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2 Dynamical Symmetry Breaking

m Scale-invariant models — a possible solution
to the hierarchy problem, interesting for inflation,
cosmological gravitational wave background

m Coleman-Weinberg mechanism: spontaneous
symmetry breaking by quantum corrections
Coleman & Weinberg, Phys. Rev. D7, 1888 (1973)

m Gildener-Weinberg approach to multi-field
models: effective potential generated
by quantum corrections in the flat direction
Gildener & Weinberg, Phys. Rev. D13, 3333 (19706)



Dynamical Symmetry Breaking

m Action classically scale invariant
(zero mass and cubic terms)

See e.g. Alexander-Nunneley & Pilaftsis,
JHEP 09 (2010) 021 [arXiv:1006.5916]
m VEVs & masses generated

via quantum corrections

m Does not work in the Standard Model
due to a large top Yukawa coupling

m Needs new physics: e.g. a new scalar singlet



4 Dynamical Symmetry Breaking

= At one-loop level, the potential is
V(@) = vl 4 vl

m In a flat direction ® = ¢n,
we have V(®) = 0

= V(1) dominates in that direction
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5 Our Work

m K.K., Marzola, Raidal, Strumia, Iight Higgs boson from

multi-phase criticality in dynamical symmetry breaking,
Phys.Lett.B 816 (2021) 136241 [arXiv:2102.01084]

m KK, Loos, Marzola, Minima of classically
scale-invariant potentials, JHEP
06 (2021) 128 [arXiv:2011.12304]

n KK, Kubarski, Marzola, Geomzetry of Flat Directions

in Scale-Invariant Potentials, Phys.Rev.D 99 (2019) 11,
115034 [arXiv:1904.07867]



6 Field Content & Potential

m Vector of n real scalar fields

= Tree-level potential v(©)
m Fermions with Yukawa couplings to ®

m Gauge bosons coupled to @
via its covariant derivative



7 Biquadratic Potential

v — Z ¢12/11j¢j2 _ (q)OZ)TAcDOZ
ij

| Hadamard prOdU.Ct (A. O B)l] = Al]Bl]
= Hadamard power (A°"); = A},
eg (07) = (@o @) = ¢f

m Potential symmetry is
lel - (ZZ)l X oo X (ZZ)n7

under which ¢, = —¢,



Hadamard Product Example

(VQV a¢k ; ¢ /11]¢

= 4h > Ay
j

VoVl? = 40 0 AD?



9 Biquadratic Potential

2 4
4 ZS S
V = 2y |H[" + Aus[H] - A

1 1 1
= —yh* + = Aysh®s® 4+ = Ags*
2 + o s + s

= (©°*)"AD*

where



10 Biquadratic Potential

1
Va2 —y(t)h* + /lH()hZSZ+Z/15(t)S4

*) Alt) @™

o= (1) wo=3 () B)

m Couplings run as

1
4"
= (@°

where

d4;
dt

=B,



11 Vacuum Stability

= In order to have a finite minimum,
the potential must be bounded from below

m V > 0if A is copositive, i.e. (®°*)TA® for ®°* > 0
K. Kannike, Eur. Phys. J. C72, 2093 (2012) [arXiv:1205.3781]

m Potential bounded from below at large scales
is a necessary condition for a finite minimum to exist

= In a finite range, the running A(t) must violate
the conditions to have a radiative minimum



12 Flat Direction(s)

In the minimum V < 0
For large fields V > 0

= Somewhere in between, V=0

Each minimum has a related flat direction



13 Vacuum Stability Conditions

Cottle-Habetler-LLemke theorem:

Suppose that the order n — 1 principal submatrices

of a real symmetric matrix A of order n are copositive.
Then A is copositive if and only if

det(A) >0 V  some element(s) of adj(A) < 0.

= The adjugate adj(A) defined by A adj(A) = det(A)I

-1 _ adj(A) .
= A —mlfdet(A) #0



14 Vacuum Stability

m Self-couplings Ay = 0 and As = 0
m We have

- _AHS /15

2

1 1
det(A) = Ayds — Z/lis, adj(A) = ( f’* 21“)
m Therefore
det(A) > 0 V _/11_[5 < 0,

equivalent to

Aus + 24/ Auds = 0



15 Phases

s) s # 0 and h = 0 arises when the critical boundary
A/S - 0, ﬂ/ls >0

is crossed (Ays > 0 to give m{ > 0)
h) h # 0 and s = 0 arises when

AHZO, ﬂﬁH>O

sh) s, h 7 0 arises when
1
2\/ ﬁ]—[ls + A‘HS == O, )’Sﬁ/l}.[ —|_ lHﬂ/lS - E/IHSﬁAHS > 0

is crossed; flat direction given by s/h = (4y/4s)"/*



16 Phases

S0

Us

Vh hO
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17 Phases




18 Multi-phase criticality
m As(ty) = Aus(ty) =0
m The s and sh flat directions coincide
on the s-axis: a ‘double’ flat direction

= Minimum is ¢ff axis
S

S0

V54 2 (D)

Uh



19 Effective Potential

At one-loop level,

V = V(O) + V(l),
where

with dimensional regularisation in the MS scheme



20 FEffective Potential

The one-loop potential can be written as

1 2 2
vt = Strm?* [ In = — ¢ :A+Bln&,
6472 12 12

where

1 M?
A = a2 Str M4 (IHW — C> ;

B = Str M*

64 12



21 One-Loop Potential

= M is a ‘pivot scale’ with the dimension of mass

Chataignier, Prokopec, Schmidt ¢ Swiezewska,
JHEP 08 (2018) 083 [arXiv:1805.09292]
= We choose M? = ¢}, @,
where e, is a constant vector
m Radial coordinate ¢* = &' ® = " ®°?,
where vector e = (1 . 1)T



22 Running

Callan-Szymanzik equation tells that

dV(O)

— _ (471')2183 _ (q)oz)Tﬁq)oz . CI)TquN(O)

where
dA In(4*/u5)
p=—, t=——,
dt (4r)?



23 Running

m Set u = M, so that My = y,

m The effective potential becomes

» The running parameter is now also M-dependent:

_ M
" (407 M




24 Minimisation Equation

The stationary point equation is
o dv
0=VeV=1400A(t)0 + VoA + qu)t

We have Vo M? = Vel @7 = 2e 0 @ and consequently

2 1
——epm 0D

Vol = e A




25 Radial Minimisation Equation

Project along the field vector:

0=® VeV
— 4V (t) + 4A + 2B
— 4V + 2B,

where we used @'V 4 A = 4A, which holds
because A is a homogenous function of order four.



26 Radial Minimisation Equation

Let V(ty) = 0 at a scale t,
m B > 0 so the potential is bounded from below at higher scales

Expanding to linear order in t,

dav(®
: t> + 2B

0~ 4 (V(to) +

at the minimum

av(®
— (47)’B, we recover the GW relation M? = e~ /2 M2,

sot =ty — 1/[2(4x)?]

Using



27 Minimisation Equation

0=do <4A(t)q>02 + 218%%) ,

\Y%

A(t) (I)OZ = MQM,

solved by

1 \% .
= der(a(o) vz A )em:

Approximating V by v this becomes

(I)OZ

02 _ M .
0% = T adi (A )en adj(A(t))enm.




28 Mass Matrix

The mass matrix around the minimum is then given by

= M; + (47)°VeBVgt + (47)° VetV B
+ (4ﬂ)2BV¢Vgt + Vq)ng,

where M: is the tree-level scalar mass matrix

m The term proportional to B is canceled
by a similar term resulting from V¢V g A



29 Calculation of the Potential Minimum

m Choose M = s along the flat direction

(0
em =e = |
m Thent = In(s*/s5)/(4x)?
m Tree-level flat direction V= 0 at s,

» Minimum given by the usual
Gildener-Weinberg relation
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30 Calculation of the Potential Minimum

= Expand A in h?/s?, giving A(t) — A(t) + AA
m Define ts = t(s = sg) and tys = t(s = sys), the expansion

can absorbed in the field-dependent couplings, yielding

As(t) = fs(t — ts),
Ans(t) = Pus(t — tus),

m Flat direction given by

0 = det(A(ty))
= Bists — (42uPs + 2fstus)to + 4AuPsts



31 Calculation of the Potential Minimum

= Ignore terms proportional to fi (irrelevant unless |tys — tg| is large)
m We get As(to) ~ 0 and sy & s5

®m Minimum direction

where



32 Calculation of the Potential Minimum

m We have thatt =ty — (1/2)/(4#)* =~ ts — (1/2)/(4x)? at the minimum
2

m Define InR ~ (47)*(t — tys) or R = e—l/ZSSTS
HS

m Expressing tys in terms of In R, the potential minimum is at

R (—ﬁm In R/ZAH(4n)2>

28
S 1



33 Calculation of the Potential Minimum
= Mixing angle

0~ (M3 )ns - Pus(1 + InR) XE

mg —my 26+ fysInR s
m Higgs mass (since Vot X e)

1
mlzl = 3ﬂH(t)h2 + EAHS(t)SZ

N —sZﬂAHS InR

= 2/yh’
(M
m Since ®"(M; + VoV A)® = 12V, the scalon mass is
1 B,

mg =~ —ZCDTmZCI) =~

2 2
s (47)2 "




34 Numerical Results
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35 Numerical Results
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Huitu, K.K., Koivunen, Marzola, Mondal, Raidal, to appear



36 Conclusions

m Matrix formalism
with Hadamard product:
compact ‘prepackaged’ expressions
m Multi-phase criticality:
loop-suppressed mass both
for scalon and the Higgs boson



37 Lowest Order Solution

» Approximating

o
A= Apin + fln —, we have
v
®
2
_ 4 ¢ 1
V(gﬂ) B(H)Vq) (ln g — 5)

Sher, Phys. Rept. 179 (1989) 273

m The field ¢ along the flat
direction obtains a mass
m; = 8B(n)vfo

Gildener & Weinberg,

Phys. Rev. D13, 3333 (1976)
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38 Anomalous Dimensions

m Fields in must be scaled with anomalous dimensions as
®(t) = exp(T(t))®(ty), where I'(t) = — ftz y(s)ds

= Denote ® = ®(ty) and take the anomalous dimensions into account by
scaling A — exp(2I'(t)) A exp(2I(t)) and
p — exp(2I(t)) fexp(20(t))



