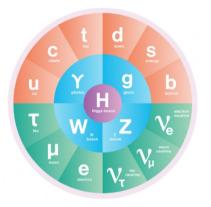
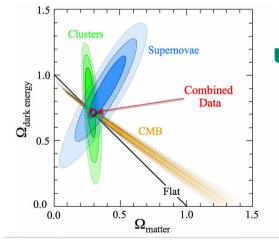


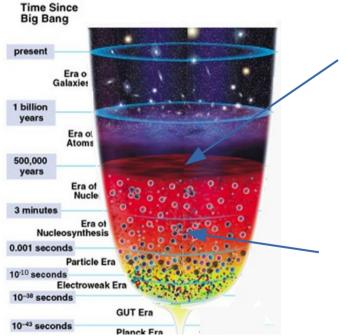
The collider cosmology connection


Felix Kahlhoefer Gentner Kolloquium Max-Planck-Institut für Kernphysik Heidelberg, 08 February 2023

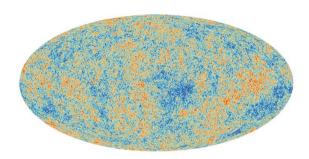


Particle physics and cosmology: Two success stories

- The Standard Model successfully predicts a wide range of measurements at colliders and precision experiments
- The discovery of the Higgs boson at the LHC provides the final ingredient necessary for theoretical consistency

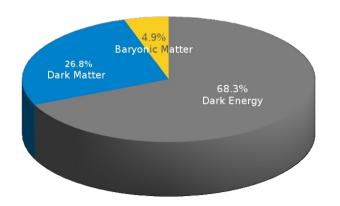


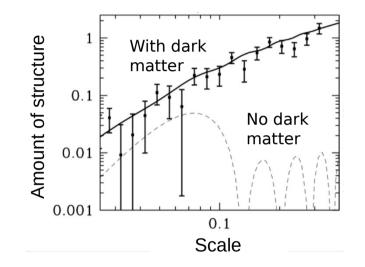
- The cosmological concordance model ACDM successfully fits a huge wealth of data in terms of only six parameters
 - Cosmic microwave background (CMB)
 - Distribution of large-scale structure
 - Expansion history of the universe


Evolution of the early universe

10¹² – 10¹³ s after Big Bang:
 Recombination
 → Formation of atoms

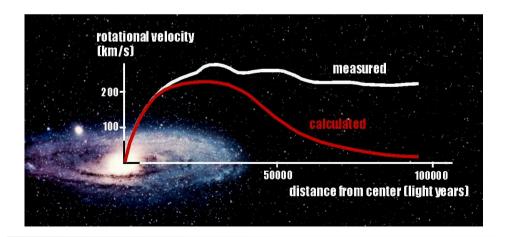
1 – 100 s after Big Bang:
Big Bang Nucleosynthesis
→ Formation of nuclei

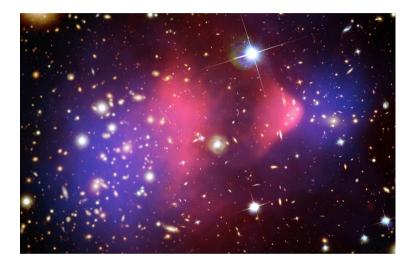



The puzzle of dark matter

A key ingredient of ACDM: Dark matter (DM)

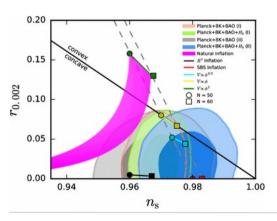
- Not affected by the high density of energetic photons after the Big Bang
- Faster gravitational collapse (i.e. more efficient structure formation) than for visible matter




There must be about **5 times more** dark than visible matter to explain observed amounts of structure in the present universe

Astrophysical evidence for DM

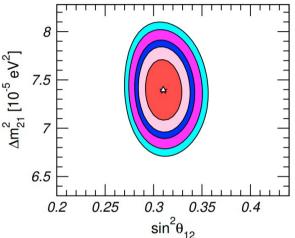
- Cosmological evidence for DM corroborated by wide range of astrophysical observations
 - Galactic rotation curves
 - Weak lensing of galaxy clusters



Almost all astrophysical systems need contribution to gravitational potential from "invisible" mass

Particle physics and cosmology: Successes or shortcomings?

The Standard Model works almost too well


- No evidence for BSM Physics that would provide deeper understanding of the SM parameters
- No viable explanation for dark matter, neutrino masses and the baryon asymmetry of the universe

ACDM works almost too well

- All data consistent with DM being a perfect fluid without pressure or friction and conserved (comoving) energy density
- No evidence for deviations from ACDM that would provide clues regarding the nature of DM, dark energy or inflation

Particle physics and cosmology: Profound connections

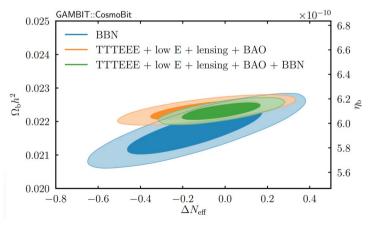
- The past two decades have revealed profound connections between the largest and smallest scales in nature
- Cosmological observables are sensitive to the properties of elementary particles
 - Neutron lifetime and nuclear reaction rates affect the primordial abundances of light elements, which in turn affect the physics of recombination
 - The expansion rate of the universe is highly sensitive to the effective number of active neutrinos and confirms the Standard Model prediction
 - Cosmology places strong bounds on the sum of neutrino masses

Expect similar connections also for the case of dark matter

DM beyond the simplest assumptions

- Any particle physics model of DM predicts **deviations from ΛCDM** predictions
 - DM particles can be produced or destroyed (via annihilation or decay)
 - DM particles have non-negligible kinetic energy
 - DM particles experience self-scattering or dissipation
 - DM particles have non-gravitational interactions with other particle species
 - Macroscopic quantum effects (Pauli exclusion, de Broglie wavelength)

Key challenge: Need to correlate cosmological observations with bounds from laboratory experiments

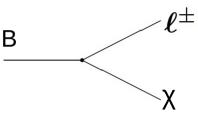

Example 1: Relativistic degrees of freedom

- Important contribution: Energy density of Standard Model neutrinos
 - Parametrised by the effective number of relativistic particles N_{eff}
 - Standard Model prediction: N_{eff} = 3 (more precisely 3.045 due to non-zero interactions)
 - Deviation from this prediction (called ΔN_{eff}) strongly constrained by combination of cosmological observables

Current bound: $|\Delta N_{\text{eff}}| < 0.3 (95\% \text{ CL})$

Sensitivity projection: $|\Delta N_{eff}| < 0.06$ (CMB-S4)

Emmy Noether-Programm


10 08/02/2023

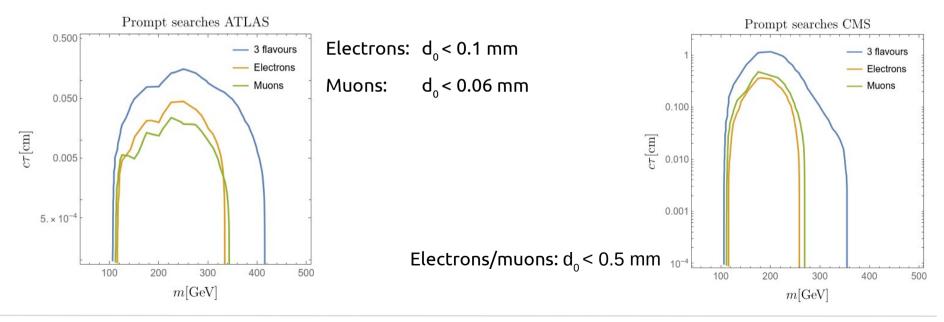
Non-thermal dark radiation

Contributions to ΔN_{eff} arise from any type of (nearly) massless particles

- Simple toy model: Consider a new particle *B* that decays into a lepton and a very light fermion χ
- Energy density of χ depends on lifetime τ_B of *B* compared to the age of the universe, given by the inverse Hubble expansion rate: $\tau_U \sim 1/H(T)$
 - For $\tau_{B} < \tau_{U}$ the decays are *fast*: $\rightarrow \chi$ enters into thermal equilibrium $\rightarrow \Delta N_{eff} \sim 1$
 - For $\tau_B > \tau_U$ the decays are *slow*: $\rightarrow \chi$ remains non-thermal $\rightarrow \Delta N_{\text{eff}} << 1$

Particle physics – cosmology connections

- During radiation domination, age of the universe is given by $\tau_{\rm U}$ ~ M_P / T^2
- For T = 250 GeV find τ_u ~ 4 × 10⁻¹² s
- The requirement of non-thermal dark radiation implies $c\tau_{\rm B} > c\tau_{\rm U} \sim 1 \text{mm}$
- If the particle *B* can be produced at the LHC, it will travel a typical distance $I_B = \beta \gamma c \tau_B$ before decaying
- Lepton track has non-zero transverse impact parameter d₀ (i.e. track does not point back to interaction point)
- If d₀ is larger than vertex resolution (σ ~ 0.1mm), events will be rejected by cuts on vertex quality

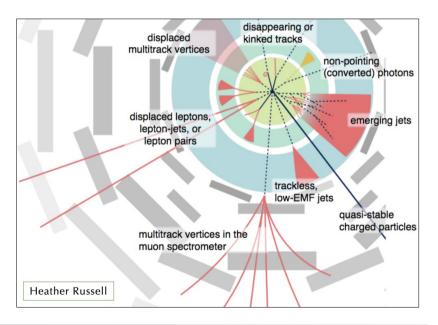


Very slightly displaced leptons

Reinterpretation of LHC SUSY searches for slepton pair production

Bernreuther, FK et al., arXiv:2204.01759

LHC searches for long-lived particles


Loss of sensitivity for conventional searches compensated by broad experimental search programme for specific signatures of long-lived particles

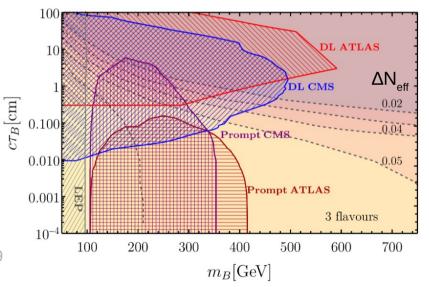
Of interest here: Searches for displaced leptons

- ATLAS: 3 mm < d₀ < 300 mm
- CMS: 0.1 mm < d₀ < 100 mm

Assume *B* has SM gauge interactions

- $\rightarrow\,$ Production cross section depends only on m_{B}
- \rightarrow Constraints can be directly translated

LHC searches for dark radiation



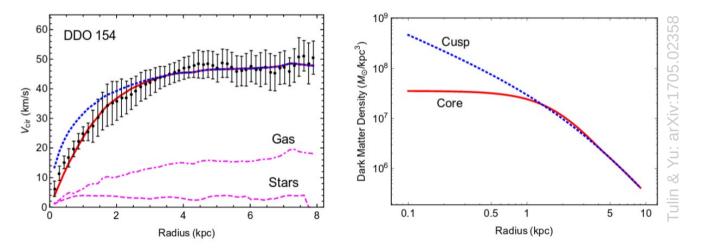
The same parameters that determine the LHC constraints also govern the production of dark radiation in the early universe

Possible to predict ΔN_{eff} in terms of $c\tau_B$ and m_B

- Correlation between LHC constraints and cosmological observations
- Can constrain the most interesting parameter regions for future CMB missions

Bernreuther, FK et al., arXiv:2204.01759

Example 2: Dark matter self-interactions



- In the ∧CDM model, DM particles are assumed to be perfectly collisionless
- However, for almost any particle physics model of DM this approximation is predicted to break down at some point
- Indeed, with the exception of neutrinos all fermions in the Standard Model experience large self-interactions (either through long-range interactions or through the strong force)
- As new (and more precise) observations become available, we can expect that deviations from the simplest predictions emerge
- These deviations may tell us something about the kinds of DM models that we should search for in the laboratory

The cusp-core problem

There are various observations that favour DM halos with constant-density cores, in apparent disagreement with the predictions of collisionless cold DM

DM self-interactions may potentially resolve this discrepancy

Spergel & Steinhard: astro-ph/990938

Back-of-the-envelope estimate

We can estimate the required cross section through simple dimensional arguments

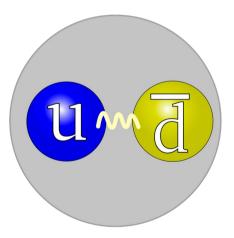
Consider a Milky Way-like galaxy: mass M ~ 10¹² M_{sun}

radius r ~ 100 kpc

 $\rightarrow~Surface~density~\Sigma\sim~M/r^{2}\sim10^{8}~M_{sun}/kpc^{2}\sim2~g$ / cm^{2}

Self-interactions will be important if the cross section σ satisfies $\Sigma \sigma / m_{DM} > 1$ $\rightarrow \sigma / m_{DM} > 0.5 \text{ cm}^2 / \text{g} \sim 1 \text{ barn} / \text{GeV} \sim \Lambda_{\text{QCD}}^{-3}$

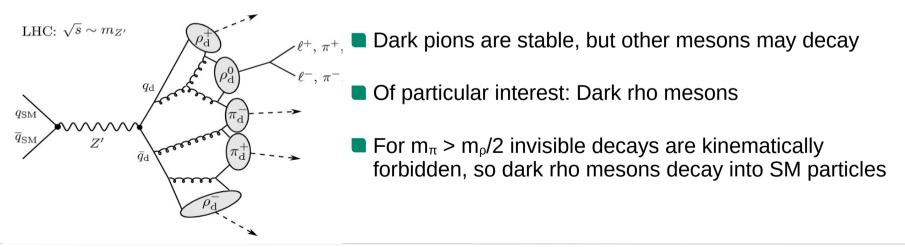
Similar to nucleon-nucleon scattering cross section!


Strongly-interacting dark sectors

- This surprising result compels us to think about dark matter particles with interactions similar to QCD
- Consider a dark sector that **contains dark gluons and dark quarks**:

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu a} + \overline{q}_{\rm d} i \not\!\!\!D q_{\rm d} - \overline{q}_{\rm d} M_q q_{\rm d}$$

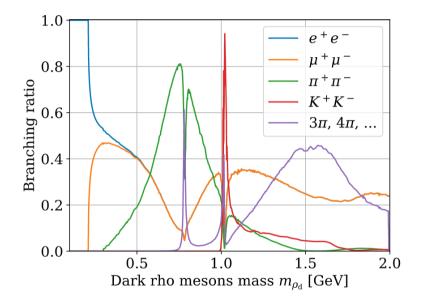
- For energies below some scale Λ_d the dark sector confines, giving rise to dark mesons and dark baryons
- In contrast to the SM, it is possible that the lightest dark mesons (i.e. the dark pions) are stable and possible DM candidates



Dark showers

Assume that dark quarks also couple to SM particles (details irrelevant here)

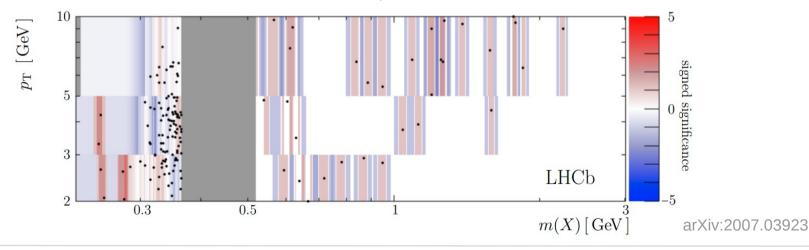
- $\rightarrow\,$ Possible to pair-produce dark quarks at the LHC
- \rightarrow Dark quarks will undergo fragmentation and hadronisation in the dark sector
- → Result: Dark shower with high multiplicity of dark mesons



Displaced vertices from dark showers

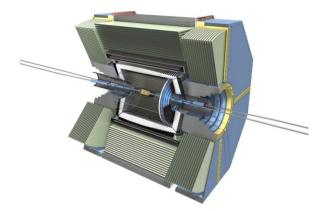
- GeV-scale dark rho meson predicted to decay dominantly into pairs of charged particles
- If the dark rho mesons decay promptly, the dark shower results in a semi-visible jet
- Difficult to distinguish from ordinary QCD jets

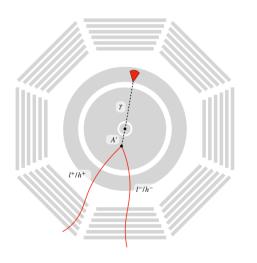
- But if the dark rho mesons are long-lived, we can hope to reconstruct individual displaced vertices
 - \rightarrow Striking signature very different from SM


Displaced vertex search at LHCb

LHCb has searched for GeV-scale LLPs decaying into a pair of muons

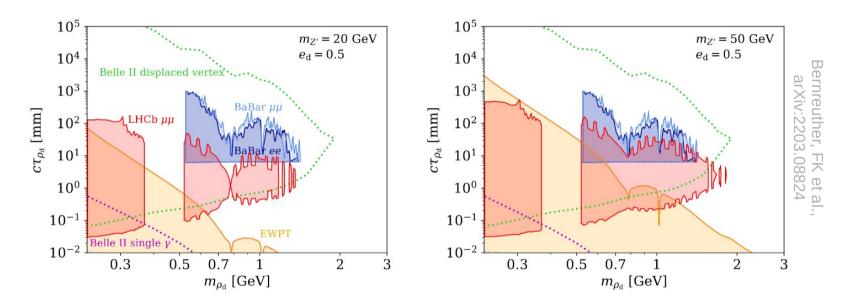
- Requirement: Transverse displacement 12–30 mm
- Veto invariant mass close to K meson mass


Present model-independent results in different p_{T} bins



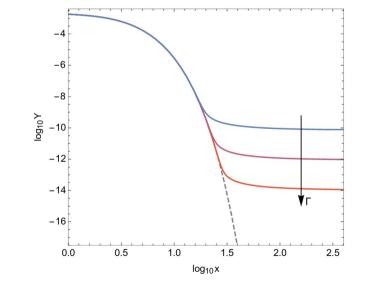
What about Belle II?

Since 2020 Belle II is using e⁺e⁻ collisions at √s ~ 10.6 GeV to compete with LHCb for the most precise measurements of B mesons



- The Belle II detectors are highly suited to search also for DVs from exotic LLPs
- Transverse distance of DV can be as large as 60cm
- Smaller energies ↔ smaller boost factors
- Expect sensitivity to much larger lifetimes

Comparison of sensitivities


Mass reach of LHCb and Belle II comparable, but Belle II sensitive to larger decay lengths
 Note: LHCb constraint depends on details of interaction between SM and dark sector

Simple example: Thermal freeze-out

parameters

- DM production and annihilation processes are in equilibrium in early universe
- As universe cools down, DM particles depart from equilibrium (freeze-out)
- DM abundance set by freeze-out temperature

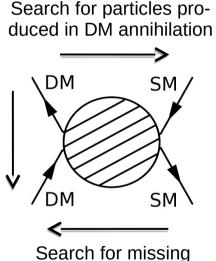
In many models, the DM abundance can be calculated in terms of fundamental

WIMP mechanism

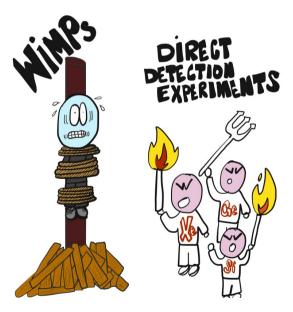
The contribution of DM to the energy density of the present universe can be estimated as $\Omega \sim (c\tau_U)^2 (T_{CMB}/M_{Pl})^3 < \sigma v > 1$

- with $c\tau_{U} \sim 10^{26}$ m: present size of the observable universe
 - $T_{CMB} \sim 2.7 K$: present-day CMB temperature
 - <σv>: effective annihilation cross section

```
Find \Omega \sim 25\% for \langle \sigma v \rangle \sim 10^{-9} \text{ GeV}^{-2} \sim \alpha^2 / v_{\text{EW}}^2
```


Observations reproduced for particles with weak interactions and mass close to the electroweak scale

"WIMP mechanism"


scattering Search for recoil energy from DM-nucleus

energy at colliders

The same processes that set the DM relic abundance should also be **observable in laboratory** experiments

- Lack of evidence for WIMP signals at direct detection experiments and colliders **puts** pressure on this idea
- Is the WIMP mechanism still viable?

By Saniya Heeba

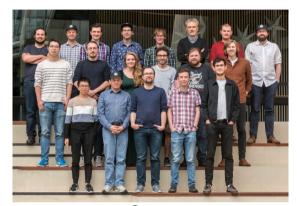
Particle physics and cosmology: It's complicated

- Joint analyses of particle physics and cosmology face many challenges
- Challenge 1: Theory predictions
 - Need mapping from fundamental particle theory to effective cosmological description
 - Need wide range of different numerical tools to calculate signal predictions

Particle physics and cosmology: It's complicated

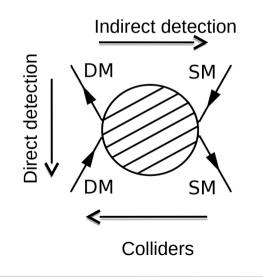
- Joint analyses of particle physics and cosmology face many challenges
- Challenge 1: Theory predictions
 - Need mapping from fundamental particle theory to effective cosmological description
 - Need wide range of different numerical tools to calculate signal predictions
- **Challenge 2:** Wealth of data
 - Need to consider huge number of measurements across many different experiments
 - Need simplified likelihoods to allow for flexible reinterpretation

$$\mathcal{L} = \mathcal{L}_{LHC} \cdot \mathcal{L}_{\Omega h^2} \cdot \mathcal{L}_{DM} \cdots$$


Particle physics and cosmology: It's complicated

- Joint analyses of particle physics and cosmology face many challenges
- Challenge 1: Theory predictions
 - Need mapping from fundamental particle theory to effective cosmological description
 - Need wide range of different numerical tools to calculate signal predictions
- **Challenge 2:** Wealth of data
 - Need to consider huge number of measurements across many different experiments
 - Need simplified likelihoods to allow for flexible reinterpretation
- Challenge 3: Analysis methods
 - Need advanced sampling methods (grid or random scans inefficient in high dimension)
 - Need consistent statistical framework to answer underlying questions

GAMBIT The Global And Modular BSM Inference Tool



- International community with 50+ collaborators (10+ experiments, 10+ theory codes)
- A **software framework** for global fits developed over the past decade
 - Automated construction of composite likelihoods
 - Efficient scans of multi-dimensional parameter space
 - Consistent treatment of nuisance parameters
 - Maximum of flexibility and modularity in terms of data sets and models
 - Optimized for parallel computing & fully open source

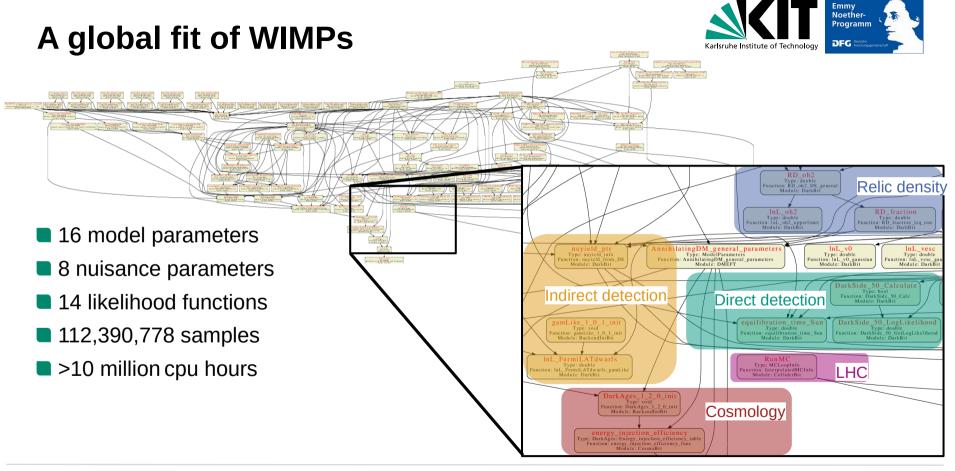
So what about WIMPs?

Model-independent approach: Use effective description of interactions between WIMPs and SM particles

$$\mathcal{L}_{ ext{int}} = \sum_{a,d} rac{\mathcal{C}_a^{(d)}}{\Lambda^{d-4}} \mathcal{Q}_a^{(d)}$$

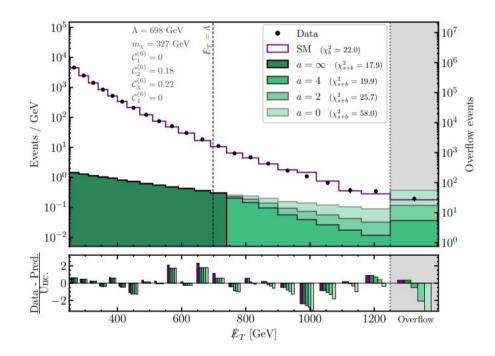
Dimension 6

$$\mathcal{Q}_{1,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}q),$$


$$\mathcal{Q}_{2,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}q),$$

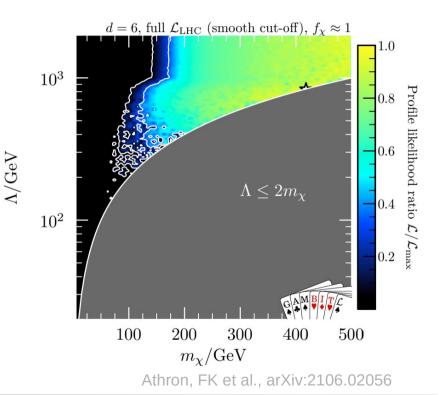
$$\mathcal{Q}_{3,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q),$$

$$\mathcal{Q}_{4,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q).$$


$$\begin{split} & \overset{\mathsf{P}}{\underset{q}{\mathsf{UOS}}} \mathcal{Q}_{1}^{(7)} = \frac{\alpha_{s}}{12\pi} (\overline{\chi}\chi) G^{a\mu\nu} G^{a}_{\mu\nu}, \\ & \mathcal{Q}_{2}^{(7)} = \frac{\alpha_{s}}{12\pi} (\overline{\chi}i\gamma_{5}\chi) G^{a\mu\nu} G^{a}_{\mu\nu}, \\ & \mathcal{Q}_{3}^{(7)} = \frac{\alpha_{s}}{8\pi} (\overline{\chi}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu}, \\ & \mathcal{Q}_{4}^{(7)} = \frac{\alpha_{s}}{8\pi} (\overline{\chi}i\gamma_{5}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu}, \\ & \mathcal{Q}_{5,q}^{(7)} = m_{q} (\overline{\chi}\chi) (\overline{q}q), \\ & \mathcal{Q}_{6,q}^{(7)} = m_{q} (\overline{\chi}\chi) (\overline{q}q), \\ & \mathcal{Q}_{6,q}^{(7)} = m_{q} (\overline{\chi}\chi) (\overline{q}i\gamma_{5}q), \\ & \mathcal{Q}_{8,q}^{(7)} = m_{q} (\overline{\chi}i\gamma_{5}\chi) (\overline{q}i\gamma_{5}q), \\ & \mathcal{Q}_{9,q}^{(7)} = m_{q} (\overline{\chi}\sigma^{\mu\nu}\chi) (\overline{q}\sigma_{\mu\nu}q), \\ & \mathcal{Q}_{10,q}^{(7)} = m_{q} (\overline{\chi}i\sigma^{\mu\nu}\gamma_{5}\chi) (\overline{q}\sigma_{\mu\nu}q). \end{split}$$

Role of the LHC

- Leading LHC constraints come from searches for jets + missing energy (MET)
- DM signal leads to harder spectrum than SM background
- Expect EFT to break down for MET $> \Lambda$
- Nuisance parameter a governs resulting suppression of MET spectrum
- Many different correlated signal regions
- Publicly available information makes reinterpretation possible



Athron, FK et al., arXiv:2106.02056

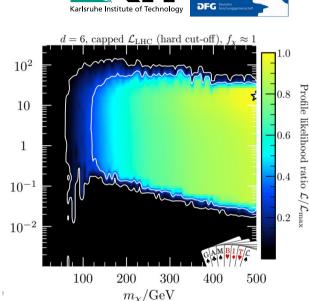
Main results

- Grey: Effective description invalid
- Black: Excluded experimentally
- Colour: Viable parameter space
- Lower bound on the WIMP mass: m_{WIMP} > 100 GeV
- Best-fit point requires contribution from at least two different effective operators to satisfy all constraints

Outlook

Interesting finding: Viable parameter region corresponds to sizable signals in near-future direct detection experiments (like XENONnT)

Athron, FK et al., arXiv:2106.02056


number of events in LZ

Pred.

Ongoing work: Consider also likelihood from AMS-02 anti-proton data using neural network predictions

Balan, FK, Korsmeier, Manconi & Nippel, in preparation

Emmy Noether-Programm

WIMP models remain viable but will soon be comprehensively probed

Conclusions

Many deep connections between particle physics and cosmology

- Three curious coincidences:
 - $cM_{pl} / v_{EW}^2 \sim 1 mm \sim \sigma_{vertex}$
 - $\blacksquare r_{gal}^2 / M_{gal} \sim 0.5 \text{ cm}^2 / \text{g} \sim \Lambda_{\text{QCD}}^{-3}$
 - $(C\tau_U)^2 (T_{CMB}/M_{Pl})^3 \sim 10^{-9} \text{ GeV}^{-2} \sim \alpha^2 / v_{EW}^2$

- → Long-lived particle searches at the LHC constrain models of non-thermal dark radiation
- → Hints for DM self-interactions motivate LHC searches for strongly-interacting dark sectors
- → Thermal freeze-out mechanism can be tested by global analysis of searches for WIMPs at the electroweak scale