (2010) Klypin et al., ApJ **522** (1999)

More galactic satellites predicted than observed

De Blok et al., ApJ **552** (2001)

More cuspy density profiles predicted than observed

Boylan-Kolchin et al., MNRAS **422** (2011)

Most massive satellites predicted denser than observed

Astrophysics solutions or new particle physics?

Introduction

Self-Interacting Dark Matter

3 Dark Matter Interacting with Neutrinos

Not-so-WIMPy Dark Matter

- Dark matter χ
 - Standard Model singlet
 - Charged under $U(1)_X$ gauge interaction
 - Mass m_χ ∼ TeV
- Light gauge boson V, m_V ∼ MeV
- → Long-range, velocity-dependent interaction

Feng, Kaplinghat, Yu, PRL **104** (2010) Loeb, Weiner, PRL **106** (2011) Vogelsberger, Zavala, Loeb, MNRAS **423** (2012)

Velocity-Dependent Self-Interactions

- Described by Yukawa potential $V(r) = \pm \frac{\alpha_X}{r} e^{-m_V r}$
- Desired scattering cross section σ_T :
 - Large in dwarf galaxies
 - Small on larger scales to satisfy experimental limits
- Very different behavior depending on model parameters

Velocity-Dependent Self-Interactions

- Described by Yukawa potential $V(r) = \pm \frac{\alpha_X}{r} e^{-m_V r}$
- Desired scattering cross section σ_T :
 - Large in dwarf galaxies
 - Small on larger scales to satisfy experimental limits
- Very different behavior depending on model parameters

Tulin, Yu, Zurek, PRL 110, PRD 87 (2013)

Here:
$$\frac{m_\chi v}{m_V} \sim \frac{\text{TeV}}{\text{MeV}} \frac{10 \text{ km/s}}{3 \cdot 10^5 \text{ km/s}} \sim 30 \gg 1$$

→ classical regime → analytical approximations exist

Simulating Self-Interacting Dark Matter

Simulation: formation of dwarf galaxy with dark matter + baryons

Vogelsberger, Zavala, Simpson, Jenkins, MNRAS 444 (2014)

→ Core, size depends on strength of self-interactions

Introduction

Self-Interacting Dark Matter

Dark Matter Interacting with Neutrinos

Late Kinetic Decoupling

- Standard Model neutrinos coupled to V
- Dark matter scatters off neutrinos
- $ightharpoonup T_{\chi} = T_{\nu}$ until kinetic decoupling at $T \sim 100 \text{ eV}$ ightharpoonup Formation of smaller structures suppressed
- → Missing satellites solved

Van den Aarssen, Bringmann, Pfrommer, PRL 109 (2012)

Late Kinetic Decoupling

- Standard Model neutrinos coupled to V
- Dark matter scatters off neutrinos
- $ightharpoonup T_{\chi} = T_{\nu}$ until kinetic decoupling at $T \sim 100 \text{ eV}$ ightharpoonup Formation of smaller structures suppressed
- → Missing satellites solved

Van den Aarssen, Bringmann, Pfrommer, PRL 109 (2012)

Problem: explicit breaking of $SU(2)_L$

Enter the Sterile Neutrino

- Sterile neutrino N
 - Mass $m_N \lesssim eV$
 - Standard Model singlet
 - Charged under $U(1)_X$
 - Forms hot dark matter
- Dark matter scatters off sterile neutrinos

Enter the Sterile Neutrino

- Sterile neutrino N
 - Mass $m_N \leq eV$
 - Standard Model singlet
 - Charged under $U(1)_X$
 - Forms hot dark matter
- Dark matter scatters off sterile neutrinos
- \leadsto Everything solved
 - All small-scale problems of structure formation
 - Hot dark matter hint (CMB-local tension)
 - Neutrino oscillation anomalies (?)

Bringmann, Hasenkamp, JK, JCAP 07 (2014)

Meet the Dark Side

- Dirac fermion χ (dark matter), $m_{\chi} \sim \text{TeV}$
- Gauge boson V, m_V ∼ MeV
- Kinetic mixing $F_{\mu\nu}^X F^{\mu\nu}$, $F_{\mu\nu}^X Z^{\mu\nu}$ negligible
- Scalar Θ breaking $U(1)_X$, $\langle \Theta \rangle \sim \text{MeV}$
- Light sterile neutrino N, $m_N \lesssim eV$
- Heavier sterile neutrino N_2 , $m_{N_2} \sim \text{MeV} \rightsquigarrow \text{cancel anomalies}$
- Scalar ξ , $\langle \xi \rangle < \langle \Theta \rangle \leadsto$ active-sterile neutrino mixing

$$\mathcal{L}_{N}\supset -rac{Y_{M}}{2}\Theta^{\dagger}\,\overline{N^{c}}N-rac{Y_{M}^{\prime}}{2}\Theta\,\overline{N_{2}^{c}}N_{2}-rac{Y_{
u}}{\Lambda}\xi\widetilde{\phi}\,\overline{\ell_{L}}N+ ext{h.c.}$$

Dark Matter Production

• High temperatures: $U(1)_X$ sector thermalized via Higgs portal

$$\mathcal{L}_{\mathsf{Higgs}} \supset \kappa |H|^2 |\Theta|^2$$

• $\langle \Theta \rangle \sim \text{MeV breaks } U(1)_X$

Dark Matter Production

• High temperatures: $U(1)_X$ sector thermalized via Higgs portal

$$\mathcal{L}_{\mathsf{Higgs}} \supset \kappa |\mathcal{H}|^2 |\Theta|^2$$

- $\langle \Theta \rangle \sim \text{MeV breaks } U(1)_X$
- $T_\chi \sim m_\chi/25$: freeze-out (chemical decoupling) of dark matter

$$\Omega_{\rm CDM}h^2 \sim 0.11 \left(\frac{0.67}{g_X}\right)^4 \left(\frac{m_\chi}{\rm TeV}\right)^2$$

Cold Dark Matter Parameter Space

- Blue band can be moved vertically by changing sterile neutrino charge and temperature
- Crosses: simulations show that too big to fail solved

Sterile Neutrino Abundance

- $T \downarrow \leadsto$ Higgs portal no longer effective $\leadsto U(1)_X$ sector decouples at T_X^{dpl} (depending on κ)
- SM particles becoming non-relativistic afterwards heat SM bath, not $U(1)_X$ bath $\leadsto T_N < T_\nu$ (depending on number of d.o.f. g_*)

$$\Delta extstyle e$$

Sterile Neutrino Abundance

- $T \downarrow \leadsto$ Higgs portal no longer effective $\leadsto U(1)_X$ sector decouples at T_x^{dpl} (depending on κ)
- SM particles becoming non-relativistic afterwards heat SM bath, not $U(1)_X$ bath $\leadsto T_N < T_\nu$ (depending on number of d.o.f. g_*)

$$egin{aligned} \Delta extstyle extstyle N_{ ext{eff}}(au) &= \left(rac{T_N}{T_
u}
ight)^4 = \left(rac{g_{*,
u}}{g_{*,N}}
ight)^{rac{4}{3}}igg|_T \left(rac{g_{*,N}}{g_{*,
u}}
ight)^{rac{4}{3}}igg|_{T_x^{ ext{dpl}}} \ & \Delta extstyle N_{ ext{eff}}|_{ ext{BBN}} < \left(rac{58.4}{g_{*,
u}(T_x^{ ext{dpl}})}
ight)^{rac{4}{3}} \stackrel{!}{\lesssim} 1 \end{aligned}$$

- \rightsquigarrow BBN bounds satisfied for $T_x^{dpl} \gtrsim 1 \text{ GeV}$

Hot Dark Matter Parameter Space

Sterile Neutrino Production by Oscillations

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1
- U(1)_X interactions → effective matter potential suppresses mixing
 → no production by oscillations for T ≥ MeV

Hannestad, Hansen, Tram, PRL 112 (2014); Dasgupta, Kopp, PRL 112 (2014)

Sterile Neutrino Production by Oscillations

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1
- U(1)_X interactions → effective matter potential suppresses mixing → no production by oscillations for T ≥ MeV
 Hannestad, Hansen, Tram, PRL 112 (2014); Dasgupta, Kopp, PRL 112 (2014)
- T < MeV: mixing unsuppressed
- Oscillations + $U(1)_X$ -mediated scatterings $NN \rightarrow NN$

→ N re-thermalize → T_N = T_ν
Mirizzi, Mangano, Pisanti, Saviano, arXiv:1410.1385
Cherry, Friedland, Shoemaker, arXiv:1411.1071

Sterile Neutrino Production by Oscillations

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1
- U(1)_X interactions → effective matter potential suppresses mixing → no production by oscillations for T ≥ MeV
 Hannestad, Hansen, Tram, PRL 112 (2014); Dasgupta, Kopp, PRL 112 (2014)
- T < MeV: mixing unsuppressed
- Oscillations + $U(1)_X$ -mediated scatterings $NN \rightarrow NN$ $\rightarrow N$ re-thermalize $\rightarrow T_N = T_\nu$

Mirizzi, Mangano, Pisanti, Saviano, arXiv:1410.1385 Cherry, Friedland, Shoemaker, arXiv:1411.1071

With full re-thermalization:

$$\Delta N_{
m eff}|_{
m CMB} \simeq {
m const.}$$
 $m_{
m N}=rac{2\sqrt{2}}{N_{
m eff}|_{
m CMB}} m_{
m s}^{
m eff} \simeq rac{2\sqrt{2}}{3.6^{3/4}}\, 0.4\,{
m eV} < 1\,{
m eV}$

--- Cosmology still fine but neutrino anomalies not explained

Conclusions

Particle physics solution for tensions in standard ΛCDM cosmology:

Sterile neutrinos N with mass $\lesssim eV + self$ -interacting dark matter

- N → small hot DM component
- ullet New interaction mediated by gauge boson with mass \sim MeV
- DM-DM scatterings → cusp-core, too big to fail solved
- DM-N scattering → missing satellites solved

Conclusions

Particle physics solution for tensions in standard ΛCDM cosmology:

Sterile neutrinos N with mass $\lesssim eV + self$ -interacting dark matter

- N → small hot DM component
- ullet New interaction mediated by gauge boson with mass \sim MeV
- DM-DM scatterings → cusp-core, too big to fail solved
- DM-N scattering → missing satellites solved

Outlook

- Interaction by scalar exchange possible and favorable?
- Further options for model building
- Connection to 3.5 keV X-ray line?
- Re-thermalization
- Improved treatment of scattering in Yukawa potential

Timeline

Dark Radiation and Big Bang Nucleosynthesis

- T ~ 1 MeV: freeze-out of n ↔ p
 ¬¬ n/p ratio fixed
- $T \sim 0.1$ MeV: $p + n \rightarrow D$
- Afterwards formation of ³He, ⁴He, ⁷Li
- ρ_{rad} ↑ → faster expansion
 → more n available for D fusion
 → more ⁴He
- $N_{\rm eff} = 3.8^{+0.8}_{-0.7}$ at 2σ CL Izotov, Thuan, arXiv:1001.4440
- ΔN_{eff} ≤ 1 at 2σ CL
 Mangano, Serpico, arXiv:1103.1261

Dark Radiation Effects on the CMB

- ρ_{rad} ↑ → later matter-radiation equality
- 1st/3rd peak ratio \rightsquigarrow no change $\rightsquigarrow \rho_{\rm m} \uparrow \leadsto t_{\rm eq}$ unchanged
- $\rho_{\rm rad} \uparrow \leadsto$ sound horizon $r_{\rm s} \propto 1/H \downarrow$
- Peak positions \leadsto no change of angular size $\theta_s = \frac{r_s}{D_A} \leadsto D_A \propto 1/H \downarrow$ (by $\rho_\Lambda \uparrow$)

Hou et al., arXiv:1104.2333

