What if dark matter suddenly disappeared?

Felix Kahlhoefer Particle and Astroparticle Theory Seminar MPIK Heidelberg 23 July 2018

Based on **arXiv:1803.03644** in collaboration with Torsten Bringmann, Kai Schmidt-Hoberg and Parampreet Walia

Outline

- Part 1: Conversion of dark matter to dark radiation
 - Motivation for a model-independent approach
 - Constraints from the Cosmic Microwave Background
 - Intermezzo: Bayesian vs frequentist limits
 - Impact of low-redshift observables
- Part 2: Sommerfeld-enhanced dark matter annihilations
 - Dark matter models with light mediators
 - Cosmological constraints on late-time annihilations
 - Self-interactions and small-scale structure

Describing dark matter in the early Universe

- Cosmological concordance model: Dark matter is a non-relativistic fluid with covariantly conserved number density
- Abundance of DM is set at some very high temperature (e.g. via thermal freeze-out) and then remains unchanged
- Fully described by a single parameter (e.g. the present-day energy density)
- Precisely measured by observations of the Cosmic Microwave Background

- Like any other assumption, this should be tested!
- How strong are constraints on alternative cosmologies, where the comoving DM density changes with time?

Disappearing dark matter

- Of course, DM cannot simply disappear (apologies for the misleading title)!
- Energy conservation requires that any decrease in DM must be compensated by an increase in another form of matter or radiation
- Converting DM into SM particles is typically very strongly constrained
 - CMB bounds on exotic energy injection
 - Bounds on CMB spectral distortions
 - BBN constraints on energetic radiation
- But what if DM converted to something invisible (e.g. sterile neutrinos)?

Emmy

DFG

Noether-

Programm

Disappearing dark matter

• Simplest example: An unstable DM subcomponent

Lattanzi & Valle, arXiv:0705.2406

- Unstable component "disappears" when its decay rate becomes comparable to Hubble rate
- Simple model, but highly non-trivial effect on the expansion history of the Universe

Enqvist et al., arXiv:1505.05511 Berezhiani, Dolgov, Tkachev, arXiv:1505.03644

- Other possibilities
 - Late-time DM annihilations due to Sommerfeld enhancement (see 2nd half of talk)

van den Aarssen et al., arXiv:1202.5456

Binder et al., arXiv:1712.01246

- Mergers of primordial black holes (conversion of dark matter into gravitational waves)

Raidal, Vaskonen, Veermäe, arXiv:1707.01480

- Why is this interesting?
 - Various hints indicate that the concordance model may be incomplete!

Crisis at large scales

- Local (i.e. low-redshift) measurements of the expansion rate H₀ disagree with the value inferred from the CMB
- A similar discrepancy is found in local measurements of the amplitude of the matter power spectrum (parametrised by σ₈)

 The tension between different data sets leads to a poor goodness-of-fit when performing a naive combination

Crisis at small scales

- There are various discrepancies between N-body simulations of collisionless cold DM and astrophysical observations on galactic scales:
 - Too-big-to-fail problem
 - Missing-satellites problem
 - Cusp-vs-core problem
 - Diversity problem

Boylan-Kolchin, Bullock, Kaplinghat: 1103.0007, 1111.2048 Klypin et al.: astro-ph/9901240; Moore et al.: astro-ph/9907411 Moore (1994); Flores, Primack: astro-ph/9402004 Tulin & Yu: arXiv:1705.02358

Could (a fraction of) DM have been converted into some form of dark radiation* (DR) at some point during the cosmological evolution?

And if so, can this address the apparent shortcomings of the concordance model?

* By DR we mean new massless or very light states in the dark sector (e.g. sterile neutrinos), which are have negligible interactions with SM particles

Describing DM-DR conversion

- Focus on scenarios where the conversion rate peaks at a specific point in time
- Adopt a model-independent approach, where the conversion is described by three parameters:
 - How much DM is converted into DR?
 - When does the conversion happen?
 - How quickly does the conversion happen?

ocus on scenarios where the conversion rate neak

Describing DM-DR conversion

- Focus on scenarios where the conversion rate peaks at a specific point in time
- Adopt a model-independent approach, where the conversion is described by three parameters:
 - How much DM is converted into DR?
 - When does the conversion happen?
 - How quickly does the conversion happen?

$$\rho_{\chi}(a) = \frac{\rho_{\chi}^0}{a^3} \left[1 + \zeta \frac{1 - a^{\kappa}}{1 + (a/a_t)^{\kappa}} \right]$$

- ρ_x : Dark matter energy density
- *a*: Scale factor
- $\rho_{x^{0}}$: Present-day dark matter density

- Scale factor at transition: a_t
- Transition slope parameter: κ

10

Describing DM-DR conversion

- Focus on scenarios where the conversion rate peaks at a specific point in time
- Adopt a model-independent approach, where the conversion is described by three parameters:
 - How much DM is converted into DR?
 - When does the conversion happen?
 - How quickly does the conversion happen?

$$\rho_{\chi}(a) = \frac{\rho_{\chi}^{0}}{a^{3}} \left[1 + \zeta \frac{1 - a^{\kappa}}{1 + (a/a_{t})^{\kappa}} \right]$$

- ρ_x : Dark matter energy density
- a: Scale factor
- ρ_{x^0} : Present-day dark matter density

Decaying DM sub-component ($\kappa \sim 2$)

- Fraction of converted DM: ζ
- Scale factor at transition: a_t
- Transition slope parameter: κ

Evolution of dark radiation

• Any decrease in the DM density must be compensated by an increase in DR

$$\frac{1}{a^3}\frac{\mathrm{d}}{\mathrm{d}t}\left(a^3\rho_{\chi}\right) = -\frac{1}{a^4}\frac{\mathrm{d}}{\mathrm{d}t}\left(a^4\rho_{\phi}\right)$$

• Leads to a time-dependent effective number of additional neutrino species

$$\Delta \tilde{N}_{\text{eff}}(a) \equiv \frac{\rho_{\phi}(a)}{\rho_{1\nu}(a)} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\phi}(a)}{\rho_{\gamma}(a)}$$

- Important subtlety: Evolution of background densities does not uniquely fix the evolution of perturbations
 - No completely model-independent treatment possible
 - We assume that perturbations arise only from volume expansion (as for decaying DM)
 - Alternative prescriptions do not significantly change results

A few preliminary considerations

- For a quick transition ($\kappa \ge 2$) the comoving DR density becomes constant for $a > a_t$
- If such a transition happens well before matter-radiation equality ($a_t < 10^{-4}$), our conversion scenario becomes equivalent to having a constant amount of DR
 - Recover $\Lambda CDM + \Delta N_{eff}$ cosmology

- If the transition happens more slowly (or peaks at later times), there is no simple way to estimate constraints
 - Need a full calculation of CMB observables using CosmoMC and CAMB, including all ACDM parameters as well as Planck nuisance parameters

15

depend only on the total amount of "disappearing" DM

17

Intermezzo: Bayesian vs frequentist bounds

- Standard approach in cosmology: Bayesian exclusion limits
 - Preferred parameter region calculated from marginalised posterior likelihoods and assumed priors
 - Works well for parameters that are tightly constrained by data
 - Huge prior dependence for unconstrained parameters
 - Highly undesirable for model-independent approach
- Construct approximate frequentist exclusion limits
 - Define likelihood ratio based on posterior probability:

$$t = -2\Delta \log \mathcal{L} \approx -2\log \left[\frac{p(\zeta, a_t)}{p(\zeta_{\text{best}}, a_{t, \text{best}})}\right]$$

- Assume x^2 distribution with 2 d.o.f. for t
- *t* > 5.99 is excluded at 95% confidence level
- Recover standard bound on ΔN_{eff} from literature

The plot thickens

- Constraints for late-time conversion of DM to DR stem mostly from modifications of the expansion rate and the matter power spectrum
- Can a DM-DR conversion scenario reduce the tension between CMB measurements and low-redshift observables?

- A decrease of Ω_x at late times must be compensated by increasing H_0 to keep $\Omega_x h^2$ constant
- The decrease in Ω_m overcompensates for the increase in σ_8 , reducing the tension further

Constraints with low-redshift observables

- We combine Planck CMB data with
 - Lensing power spectrum reconstruction from Planck
 - Direct measurements of H₀ from HST (supernova data)
 - Direct measurements of σ_8 from Planck cluster counts
- Significant modification of results
 - Substantially weaker limit for late conversion (large *a_t*)
 - mild preference (~2σ) for DM-DR conversion
 - Not possible to fully resolve tension H_0 - σ_8 tension

Outline

- Part 1: Conversion of dark matter to dark radiation
 - Motivation for a model-independent approach
 - Constraints from the Cosmic Microwave Background
 - Intermezzo: Bayesian vs frequentist limits
 - Impact of low-redshift observables

Part 2: Sommerfeld-enhanced dark matter annihilations

- Dark matter models with light mediators
- Cosmological constraints on late-time annihilations
- Self-interactions and small-scale structure

Light mediators in the dark sector

 Consider a (fermionic) DM particle coupled to a light (vector) mediator:

 $\mathcal{L} \supset g_{\chi} \, \bar{\chi} \gamma^{\mu} \chi V_{\mu}$

- Relic abundance set by annihilations into pairs of mediators: Dark sector freeze-out
- Always possible to fix coupling g_x such that observed relic abundance is reproduced

• To avoid overclosing the Universe, the mediator should ultimately decay

For an exception see Duerr et al., arXiv:1804.10385

Self-interactions from a light mediator

- Non-perturbative effects due to multiple mediator exchange enhance DM self-interactions
- Can be calculated by solving non-relativistic Schroedinger equation for Yukawa potential:

$$V(r) = \frac{\alpha \, e^{-r \, m_{\rm med}}}{r}$$

- For $\alpha_S m_\psi \gtrsim m_\phi$ resonances appear and modify results of tree-level calculation.
- Bonus: self-interactions depend on the relative velocity of the DM particles

Velocity-dependent self-interactions

- DM self-interactions lead to energy transfer between DM particles
- Creation of an isothermal core
- Resolution of cusp-core problem
- Need velocity dependence to explain observations at different scales

Enhancement of DM annihilations

- The Yukawa potential from the light mediator exchange also modifies the wavefunction of the annihilating DM pair (so-called Sommerfeld enhancement)
- Significant non-perturbative corrections to the tree-level annihilation rate
- Effects small during freeze-out, but increase with decreasing DM velocity

Enhancement of DM annihilations

- The Yukawa potential from the light mediator exchange also modifies the wavefunction of the annihilating DM pair (so-called Sommerfeld enhancement)
- Significant non-perturbative corrections to the tree-level annihilation rate
- Effects small during freeze-out, but increase with decreasing DM velocity

During recombination dark matter particles move at walking speed!

CMB constraints on self-interacting DM

- DM annihilations during recombination, followed by mediator decays into SM particles, inject energetic electrons and photons into the plasma
- These energetic particles can re-ionize neutral atoms and thereby spoil the excellent agreement between predictions and measurements of the CMB

27

Constraints on vector mediators

• CMB and indirect detection constraints basically exclude the possibility that the mediator of large self-interactions decays into SM particles

What if the mediator decays to dark radiation?

- No injection of electromagnetic energy into plasma → much weaker CMB constraints
- Back to the scenario of DM-DR conversion!
- There may still be relevant constraints if DM annihilations are resonantly enhanced

A second period of DM annihilation

- After kinetic decoupling DM velocity scales as $\,v\,\propto\,a^{-1}$
- Resonant Sommerfeld enhancement: $S(v) \, \propto \, v^{-2}$
- The DM number density scales as $\,
 ho_\chi/m_\chi \propto a^{-3}$
- DM annihilation rate decreases more slowly than the Hubble rate: $\,\Gamma_{
 m ann} \propto a^{-1}$
- DM annihilations can become important once again in the late Universe!

A second period of DM annihilation

- After kinetic decoupling DM velocity scales as $\,v\,\propto\,a^{-1}$
- Resonant Sommerfeld enhancement: $S(v) \, \propto \, v^{-2}$
- The DM number density scales as $\,
 ho_\chi/m_\chi \propto a^{-3}$
- DM annihilation rate decreases more slowly than the Hubble rate: $\,\Gamma_{
 m ann} \propto a^{-1}$
- DM annihilations can become important once again in the late Universe!

CMB constraints on late-time DM annihilations

• For each set of particle physics parameters we solve the Boltzmann equation:

$$\frac{\mathrm{d}\rho_{\chi}}{\mathrm{d}z}(1+z)H(z) - 3\rho_{\chi}H(z) - \frac{1}{2}\langle\sigma v_{\mathrm{rel}}\rangle\frac{\rho_{\chi}^2}{m_{\chi}} = 0$$

- We then determine the values of ζ and $a_{\rm t}$ that give the best fit to the transition
 - Note: It is typically not possible to realize $a_t > 10^{-2}$ due to non-linear structure formation
- We can then use our model-independent results to determine whether the set of parameters is allowed or excluded (or even favoured by data)
 - Note: Since we obtained (approximate) frequentist bounds, there is no need to worry about transformation or priors

Institute for

heoretica

Particle Physics nd Cosmoloay

Emmy Noether-

Programm

Emmy

Noether-

Programm

Solid gray lines indicate how much DM is converted to DR

Emmy

Noether-

Programm

Emmy

Robustly excluded by constraints on self-interacting dark matter

What if dark matter suddenly disappeared? Felix Kahlhoefer | 23 July 2018

Finally: late kinetic decoupling

- Kinetic decoupling temperature T_{kd} depends on coupling between mediator and DR
 - Determines the effective DM temperature:

$$T_{\rm eff} = T_{\rm kd} \frac{a_{\rm kd}^2}{a^2} = \frac{T_0^2}{T_{\rm kd}} a^{-2}$$

- Very small values of T_{kd} are excluded by Lyman-a forest constraints
- Slightly larger values can lead to interesting effects on structure formation
 - Suppression of power on small scales (similar to warm DM)
 - Solution of the missing satellite problem

Bringmann et al., arXiv:1603.04884

Finally: late kinetic decoupling

- Kinetic decoupling temperature T_{kd} depends on coupling between mediator and DR
 - Determines the effective DM temperature:

$$T_{\rm eff} = T_{\rm kd} \frac{a_{\rm kd}^2}{a^2} = \frac{T_0^2}{T_{\rm kd}} a^{-2}$$

- Slightly larger values can lead to interesting effects on structure formation
 - Suppression of power on small scales (similar to warm DM)
 - Solution of the missing satellite problem

Bringmann et al., arXiv:1603.04884

Potential resolution of all small-scale and large-scale problems of $\Lambda CDM!$

What's next? CosmoBit!

- Implementation of cosmological models and observables in the global fitting framework GAMBIT (The Global And Modular BSM Inference Tool)
- Interface for a range of cosmology codes and likelihoods
 - (Multi-field) inflation
 - BBN
 - CMB
 - Large-scale structure
 - Small-scale structure
- Implementation and analysis of a range of exciting models
 - Models of inflation
 - Warm, self-interacting or decaying dark matter
 - New light degrees of freedom ("dark radiation")

- ...

Example: Running CLASS with GAMBIT

Emmy Noether-Programm DFG Deutsche Forschungsger

41

What if dark matter suddenly disappeared? Felix Kahlhoefer | 23 July 2018

 \mathcal{L}

Conclusions

- Even models with a secluded dark sector annihilating into invisible dark radiation may actually be testable!
- CMB data is highly sensitive to the conversion of (even a small fraction of) DM to DR
- We would definitely notice if DM suddenly disappeared in the early Universe!
- Interesting scenario: Self-interacting WIMPs from light mediator exchange
- Simultaneous resolution of small-scale problems and large-scale tension possible
- By-product: Model-independent constraints on any type of DM-DR conversion

Emmy Noether-Programm DFG Peticle Percenter

Another look at perturbations

• Once we consider a specific particle physics realisation of DM-DR conversion, we can in principle calculate the evolution of perturbations self-consistently

44

