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Introduction  
Motivation of Flavour Symmetries 



Why Flavour Symmetry? 
in SM (+Majorana neutrinos) there are a total of 28 parameters 

12 
10 

2 

2 

1 
1 

•  most of the parameters stem from interactions with the Higgs field, i.e. 
flavour parameters 

•  other interactions tightly constrained by symmetry principles  

•  quarks small mixings; leptons large mixings 

•  this talk mostly leptons, for quarks many similar ideas are being pursued 

 



Two Theoretical Approaches 
to Flavour 

String Theory, GUTs, etc.  

SM 

top-down 

look at apparent regularities 
in masses and mixings etc. 

bottom-up 

build models that reproduce the 
observed structures 



Bottom Up Approach  

look at apparent regularities 
in masses and mixings etc. 

bottom-up 

build models that reproduce the 
observed structures 

•  there are many ways to go 
from low to high energies 
(effective field theory 
swampland) 

•  PLAN of Talk: 
•  use remnant symmetries 

of mass matrices to guide 
model building 

•  concrete model building 
challenge: vacuum 
alignment 

•  applications to strong CP 
problem and CP phases 



  (     ) (     ) (    ) = x x 

Leptonic Mixing 
•  in SM there are three generations of leptons, two mass matrices 

•  after diagonalization of two mass matrices 

•  flavour violation only in charged current interactions, analog of CKM   

Non-zero ✓13 Constraining family-Higgs models

Constraining flavo-Higgs models

Not all parameter choices give realistic models.

We constrain the models by
Positive m2 for all 5 neutral and 2 charged Higgses
Unitarity constraints
Z- and W-decay constraints
Oblique parameters
For models with explicit fermion content

Rare decays
Meson oscillations
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Standard 3-Flavour Picture 
•  Recent Progess in Determination of Leptonic Mixing Angles 
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�� sin2 ✓12 sin2 ✓23 sin2 ✓13 �

[10�5 eV2] [10�3 eV2] [10�1] [10�1] [10�2] [⇡]

best fit 7.62+.19
�.19 2.55+.06

�.09 3.20+.16
�.17 6.13+.22

�.40 2.46+.29
�.28 0.8+1.2

�.8

3� range 7.12� 8.20 2.31� 2.74 2.7� 3.7 3.6� 6.8 1.7� 3.3 0� 2

Table 1: Global fit of neutrino oscillation parameters (for normal ordering of neutrino masses) adapted

from [17]. The errors of the best fit values indicate the one sigma ranges. In the global fit there are two nearly

degenerate minima at sin2 ✓23 = 0.430+.031
�.030, see Figure 1.

only the structure of flavor symmetry group and its remnant symmetries are assumed and we

do not consider the breaking mechanism i.e. how the required vacuum alignment needed to

achieve the remnant symmetries is dynamically realized.

The PMNS matrix is defined as

UPMNS = V †
e V⌫ (1)

and can be determined from the unitary matrices Ve and V⌫ satisfying

V T
e MeM

†
eV

⇤
e = diag(m2

e,m
2
µ,m

2
⌧ ) and V T

⌫ M⌫V⌫ = diag(m1,m2,m3), (2)

where the mass matrices are defined by L = eTMeec +
1
2⌫

TM⌫⌫. We will now review how

certain mixing patterns can be understood as a consequence of mismatched horizontal sym-

metries acting on the charged lepton and neutrino sectors [11–13; 26–28]4. Let us assume

for this purpose that there is a (discrete) symmetry group Gf under which the left-handed

lepton doublets L = (⌫, e) transform under a faithful unitary 3-dimensional representation

⇢ : Gf ! GL(3, ):

L ! ⇢(g)L, g 2 Gf . (3)

The experimental data clearly shows (i) that all lepton masses are unequal and (ii) there is

mixing amongst all three mass eigenstates. Therefore this symmetry cannot be a symmetry

of the entire Lagrangian but it has to be broken to di↵erent subgroups Ge and G⌫ (with

trivial intersection) in the charged lepton and neutrino sectors, respectively. If the fermions

transform as

e ! ⇢(ge)e, ⌫ ! ⇢(g⌫)⌫, ge 2 Ge, g⌫ 2 G⌫ , (4)

for the symmetry to hold, the mass matrices have to fulfil

⇢(ge)
TMeM

†
e⇢(ge)

⇤ = MeM
†
e and ⇢(g⌫)

TM⌫⇢(g⌫) = M⌫ . (5)

Choosing Ge or G⌫ to be a non-abelian group would lead to a degenerate mass spectrum,

as their representations cannot be decomposed into three inequivalent one-dimensional rep-

resentations of Ge or G⌫ . This scenario is not compatible with the case of three distinguished

4We here follow the presentation and convention in [26; 27].
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•  Largish Θ13  established 
•  Hint for non-maximal θ23 

•   unknowns: 
•  Normal or Inverted Hierarchy? 
•  Majorana or Dirac (L-number 

conservation) ? 
•  Is there CP violation in the 

lepton sector? 
•  𝛿CP & Majorana Phases 

•  are there sterile neutrinos that sizably 
mix with the active ones?  

global fit 
[Forero, Tortola, 
Valle 2012] 

3.1 Oscillations of active neutrinos
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Figure 3.1: The two possible active neutrino mass orderings, adapted from Ref. [112] using

current data (Table 3.1) and δ = 0. The colour coding indicates the fraction |Ũℓi| of
each distinct flavour νℓ, ℓ = e, µ, τ contained in each mass eigenstate νk, k = 1, 2, 3.

the masses may be obtained from beta decay and neutrinoless double beta decay, as well as
from cosmological considerations; all of those probes could also shed light on the neutrino mass
ordering, and will be discussed in Sections 3.3, 3.4 and 3.6 below.

There are several global fits [122–124] to the mass and mixing parameters from neutrino
oscillation experiments: the latest best-fit and 3σ ranges are shown in Table 3.1, taken from
Ref. [122]. Using the best-fit values for the mixing angles in the normal ordering case, the
magnitude of the PMNS matrix is

|Ũ |δ=0 ≃

⎛

⎝

0.814 0.559 0.157
0.453 0.444 0.773
0.362 0.701 0.614

⎞

⎠ , |Ũ |δ=0.80π ≃

⎛

⎝

0.814 0.559 0.157
0.276 0.571 0.773
0.510 0.602 0.614

⎞

⎠ , (3.6)

for δ = 0 and the best-fit value of δ = 0.80π (the Majorana phases have been set to zero).
Explanation of the neutrino mixing pattern, Ũ , which is completely different to the small mixing
in the quark sector, has prompted research into flavour symmetry models (cf. Section 4.1).

The CP -violating phase δ is only weakly constrained by the global fits, but the prospects
of its measurement have significantly improved now that θ13 ̸= 0 (see Ref. [125] for a review).
One approach is to compare electron neutrino and antineutrino appearance probabilities using
LBL experiments such as T2K and NOνA. Due to parameter degeneracies it may also be
necessary to examine both the first and the second oscillation maximum, either with two
detectors at different baselines, such as at T2KK [126], or with a single detector that measures
successive oscillation peaks over a wide energy range [127]. An alternative approach is to use
cyclotron stopped-pion decay-at-rest neutrino sources situated at different distances from a
single detector, as in the DAEδALUS [128, 129] experiment. However, one of the cleanest ways
to measure δ would be at a neutrino factory [130–132], where the energy spectrum of muon
neutrinos is more accurately known.

Note that the Majorana phases α and β do not affect the neutrino oscillation probability; they
have physical consequences only if neutrinos are Majorana particles, influencing the amplitude
for 0νββ, discussed in Section 3.4 below. In addition, the absolute mass scale of neutrinos is
not measured in oscillation experiments; there are only has upper bounds from beta decay and
cosmology (see Sections 3.3 and 3.6.1).
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Lepton Mixing from Discrete 
Flavour Symmetries 
 based on  [MH, K.S. Lim, M. Lindner 1212.2411(PLB)] and [MH, 
K.S. Lim, 1306.4356(PRD)]  



Remnant Symmetries of Mass Matrices 
the mass matrices are diagonalizable 

which implies the following symmetries of the mass matrices 
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2
⌧ ) and V T

⌫ M⌫V⌫ = diag(m1,m2,m3).

where αi are real, implying Ge=U(1)3, and εi=±1, implying Gν=Z2
3 (if neutrinos are Dirac Gν=U(1)3)  

•  „remnant“ symmetries can either be accidental or left-overs from the breakdown of a 
flavour symmetry Gf 

•  since left-handed leptons are unified in SM, L=(ν, e)T, the flavour groups has 
to be  broken to different subgroups Ge and Gν 
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with unitary 
matrices given 
by 

Given remnant symmetries, what can we learn about the mixing? 
•  symmetry generators commute with mass matrices, therefore can be diagonalized 

simultaneously  
•  determine the mixing matrix up to permutations of rows and colums of the 

PMNS matrix  
•  remnant symmetries therefore encode information about the mixing angles, no 

information about mass ordering 
 

•  these symmetries are just reformulation of the fact that mass matrices are diagonalizable 
•  for any mixing there are (different) symmetries 

 

Model 

Mass 
Matrices 

PMNS 
Matrix 



Lepton mixing from discrete groups 
complete flavour group 

residual symmetry of (Me Me+)   residual symmetry of Mν 

Gf 

misaligned non-commuting 
symmetries lead to 

[He, Keum, Volkas ‘06; 
Lam’07,‘08; 
Altarelli,Feruglio’05, 
Feruglio, 
Hagedorn,Toroop’11] 

 

Ge Gν 

•  mixing matrix determined from 
symmetry up to interchanging of 
rows/columns and diagonal phase 
matrix 

LH leptons 3-dim rep. 
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from [17]. The errors of the best fit values indicate the one sigma ranges. In the global fit there are two nearly

degenerate minima at sin2 ✓23 = 0.430+.031
�.030, see Figure 1.

only the structure of flavor symmetry group and its remnant symmetries are assumed and we

do not consider the breaking mechanism i.e. how the required vacuum alignment needed to

achieve the remnant symmetries is dynamically realized.

The PMNS matrix is defined as
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metries acting on the charged lepton and neutrino sectors [11–13; 26–28]4. Let us assume

for this purpose that there is a (discrete) symmetry group Gf under which the left-handed

lepton doublets L = (⌫, e) transform under a faithful unitary 3-dimensional representation

⇢ : Gf ! GL(3, ):

L ! ⇢(g)L, g 2 Gf . (3)

The experimental data clearly shows (i) that all lepton masses are unequal and (ii) there is

mixing amongst all three mass eigenstates. Therefore this symmetry cannot be a symmetry

of the entire Lagrangian but it has to be broken to di↵erent subgroups Ge and G⌫ (with

trivial intersection) in the charged lepton and neutrino sectors, respectively. If the fermions

transform as

e ! ⇢(ge)e, ⌫ ! ⇢(g⌫)⌫, ge 2 Ge, g⌫ 2 G⌫ , (4)

for the symmetry to hold, the mass matrices have to fulfil
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⇤ = MeM
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e and ⇢(g⌫)

TM⌫⇢(g⌫) = M⌫ . (5)

Choosing Ge or G⌫ to be a non-abelian group would lead to a degenerate mass spectrum,

as their representations cannot be decomposed into three inequivalent one-dimensional rep-

resentations of Ge or G⌫ . This scenario is not compatible with the case of three distinguished

4We here follow the presentation and convention in [26; 27].
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We further restrict ourselves to the case of Majorana neutrinos, which implies that there

cannot be a complex eigenvalue of the matrices ⇢(g⌫) and they therefore satisfy ⇢(g⌫)2 = 1,

and we can further choose det ⇢(g⌫) = 1. By further requiring three distinguishable Majorana

neutrinos the group G⌫ is restricted to be the Klein group Z2 ⇥ Z2. To be able to determine

(up to permutations of rows and columns) the mixing matrix from the group structure it is

necessary to have all neutrinos transform as inequivalent singlets of G⌫ . The same is true for

the charged leptons which shows that Ge cannot be smaller than Z3. We can now determine

the mixing via the unitary matrices ⌦e, ⌦⌫ that satisfy

⌦†
e⇢(ge)⌦e = ⇢(ge)diag, ⌦†

⌫⇢(g⌫)⌦⌫ = ⇢(g⌫)diag (6)

where ⇢(g)diag are diagonal unitary matrices. These conditions determine ⌦e, ⌦⌫ up to a

diagonal phase matrix Ke,⌫ and permutation matrices Pe,⌫

⌦e,⌫ ! ⌦e,⌫Ke,⌫Pe,⌫ . (7)

It follows from Eqn. (5) that up to the ambiguities of the last equation, Ve,⌫ are given by ⌦e,⌫ .
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diag(m2
e,m

2
µ,m

2
⌧ ), and analogously for ⌦⌫ . From these group theoretical considerations we

can thus determine the PMNS matrix

UPMNS = ⌦†
e⌦⌫ (8)

up to a permutation of rows and columns. It should not be surprising that it is not possible

to uniquely pin down the mixing matrix, as it is not possible to predict lepton masses in this

approach.

Let us now try to apply this machinery to some interesting cases. We have seen that the

smallest residual symmetry in the charged lepton sector is given by a Ge =
⌦
T |T 3 = E

↵ ⇠= Z3.

We use a basis where the generator is given by

⇢(T ) = T3 ⌘
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CA . (9)

This matrix will be our standard 3-dimensional representation of Z3 and the notation T3 will

be used throughout this work. It is diagonalized by
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•  abelian (3 different masses) 
•   3 different elements (to 

distinguish ) 
•  smallest group Z3 

•  abelian (3 different masses) 
•  3 different elements (to distinguish ) 
•  if Majorana eigenvalues +/- 1 

•  smallest group Z2xZ2 that fixes 
all angles is also maximal 

•  if Ge or Gν do not have 
3 different eigenvalues, 
the mixing matrix is not 
fully determined (free 
continuous parameter) 



What are discrete groups? Chapter 2. Discrete Symmetry Groups and Lepton Mixing
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symmetry of tetrahedron.

From these forms, it is found obviously that A
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is isomorphic to �(12) ' (Z
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) o Z
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,
which is explained in section 9.

They are classified by the conjugacy classes as
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(67)

where we have also shown the orders of each element in the conjugacy class by h. There
are four conjugacy classes and there must be four irreducible representations, i.e. m

1

+
m

2

+ m
3

+ · · · = 4.
The orthogonality relation (11) requires

X

↵

[�↵(C
1

)]2 =
X

n

mnn2 = m
1

+ 4m
2

+ 9m
3

+ · · · = 12, (68)

for mi, which satisfy m
1

+ m
2

+ m
3

+ · · · = 4. The solution is obtained as (m
1

, m
2

, m
3

) =
(3, 0, 1). That is, the A

4

group has three singlets, 1, 10, and 100, and a single triplet 3,
where the triplet corresponds to (66).

Another algebraic definition of A
4

is often used in the literature. We denote a
1

= e,
a

2

= s and b
1

= t. They satisfy the following algebraic relations,

s2 = t3 = (st)3 = e. (69)

The closed algebra of these elements, s and t, is defined as the A
4

. It is straightforward
to write all of ai, bi and ci elements by s and t. Then, the conjugacy classes are rewritten
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(b) Geometrical interpretation of A
4

.

Figure 2.3: The symmetry group A
4

.The twelve group elements are connected by the generators S (red) and
T (blue). The picture 2.3b is taken from [88].

can define the semidirect product group N o' H via the multiplication rule

(n
1

, h
1

) ⇤ (n
2

, h
2

) = (n
1

'h
1

(n
2

), h
1

h
2

) for n
1,2 2 N and h

1,2 2 H. (2.35)

Note that there can be more than one semidirect product between two groups, but in the
following we will often drop the index ', as long as it is clear which group we are referring
to. (Another equivalent definition we will use is that a group G is a semidirect product of a
subgroup H and normal8 subgroup N if there exists a homomorphism G ! H which is the
identity on H and whose kernel9 is N.)

Let us present in some detail the case of the smallest group in Fig. 2.2, namely the
tetrahedral group A

4

. We will give the details for the other groups in the appendix. The group
A

4

may be written as A
4

⇠= (Z
2

⇥ Z
2

) o Z
3

where the Klein group N ⇠= Z
2

⇥ Z
2

is defined
by

⌦
S, X|X2 = S2 = E, XS = SX

↵
, the group H ⇠= Z

3

is defined by
⌦
T |T 3 = E

↵
and the

semidirect product is given by

'T (S) = TST�1 = XS, 'T (X) = TXT�1 = S. (2.36)

Note that the last relation allows one to replace one generator of N , e.g. X = T 2ST , and we
arrive at the standard presentation of A

4

:
⌦
S, T |S2 = T 3 = E, (ST )3 = E

↵
, (2.37)

that is represented graphically in Fig. 2.3a.
The other small groups in the tree shown in Fig. 2.2 can be represented in a similar way 10:

�(3n2) ⇠= (Zn ⇥ Zn) o Z
3

, �(6n2) ⇠= (Zn ⇥ Zn) o S
3

, Tn
⇠= Zn o Z

3

(2.38)

where S
4

⇠= �(24) and the defining homomorphisms are given in App. A.1. S
3

denotes the
group of permutations of three elements. It is in itself a semi-direct product S

3

⇠= Z
3

o Z
2

=⌦
r, a; r3 = a2 = E, ara�1 = r2

↵
and is not to be confused with the matrix defined in Eq. (2.27).

8A normal subgroup N of a group G, denoted by N C G, is a subgroup, which is invariant under conjugation
by an arbitrary group element of G, i.e. gNg�1 = N .

9The kernel of a representation ⇢ is defined by ker ⇢ = {g 2 G|⇢(g) = }.
10With respect to particle physics, �(3n2) has been studied in [89–92],T

7

has been studied in [93–95]and
�(6n2) has been studied in [88, 96].
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•  consider the symmetry group of the 
regular tetrahedron A4 

•  there are 12 symmetry transformations; 
they might be written as products of two 
generators S and T 
 

•  relations between generators 
(presentation) defines group 

•  S2=T3=(ST)3=1 
•  representations are maps from abstract 

group to matrices 
•  A4 has one three-dim. rep. 3 and 

three one-dim rep. 11, 12 , 13 
•  groups with 3-dim. representations 

needed to account for 3 fermion 
generations 

•  origin of discrete flavour group 
•  stringy [Nilles et al. 1204.2206] 
•  breakdown of continuous 

SU(3) or SO(3) [Ovrut 1978,...] 



Lepton mixing from discrete groups 
complete flavour group 

residual symmetry of (Me Me+)   residual symmetry of Mν 

Gf=S4 

misaligned non-commuting 
symmetries lead to 

[He, Keum, Volkas ‘06; 
Lam’07,‘08; 
Altarelli,Feruglio’05, 
Feruglio, 
Hagedorn,Toroop’11] 

 

Ge=〈T〉=Z3 Gν=〈S,U〉=Z2xZ2  

mixing matrix determined from symmetry 
up to interchanging of rows/columns and 
diagonal phase matrix 

tri-bimaximal 
mixing (TBM) 

(Z3 smallest choice, but can also be 
continuous) 

(Z2xZ2 most general choice if mixing angles do not 
depend on masses & Majorana νs) 

Gν=〈S,U〉=Z2xZ2  

Gν=〈S〉=Z2  

tri-maximal mixing (TM2) 

LH leptons 3-dim rep. 

[Lin’10, Shimizu et al.‘11,Luhn,King’11,...] 
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�� sin2 ✓12 sin2 ✓23 sin2 ✓13 �

[10�5 eV2] [10�3 eV2] [10�1] [10�1] [10�2] [⇡]

best fit 7.62+.19
�.19 2.55+.06

�.09 3.20+.16
�.17 6.13+.22

�.40 2.46+.29
�.28 0.8+1.2

�.8

3� range 7.12� 8.20 2.31� 2.74 2.7� 3.7 3.6� 6.8 1.7� 3.3 0� 2

Table 1: Global fit of neutrino oscillation parameters (for normal ordering of neutrino masses) adapted

from [17]. The errors of the best fit values indicate the one sigma ranges. In the global fit there are two nearly

degenerate minima at sin2 ✓23 = 0.430+.031
�.030, see Figure 1.

only the structure of flavor symmetry group and its remnant symmetries are assumed and we

do not consider the breaking mechanism i.e. how the required vacuum alignment needed to

achieve the remnant symmetries is dynamically realized.

The PMNS matrix is defined as

UPMNS = V †
e V⌫ (1)

and can be determined from the unitary matrices Ve and V⌫ satisfying

V T
e MeM

†
eV

⇤
e = diag(m2

e,m
2
µ,m

2
⌧ ) and V T

⌫ M⌫V⌫ = diag(m1,m2,m3), (2)

where the mass matrices are defined by L = eTMeec +
1
2⌫

TM⌫⌫. We will now review how

certain mixing patterns can be understood as a consequence of mismatched horizontal sym-

metries acting on the charged lepton and neutrino sectors [11–13; 26–28]4. Let us assume

for this purpose that there is a (discrete) symmetry group Gf under which the left-handed

lepton doublets L = (⌫, e) transform under a faithful unitary 3-dimensional representation

⇢ : Gf ! GL(3, ):

L ! ⇢(g)L, g 2 Gf . (3)

The experimental data clearly shows (i) that all lepton masses are unequal and (ii) there is

mixing amongst all three mass eigenstates. Therefore this symmetry cannot be a symmetry

of the entire Lagrangian but it has to be broken to di↵erent subgroups Ge and G⌫ (with

trivial intersection) in the charged lepton and neutrino sectors, respectively. If the fermions

transform as

e ! ⇢(ge)e, ⌫ ! ⇢(g⌫)⌫, ge 2 Ge, g⌫ 2 G⌫ , (4)

for the symmetry to hold, the mass matrices have to fulfil

⇢(ge)
TMeM

†
e⇢(ge)

⇤ = MeM
†
e and ⇢(g⌫)

TM⌫⇢(g⌫) = M⌫ . (5)

Choosing Ge or G⌫ to be a non-abelian group would lead to a degenerate mass spectrum,

as their representations cannot be decomposed into three inequivalent one-dimensional rep-

resentations of Ge or G⌫ . This scenario is not compatible with the case of three distinguished

4We here follow the presentation and convention in [26; 27].

2
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TM⌫⌫. We will now review how

certain mixing patterns can be understood as a consequence of mismatched horizontal sym-

metries acting on the charged lepton and neutrino sectors [11–13; 26–28]4. Let us assume

for this purpose that there is a (discrete) symmetry group Gf under which the left-handed

lepton doublets L = (⌫, e) transform under a faithful unitary 3-dimensional representation

⇢ : Gf ! GL(3, ):

L ! ⇢(g)L, g 2 Gf . (3)

The experimental data clearly shows (i) that all lepton masses are unequal and (ii) there is

mixing amongst all three mass eigenstates. Therefore this symmetry cannot be a symmetry

of the entire Lagrangian but it has to be broken to di↵erent subgroups Ge and G⌫ (with

trivial intersection) in the charged lepton and neutrino sectors, respectively. If the fermions

transform as

e ! ⇢(ge)e, ⌫ ! ⇢(g⌫)⌫, ge 2 Ge, g⌫ 2 G⌫ , (4)

for the symmetry to hold, the mass matrices have to fulfil

⇢(ge)
TMeM

†
e⇢(ge)

⇤ = MeM
†
e and ⇢(g⌫)

TM⌫⇢(g⌫) = M⌫ . (5)

Choosing Ge or G⌫ to be a non-abelian group would lead to a degenerate mass spectrum,

as their representations cannot be decomposed into three inequivalent one-dimensional rep-

resentations of Ge or G⌫ . This scenario is not compatible with the case of three distinguished

4We here follow the presentation and convention in [26; 27].
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neutrino and charged lepton masses and we therefore restrict ourselves to the abelian case.

We further restrict ourselves to the case of Majorana neutrinos, which implies that there

cannot be a complex eigenvalue of the matrices ⇢(g⌫) and they therefore satisfy ⇢(g⌫)2 = 1,

and we can further choose det ⇢(g⌫) = 1. By further requiring three distinguishable Majorana

neutrinos the group G⌫ is restricted to be the Klein group Z2 ⇥ Z2. To be able to determine

(up to permutations of rows and columns) the mixing matrix from the group structure it is

necessary to have all neutrinos transform as inequivalent singlets of G⌫ . The same is true for

the charged leptons which shows that Ge cannot be smaller than Z3. We can now determine

the mixing via the unitary matrices ⌦e, ⌦⌫ that satisfy

⌦†
e⇢(ge)⌦e = ⇢(ge)diag, ⌦†

⌫⇢(g⌫)⌦⌫ = ⇢(g⌫)diag (6)

where ⇢(g)diag are diagonal unitary matrices. These conditions determine ⌦e, ⌦⌫ up to a

diagonal phase matrix Ke,⌫ and permutation matrices Pe,⌫

⌦e,⌫ ! ⌦e,⌫Ke,⌫Pe,⌫ . (7)

It follows from Eqn. (5) that up to the ambiguities of the last equation, Ve,⌫ are given by ⌦e,⌫ .

This can be seen as
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has to be diagonal (only a diagonal matrix is invariant when conjugated by a arbitrary phase

matrix) and the phasing and permutation freedom can be used to bring it into the form

diag(m2
e,m

2
µ,m

2
⌧ ), and analogously for ⌦⌫ . From these group theoretical considerations we

can thus determine the PMNS matrix

UPMNS = ⌦†
e⌦⌫ (8)

up to a permutation of rows and columns. It should not be surprising that it is not possible

to uniquely pin down the mixing matrix, as it is not possible to predict lepton masses in this

approach.

Let us now try to apply this machinery to some interesting cases. We have seen that the

smallest residual symmetry in the charged lepton sector is given by a Ge =
⌦
T |T 3 = E

↵ ⇠= Z3.

We use a basis where the generator is given by

⇢(T ) = T3 ⌘
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This matrix will be our standard 3-dimensional representation of Z3 and the notation T3 will

be used throughout this work. It is diagonalized by
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and ! = ei2⇡/3. Having fixed the basis by choosing the Z3 generator the way we just did, it is

now essentially a question of choosing generators and studying the predicted mixing matrix.

Let us first look at the case where there is only one generator S of G⌫ , satisfying ⇢(S)2 = 1

and det ⇢(S) = 1:
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Due to the degenerate eigenvalues there is a two-parameter freedom in the matrix ⌦⌫ and it
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Obviously this does not completely fix the leptonic mixing matrix yet, as the first and third

eigenvalue are the same and the corresponding eigenstates can be rotated into each other

without breaking the symmetry. To completely fix the mixing matrix we have to enlarge G⌫

by another generator. Let us look at the e↵ect of adding the symmetry generator U with
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This fixes the value of ✓ to zero, ⌦†
U⇢(U)⌦U = diag(�1,�1, 1), and thus the mixing matrix

to the famous tri-bimaximal mixing (TBM) form
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which corresponds to the mixing angles sin2 ✓12 = 1
3 , sin2 ✓23 = 1

2 ,and sin2 ✓13 = 0. TBM

pattern is predicted by the discrete group S4 = hS3, T3, U3i [11–13] with S3, T3 and U3

given in our example above. Until very recently, this pattern gave a good description of the

mixing matrix and the fact that this mixing pattern can be obtained from simple symmetry

considerations has prompted a lot of model building activity (for a general scan of models

based on flavor groups up to the order of 100, see [29]). In light of the recent measurement

of a non-vanishing ✓13 there has been interest in the physical situation where the (broken)

flavor symmetry does not fully determine the mixing angles. For example if the residual

symmetry in the neutrino sector G⌫ is taken to be G⌫ = hSi ⇠= Z2, we have seen that the
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famous example: S4 gives TBM 
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from [17]. The errors of the best fit values indicate the one sigma ranges. In the global fit there are two nearly

degenerate minima at sin2 ✓23 = 0.430+.031
�.030, see Figure 1.

only the structure of flavor symmetry group and its remnant symmetries are assumed and we

do not consider the breaking mechanism i.e. how the required vacuum alignment needed to

achieve the remnant symmetries is dynamically realized.

The PMNS matrix is defined as

UPMNS = V †
e V⌫ (1)

and can be determined from the unitary matrices Ve and V⌫ satisfying
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where the mass matrices are defined by L = eTMeec +
1
2⌫

TM⌫⌫. We will now review how

certain mixing patterns can be understood as a consequence of mismatched horizontal sym-

metries acting on the charged lepton and neutrino sectors [11–13; 26–28]4. Let us assume

for this purpose that there is a (discrete) symmetry group Gf under which the left-handed

lepton doublets L = (⌫, e) transform under a faithful unitary 3-dimensional representation

⇢ : Gf ! GL(3, ):

L ! ⇢(g)L, g 2 Gf . (3)

The experimental data clearly shows (i) that all lepton masses are unequal and (ii) there is

mixing amongst all three mass eigenstates. Therefore this symmetry cannot be a symmetry

of the entire Lagrangian but it has to be broken to di↵erent subgroups Ge and G⌫ (with

trivial intersection) in the charged lepton and neutrino sectors, respectively. If the fermions

transform as

e ! ⇢(ge)e, ⌫ ! ⇢(g⌫)⌫, ge 2 Ge, g⌫ 2 G⌫ , (4)

for the symmetry to hold, the mass matrices have to fulfil

⇢(ge)
TMeM

†
e⇢(ge)

⇤ = MeM
†
e and ⇢(g⌫)

TM⌫⇢(g⌫) = M⌫ . (5)

Choosing Ge or G⌫ to be a non-abelian group would lead to a degenerate mass spectrum,

as their representations cannot be decomposed into three inequivalent one-dimensional rep-

resentations of Ge or G⌫ . This scenario is not compatible with the case of three distinguished

4We here follow the presentation and convention in [26; 27].
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neutrino and charged lepton masses and we therefore restrict ourselves to the abelian case.

We further restrict ourselves to the case of Majorana neutrinos, which implies that there

cannot be a complex eigenvalue of the matrices ⇢(g⌫) and they therefore satisfy ⇢(g⌫)2 = 1,

and we can further choose det ⇢(g⌫) = 1. By further requiring three distinguishable Majorana

neutrinos the group G⌫ is restricted to be the Klein group Z2 ⇥ Z2. To be able to determine

(up to permutations of rows and columns) the mixing matrix from the group structure it is

necessary to have all neutrinos transform as inequivalent singlets of G⌫ . The same is true for

the charged leptons which shows that Ge cannot be smaller than Z3. We can now determine

the mixing via the unitary matrices ⌦e, ⌦⌫ that satisfy

⌦†
e⇢(ge)⌦e = ⇢(ge)diag, ⌦†

⌫⇢(g⌫)⌦⌫ = ⇢(g⌫)diag (6)

where ⇢(g)diag are diagonal unitary matrices. These conditions determine ⌦e, ⌦⌫ up to a

diagonal phase matrix Ke,⌫ and permutation matrices Pe,⌫

⌦e,⌫ ! ⌦e,⌫Ke,⌫Pe,⌫ . (7)

It follows from Eqn. (5) that up to the ambiguities of the last equation, Ve,⌫ are given by ⌦e,⌫ .

This can be seen as
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⌧ ), and analogously for ⌦⌫ . From these group theoretical considerations we

can thus determine the PMNS matrix

UPMNS = ⌦†
e⌦⌫ (8)

up to a permutation of rows and columns. It should not be surprising that it is not possible

to uniquely pin down the mixing matrix, as it is not possible to predict lepton masses in this

approach.

Let us now try to apply this machinery to some interesting cases. We have seen that the

smallest residual symmetry in the charged lepton sector is given by a Ge =
⌦
T |T 3 = E

↵ ⇠= Z3.

We use a basis where the generator is given by
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and ! = ei2⇡/3. Having fixed the basis by choosing the Z3 generator the way we just did, it is

now essentially a question of choosing generators and studying the predicted mixing matrix.

Let us first look at the case where there is only one generator S of G⌫ , satisfying ⇢(S)2 = 1

and det ⇢(S) = 1:
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Obviously this does not completely fix the leptonic mixing matrix yet, as the first and third

eigenvalue are the same and the corresponding eigenstates can be rotated into each other

without breaking the symmetry. To completely fix the mixing matrix we have to enlarge G⌫

by another generator. Let us look at the e↵ect of adding the symmetry generator U with

⇢(U) = U3 ⌘ �
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This fixes the value of ✓ to zero, ⌦†
U⇢(U)⌦U = diag(�1,�1, 1), and thus the mixing matrix

to the famous tri-bimaximal mixing (TBM) form
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e⌦U = UHPS ⌘

0

BB@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

� 1p
6

1p
3

� 1p
2

1

CCA , (15)

which corresponds to the mixing angles sin2 ✓12 = 1
3 , sin2 ✓23 = 1

2 ,and sin2 ✓13 = 0. TBM

pattern is predicted by the discrete group S4 = hS3, T3, U3i [11–13] with S3, T3 and U3

given in our example above. Until very recently, this pattern gave a good description of the

mixing matrix and the fact that this mixing pattern can be obtained from simple symmetry

considerations has prompted a lot of model building activity (for a general scan of models

based on flavor groups up to the order of 100, see [29]). In light of the recent measurement

of a non-vanishing ✓13 there has been interest in the physical situation where the (broken)

flavor symmetry does not fully determine the mixing angles. For example if the residual

symmetry in the neutrino sector G⌫ is taken to be G⌫ = hSi ⇠= Z2, we have seen that the
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Figure 2.1: Deviations from tri-bimaximal mixing of the form U = UHPSU
13

(✓, �) (2.29). The yellow point
represents TBM, the continuous lines give the deviations with the angle ✓ given by the colour code in the top
right corner for � = n

5

⇡
2

for n = 0, . . . , 5, where n = 0 is the outermost parabola etc. The one, two and three
sigma regions of a recent global fit [39] are indicated by dotted, dashed and continuous contours, respectively.
This pattern of perturbations can shift the mixing angles in the direction of the experimental data for ✓ ⇠ .1� .2.
Note that the corrections to the solar angle are smaller than the corrections to the other angles.

which gives
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corresponding to the mixing angles sin2 ✓
12

= 1

2

, sin2 ✓
13

= 1

3

and sin2 ✓
23

= 1

2

. Here we used
the notation k U k, which gives the matrix of absolute values of matrix entries. We will refer
to this mixing pattern as bimaximal mixing(BM).

2.3. Some Properties of Non-Abelian Discrete Symmetries

2.3.1. Building the Flavour Group

In the last section we have seen how interesting neutrino mixing patterns can arise from
mismatched remnant symmetries of the neutrino and charged lepton mass matrices. Here we
want to discuss how one could to try to reconstruct the complete flavour symmetry out of
these remnant symmetries. Clearly if one part of the Lagrangian exhibits a certain enhanced
symmetry, it does not mean that this symmetry has to be a symmetry of the entire Lagrangian.
For example the Higgs potential in the Standard Model only depends on the invariant
H†H =

P
4

i h2

i and is thus invariant under a larger symmetry SO(4) ⇠= SU(2)L ⇥ SU(2)R,
where hi are the four real components of the doublet. The accidental symmetry SU(2)R (which
is also called the custodial symmetry of the SM Higgs sector6) is broken in other parts of the
Lagrangian, e.g. by Yukawa couplings and gauge interactions.

6Strictly speaking, the diagonal subgroup SU(2)V left-over after EWSB is the custodial symmetry.
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neutrino and charged lepton masses and we therefore restrict ourselves to the abelian case.

We further restrict ourselves to the case of Majorana neutrinos, which implies that there

cannot be a complex eigenvalue of the matrices ⇢(g⌫) and they therefore satisfy ⇢(g⌫)2 = 1,

and we can further choose det ⇢(g⌫) = 1. By further requiring three distinguishable Majorana

neutrinos the group G⌫ is restricted to be the Klein group Z2 ⇥ Z2. To be able to determine

(up to permutations of rows and columns) the mixing matrix from the group structure it is

necessary to have all neutrinos transform as inequivalent singlets of G⌫ . The same is true for

the charged leptons which shows that Ge cannot be smaller than Z3. We can now determine

the mixing via the unitary matrices ⌦e, ⌦⌫ that satisfy

⌦†
e⇢(ge)⌦e = ⇢(ge)diag, ⌦†

⌫⇢(g⌫)⌦⌫ = ⇢(g⌫)diag (6)

where ⇢(g)diag are diagonal unitary matrices. These conditions determine ⌦e, ⌦⌫ up to a

diagonal phase matrix Ke,⌫ and permutation matrices Pe,⌫

⌦e,⌫ ! ⌦e,⌫Ke,⌫Pe,⌫ . (7)

It follows from Eqn. (5) that up to the ambiguities of the last equation, Ve,⌫ are given by ⌦e,⌫ .
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⌧ ), and analogously for ⌦⌫ . From these group theoretical considerations we

can thus determine the PMNS matrix

UPMNS = ⌦†
e⌦⌫ (8)

up to a permutation of rows and columns. It should not be surprising that it is not possible

to uniquely pin down the mixing matrix, as it is not possible to predict lepton masses in this

approach.

Let us now try to apply this machinery to some interesting cases. We have seen that the

smallest residual symmetry in the charged lepton sector is given by a Ge =
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We use a basis where the generator is given by
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and ! = ei2⇡/3. Having fixed the basis by choosing the Z3 generator the way we just did, it is

now essentially a question of choosing generators and studying the predicted mixing matrix.

Let us first look at the case where there is only one generator S of G⌫ , satisfying ⇢(S)2 = 1

and det ⇢(S) = 1:
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Obviously this does not completely fix the leptonic mixing matrix yet, as the first and third

eigenvalue are the same and the corresponding eigenstates can be rotated into each other

without breaking the symmetry. To completely fix the mixing matrix we have to enlarge G⌫

by another generator. Let us look at the e↵ect of adding the symmetry generator U with

⇢(U) = U3 ⌘ �

0

B@
1 0 0

0 0 1

0 1 0

1

CA . (14)

This fixes the value of ✓ to zero, ⌦†
U⇢(U)⌦U = diag(�1,�1, 1), and thus the mixing matrix

to the famous tri-bimaximal mixing (TBM) form

UPMNS = ⌦†
e⌦U = UHPS ⌘
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which corresponds to the mixing angles sin2 ✓12 = 1
3 , sin2 ✓23 = 1

2 ,and sin2 ✓13 = 0. TBM

pattern is predicted by the discrete group S4 = hS3, T3, U3i [11–13] with S3, T3 and U3

given in our example above. Until very recently, this pattern gave a good description of the

mixing matrix and the fact that this mixing pattern can be obtained from simple symmetry

considerations has prompted a lot of model building activity (for a general scan of models

based on flavor groups up to the order of 100, see [29]). In light of the recent measurement

of a non-vanishing ✓13 there has been interest in the physical situation where the (broken)

flavor symmetry does not fully determine the mixing angles. For example if the residual

symmetry in the neutrino sector G⌫ is taken to be G⌫ = hSi ⇠= Z2, we have seen that the
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Figure 2.1: Deviations from tri-bimaximal mixing of the form U = UHPSU
13

(✓, �) (2.29). The yellow point
represents TBM, the continuous lines give the deviations with the angle ✓ given by the colour code in the top
right corner for � = n

5

⇡
2

for n = 0, . . . , 5, where n = 0 is the outermost parabola etc. The one, two and three
sigma regions of a recent global fit [39] are indicated by dotted, dashed and continuous contours, respectively.
This pattern of perturbations can shift the mixing angles in the direction of the experimental data for ✓ ⇠ .1� .2.
Note that the corrections to the solar angle are smaller than the corrections to the other angles.
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corresponding to the mixing angles sin2 ✓
12

= 1

2

, sin2 ✓
13

= 1

3

and sin2 ✓
23

= 1

2

. Here we used
the notation k U k, which gives the matrix of absolute values of matrix entries. We will refer
to this mixing pattern as bimaximal mixing(BM).

2.3. Some Properties of Non-Abelian Discrete Symmetries

2.3.1. Building the Flavour Group

In the last section we have seen how interesting neutrino mixing patterns can arise from
mismatched remnant symmetries of the neutrino and charged lepton mass matrices. Here we
want to discuss how one could to try to reconstruct the complete flavour symmetry out of
these remnant symmetries. Clearly if one part of the Lagrangian exhibits a certain enhanced
symmetry, it does not mean that this symmetry has to be a symmetry of the entire Lagrangian.
For example the Higgs potential in the Standard Model only depends on the invariant
H†H =

P
4

i h2

i and is thus invariant under a larger symmetry SO(4) ⇠= SU(2)L ⇥ SU(2)R,
where hi are the four real components of the doublet. The accidental symmetry SU(2)R (which
is also called the custodial symmetry of the SM Higgs sector6) is broken in other parts of the
Lagrangian, e.g. by Yukawa couplings and gauge interactions.

6Strictly speaking, the diagonal subgroup SU(2)V left-over after EWSB is the custodial symmetry.
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Figure 3: Mixing angles obtained from groups with all the abelian subgroups of Ge up to order 511. For

comparison purpose we also plotted the mixing patterns obtained from groups with Ge = Z3. Only the mixing

patterns generated by finite modular groups and their subgroups are obtained for |Ge| > 3, see Ref. [27]. The

mixing patterns from Ge = Z3 that lie outside the parabola are also generated by finite modular groups (e.g.

A5, PSL(2, Z7)) and their subgroups.
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•  for general Ge the 
scan is performed 
up to order 511, for 
Ge=Z3 up to 1536 

•  Majorana neutrinos 
Gν=Z2xZ2 

•  also for Ge=Z3 not 
all groups lie on 
TM2 „parabola“ 

•  known LO mixing 
pattern such as 
golden ratio etc. 
reproduced 

•  no exciting group 
for Ge>3  

Ge 
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Figure 3: Mixing angles obtained from groups with all the abelian subgroups of Ge up to order 511. For

comparison purpose we also plotted the mixing patterns obtained from groups with Ge = Z3. Only the mixing

patterns generated by finite modular groups and their subgroups are obtained for |Ge| > 3, see Ref. [27]. The

mixing patterns from Ge = Z3 that lie outside the parabola are also generated by finite modular groups (e.g.

A5, PSL(2, Z7)) and their subgroups.
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•  for general Ge the 
scan is performed 
up to order 511, for 
Ge=Z3 up to 1536 

•  Majorana neutrinos 
Gν=Z2xZ2 

•  also for Ge=Z3 not 
all groups lie on 
TM2 „parabola“ 

•  known LO mixing 
pattern such as 
golden ratio etc. 
reproduced 

•  no exciting group 
for Ge>3  
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Figure 3: Mixing angles obtained from groups with all the abelian subgroups of Ge up to order 511. For

comparison purpose we also plotted the mixing patterns obtained from groups with Ge = Z3. Only the mixing

patterns generated by finite modular groups and their subgroups are obtained for |Ge| > 3, see Ref. [27]. The

mixing patterns from Ge = Z3 that lie outside the parabola are also generated by finite modular groups (e.g.

A5, PSL(2, Z7)) and their subgroups.
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TM2 “parabola” 
complete flavour group 

residual symmetry of (Me Me+)   residual symmetry of Mν 

Gf 
Ge=〈T〉=Z3 

Gν=〈S,Un〉=Z2xZ2  LH leptons 3-dim rep. 

�m2
21

���m2
31

�� sin2 ✓12 sin2 ✓23 sin2 ✓13 �

[10�5 eV2] [10�3 eV2] [10�1] [10�1] [10�2] [⇡]

best fit 7.62+.19
�.19 2.55+.06

�.09 3.20+.16
�.17 6.13+.22

�.40 2.46+.29
�.28 0.8+1.2

�.8

3� range 7.12� 8.20 2.31� 2.74 2.7� 3.7 3.6� 6.8 1.7� 3.3 0� 2

Table 1: Global fit of neutrino oscillation parameters (for normal ordering of neutrino masses) adapted

from [17]. The errors of the best fit values indicate the one sigma ranges. In the global fit there are two nearly

degenerate minima at sin2 ✓23 = 0.430+.031
�.030, see Figure 1.

only the structure of flavor symmetry group and its remnant symmetries are assumed and we

do not consider the breaking mechanism i.e. how the required vacuum alignment needed to

achieve the remnant symmetries is dynamically realized.

The PMNS matrix is defined as

UPMNS = V †
e V⌫ (1)

and can be determined from the unitary matrices Ve and V⌫ satisfying

V T
e MeM

†
eV

⇤
e = diag(m2

e,m
2
µ,m

2
⌧ ) and V T

⌫ M⌫V⌫ = diag(m1,m2,m3), (2)

where the mass matrices are defined by L = eTMeec +
1
2⌫

TM⌫⌫. We will now review how

certain mixing patterns can be understood as a consequence of mismatched horizontal sym-

metries acting on the charged lepton and neutrino sectors [11–13; 26–28]4. Let us assume

for this purpose that there is a (discrete) symmetry group Gf under which the left-handed

lepton doublets L = (⌫, e) transform under a faithful unitary 3-dimensional representation

⇢ : Gf ! GL(3, ):
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1
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hzni ⇠= Zn

•  Scan over all discrete groups of size 
smaller than 1556 with Ge=Z3, 
Gν=Z2xZ2  

•  all solutions which are close to exp. 
values have the TM2 form 

U = UTBM

0

@
cos ✓ 0 sin ✓
0 1 0

� sin ✓ 0 cos ✓
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A

with ✓ =
1

2
arg(zn)

•  vanishing CP phase 𝛿CP  
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Figure 2: The leptonic mixing angles (black circles) determined from our group scan up to order 1536 are

shown. The red dots represent the mixing angles that we have determined from the generator S3, T3 and

U3(n). The red labels represent the integer n that generates the U3(n) matrix. The interpolating line is

colored according to the value of ✓ as defined in Eqn. (13). See the main text for more detailed informations.

We have also omitted the labeling of larger n that generates the same repeating groups or mixing angles.

7

We furthermore assume that T has three different eigenvalues. Then T and
S determine one column of U , as we will argue now.

Due to equation (11), we have

S2 = ⇒ S = ±(2uu† − ) (13)

with a unit vector u and Su = ±u. Since T commutes with MℓM
†
ℓ and has

three different eigenvalues, we know that U †
ℓ TUℓ = T̃ is diagonal. Therefore,

Uℓ is determined by T and is thus independent of any parameters of the
Lagrangian. For the rest of the argument we use the following theorem.

Theorem 1. If STMνS = Mν with S = ±(2uu† − ), then Mνu ∝ u∗.

Thus, u is, apart from a phase, one of the columns of Uν and, therefore,
U †
ℓ u is a column in the mixing matrix U . Because U †

ℓ u is determined by the
group, it does not contain parameters of the model.

If there are two matrices S1, S2 with ST
j MνSj = Mν and S1S2 = S2S1,

two columns of U are determined and thus the complete mixing matrix.
There are two ways to tackle the mathematical problem of residual sym-

metries for the determination of possible flavour symmetry groups:

1. Scanning classes of finite groups,

2. solving relations involving roots of unity.

3. Group scans

Scans of groups have for instance been performed in [7, 8] using GAP [9]
and the small groups library [10]. This library contains all finite groups with
order up to 2000, with the exception of the order of 1024. Here we want
to discuss the results of [7]. The authors of this paper have assumed that
Gν = 2 × 2, i.e. there are two matrices Sj in Gν , and that the group
produces mixing parameters s2ij within the 3σ range of the fit results of [4].
The authors have performed two scans. In the first one, they allowed for
ordG < 1536, with the exception of one group whose order is just 1536,
and assumed that Gℓ is generated by T̃ = diag(1,ω,ω2) with ω = e2πi/3. It
is amazing that only three groups, namely ∆(6× 102), ( 18 × 6)!S3 and
∆(6× 162), lead to acceptable mixing patterns. All three groups have TM2

and a trivial CKM-type phase. Therefore, s212 is given by equation (4). One
can show [11] that, in the case of the three viable groups, for every s213 there
are two solutions of s223 given by

s223 =
1

2

(

1±
√

2s2
13

− 3s4
13

c2
13

)

. (14)

4
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Figure 2: The leptonic mixing angles (black circles) determined from our group scan up to order 1536 are

shown. The red dots represent the mixing angles that we have determined from the generator S3, T3 and

U3(n). The red labels represent the integer n that generates the U3(n) matrix. The interpolating line is

colored according to the value of ✓ as defined in Eqn. (13). See the main text for more detailed informations.

We have also omitted the labeling of larger n that generates the same repeating groups or mixing angles.
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Lepton mixing from discrete groups 

∆(6·42)=〈T,S,U4  
[Torop, Hagedorn, 
Feruglio 11, King, Luhn, 
Steward 12, Ding 12] 

n G GAP-Id sin2(✓12) sin2(✓13) sin2(✓23)

5 �(6 · 102) [600, 179] 0.3432 0.0288 0.3791

0.3432 0.0288 0.6209

9 (Z18 ⇥ Z6)o S3 [648, 259] 0.3402 0.0201 0.3992

0.3402 0.0201 0.6008

16 �(6 · 162) n.a. 0.3420 0.0254 0.3867

0.3420 0.0254 0.6134

Table 3: Mixing angles which are compatible with experimental results generated by flavor groups up to order

1536. The group identification function in SmallGroups is not available for group with order 1536.

always a Klein group, hS3, U3(n)i ⇠= Z2⇥Z2. For the group generated by T3, S3 and U3(n) to

be finite, z has to be of the form given in Eqn. (20), as may be seen by looking at the group

element (U3(n)T3)2 = diag(z, z, z⇤2) which is of finite order n 2 i↵ zn = 1. The requirement

hzi ⇠= Zn further fixes n to be the smallest n for which zn = 1. Note that di↵erent n-th root

of z will in general lead to di↵erent leptonic mixing angles via Eq. (19), as can be seen in

Figure 2. The group generated by T3, S3 and U3(n) is always the same due to the requirement

hzi ⇠= Zn. The names of the groups generated for n = 4, . . . , 16 can be found in Table 2 and

the groups �(96) (n = 4) and �(384) (n = 8) have been obtained before in [27]. Note that

not all of the groups generated in this way can be classified as �(6 · n2), e.g. the group

(Z18 ⇥ Z6) o S3
5. Another surprising observation is that all the groups which are restricted

to those shown in Figure 2 give a prediction of �CP = ⇡ or �CP = 0. In general other groups

that we have scanned which lie outside the region shown in Figure 2 do give non-trivial Dirac

CP phases. The predictions for mixing angles for all groups of size smaller or equal than 1536

groups is presented in Figure 2. It should be clear that if one allows for groups of arbitrary

size, the parabola depicted in Figure 2 will be densely covered. As one can see, the mixing

patterns corresponding to n = 5, n = 9 and n = 16 give a good descriptions of the leptonic

mixing matrix. See Table 3 for the resulting mixing angles.

3.2 G⌫ = Z2 ⇥ Z2, |Ge| > 3

In this section we will discuss the result of all the neutrino mixing angles scanned by relaxing

the condition on the charged lepton subgroups. We allow Ge to be any abelian groups which

are the subgroups of the original flavor group Gf . The Klein group is kept as a subgroup of

the remnant symmetry for the neutrino mass matrix. The scanning procedure is performed

as in Section 3.1, with a few subtleties changed. For instance if Ge consists of two or more

generators above, the unitary matrix ⌦e is constructed as a matrix which diagonalizes all the

generators of Ge simultaneously. We have scanned all the discrete finite groups Gf up to

order 511 with all the abelian subgroups Ge. The result is shown in Figure 3 and we obtain

only the neutrino mixing angles predicted by finite modular groups and their subgroups, as

discussed in [27]. Mixing angles which are not generated by finite modular groups appear

5(Z18 ⇥ Z6) o S3 is a subgroup of �(6 · 182), however we only consider the smallest group from our scan

that generates the experimentally allowed mixing angles, free from the embedding to larger group.
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∆(6·162)=〈T,S,U16
 

⇢(Un) =

0

@
1 0 0
0 0 zn
0 z⇤n 0

1

A

hzni ⇠= Zn

∆(6·102)=〈T,S,U5  

 [MH, K.S. Lim, M. Lindner 1212.2411(PLB)] 

[Lam 13] up to order 1536, there 
are three interesting 
groups (out of ca. 1.3m) 

(Z18 ⇥ Z6)o S3

⇠= hS3, T3, U9i
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Figure 2: The leptonic mixing angles (black circles) determined from our group scan up to order 1536 are

shown. The red dots represent the mixing angles that we have determined from the generator S3, T3 and

U3(n). The red labels represent the integer n that generates the U3(n) matrix. The interpolating line is

colored according to the value of ✓ as defined in Eqn. (13). See the main text for more detailed informations.

We have also omitted the labeling of larger n that generates the same repeating groups or mixing angles.

7

Lepton mixing from discrete groups 

∆(6·42)=〈T,S,U4  
[Torop, Hagedorn, 
Feruglio 11, King, Luhn, 
Steward 12, Ding 12] 

n G GAP-Id sin2(✓12) sin2(✓13) sin2(✓23)

5 �(6 · 102) [600, 179] 0.3432 0.0288 0.3791

0.3432 0.0288 0.6209

9 (Z18 ⇥ Z6)o S3 [648, 259] 0.3402 0.0201 0.3992

0.3402 0.0201 0.6008

16 �(6 · 162) n.a. 0.3420 0.0254 0.3867

0.3420 0.0254 0.6134

Table 3: Mixing angles which are compatible with experimental results generated by flavor groups up to order

1536. The group identification function in SmallGroups is not available for group with order 1536.

always a Klein group, hS3, U3(n)i ⇠= Z2⇥Z2. For the group generated by T3, S3 and U3(n) to

be finite, z has to be of the form given in Eqn. (20), as may be seen by looking at the group

element (U3(n)T3)2 = diag(z, z, z⇤2) which is of finite order n 2 i↵ zn = 1. The requirement

hzi ⇠= Zn further fixes n to be the smallest n for which zn = 1. Note that di↵erent n-th root

of z will in general lead to di↵erent leptonic mixing angles via Eq. (19), as can be seen in

Figure 2. The group generated by T3, S3 and U3(n) is always the same due to the requirement

hzi ⇠= Zn. The names of the groups generated for n = 4, . . . , 16 can be found in Table 2 and

the groups �(96) (n = 4) and �(384) (n = 8) have been obtained before in [27]. Note that

not all of the groups generated in this way can be classified as �(6 · n2), e.g. the group

(Z18 ⇥ Z6) o S3
5. Another surprising observation is that all the groups which are restricted

to those shown in Figure 2 give a prediction of �CP = ⇡ or �CP = 0. In general other groups

that we have scanned which lie outside the region shown in Figure 2 do give non-trivial Dirac

CP phases. The predictions for mixing angles for all groups of size smaller or equal than 1536

groups is presented in Figure 2. It should be clear that if one allows for groups of arbitrary

size, the parabola depicted in Figure 2 will be densely covered. As one can see, the mixing

patterns corresponding to n = 5, n = 9 and n = 16 give a good descriptions of the leptonic

mixing matrix. See Table 3 for the resulting mixing angles.

3.2 G⌫ = Z2 ⇥ Z2, |Ge| > 3

In this section we will discuss the result of all the neutrino mixing angles scanned by relaxing

the condition on the charged lepton subgroups. We allow Ge to be any abelian groups which

are the subgroups of the original flavor group Gf . The Klein group is kept as a subgroup of

the remnant symmetry for the neutrino mass matrix. The scanning procedure is performed

as in Section 3.1, with a few subtleties changed. For instance if Ge consists of two or more

generators above, the unitary matrix ⌦e is constructed as a matrix which diagonalizes all the

generators of Ge simultaneously. We have scanned all the discrete finite groups Gf up to

order 511 with all the abelian subgroups Ge. The result is shown in Figure 3 and we obtain

only the neutrino mixing angles predicted by finite modular groups and their subgroups, as

discussed in [27]. Mixing angles which are not generated by finite modular groups appear

5(Z18 ⇥ Z6) o S3 is a subgroup of �(6 · 182), however we only consider the smallest group from our scan

that generates the experimentally allowed mixing angles, free from the embedding to larger group.
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⇢(Un) =
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1 0 0
0 0 zn
0 z⇤n 0

1

A

hzni ⇠= Zn
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[Lam 13] 

•  testable framework: maximal theta23 
inconsistent with large theta13 

•  Model building implementation via 
double seesaw mechanism see Grimus& 
Lavoura 1309.3186 

up to order 1536, there 
are three interesting 
groups (out of ca. 1.3m) 

(Z18 ⇥ Z6)o S3

⇠= hS3, T3, U9i



Quark Mixing from the same groups 

n G GAP-Id sin2(✓12) sin2(✓13) sin2(✓23)

5 �(6 · 102) [600, 179] 0.3432 0.0288 0.3791

0.3432 0.0288 0.6209

9 (Z18 ⇥ Z6)o S3 [648, 259] 0.3402 0.0201 0.3992

0.3402 0.0201 0.6008

16 �(6 · 162) n.a. 0.3420 0.0254 0.3867

0.3420 0.0254 0.6134

Table 3: Mixing angles which are compatible with experimental results generated by flavor groups up to order

1536. The group identification function in SmallGroups is not available for group with order 1536.

always a Klein group, hS3, U3(n)i ⇠= Z2⇥Z2. For the group generated by T3, S3 and U3(n) to

be finite, z has to be of the form given in Eqn. (20), as may be seen by looking at the group

element (U3(n)T3)2 = diag(z, z, z⇤2) which is of finite order n 2 i↵ zn = 1. The requirement

hzi ⇠= Zn further fixes n to be the smallest n for which zn = 1. Note that di↵erent n-th root

of z will in general lead to di↵erent leptonic mixing angles via Eq. (19), as can be seen in

Figure 2. The group generated by T3, S3 and U3(n) is always the same due to the requirement

hzi ⇠= Zn. The names of the groups generated for n = 4, . . . , 16 can be found in Table 2 and

the groups �(96) (n = 4) and �(384) (n = 8) have been obtained before in [27]. Note that

not all of the groups generated in this way can be classified as �(6 · n2), e.g. the group

(Z18 ⇥ Z6) o S3
5. Another surprising observation is that all the groups which are restricted

to those shown in Figure 2 give a prediction of �CP = ⇡ or �CP = 0. In general other groups

that we have scanned which lie outside the region shown in Figure 2 do give non-trivial Dirac

CP phases. The predictions for mixing angles for all groups of size smaller or equal than 1536

groups is presented in Figure 2. It should be clear that if one allows for groups of arbitrary

size, the parabola depicted in Figure 2 will be densely covered. As one can see, the mixing

patterns corresponding to n = 5, n = 9 and n = 16 give a good descriptions of the leptonic

mixing matrix. See Table 3 for the resulting mixing angles.

3.2 G⌫ = Z2 ⇥ Z2, |Ge| > 3

In this section we will discuss the result of all the neutrino mixing angles scanned by relaxing

the condition on the charged lepton subgroups. We allow Ge to be any abelian groups which

are the subgroups of the original flavor group Gf . The Klein group is kept as a subgroup of

the remnant symmetry for the neutrino mass matrix. The scanning procedure is performed

as in Section 3.1, with a few subtleties changed. For instance if Ge consists of two or more

generators above, the unitary matrix ⌦e is constructed as a matrix which diagonalizes all the

generators of Ge simultaneously. We have scanned all the discrete finite groups Gf up to

order 511 with all the abelian subgroups Ge. The result is shown in Figure 3 and we obtain

only the neutrino mixing angles predicted by finite modular groups and their subgroups, as

discussed in [27]. Mixing angles which are not generated by finite modular groups appear

5(Z18 ⇥ Z6) o S3 is a subgroup of �(6 · 182), however we only consider the smallest group from our scan

that generates the experimentally allowed mixing angles, free from the embedding to larger group.
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Figure 1. Sketch of the setup considered in this paper.
Di↵erent subgroups of the flavor group Gf emerge as
remnant symmetries of the mixing matrices. The mis-
match of these groups creates quark and lepton mixing.

turns out that if one assigns the left-handed quarks
to the same 3-dimensional representations (of the
same groups) that were found to be interesting for
leptonic mixing, such an interesting quark mix-
ing pattern may be derived. Especially the group
(Z18 ⇥Z6)oS3 seems particularly promising, giv-
ing a Cabibbo angle of sin ✓c = 0.259. In this
setup the origin of the di↵erent patterns for the
leptonic and quark sectors thus stems from the
di↵erent remnant symmetries to which the origi-
nal group is broken in the respective sectors, as is
depicted in Fig. 1. The subgroups that give rise to
an acceptable LO Cabibbo angle can be system-
atically parametrized and we discuss some group
theoretical aspects of the remnant group structure.
We then broaden our discussion by giving up on
the assumption that neutrinos should be Majorana
particles, for which case we perform a scan of fi-
nite discrete groups up to the order of 200 with the
help of the computer algebra program GAP [10–13].

In the final chapter of the paper we discuss the
usefulness of large flavor groups more generally. It
should be clear that if one considers a very large
flavor group virtually any mixing pattern may be
realized. If one would break the group SU(3) down
to discrete remnant groups, for example, the re-
quirement of a breakdown to subgroups loses all
predictivity. The question one might now ask one-
self is the following: which setup is more predic-
tive, the case of a small group (such as A4 [14–
20] or S4 [1–3]) with large NLO corrections or a
larger group with smaller NLO corrections. Un-
der the assumption that NLO corrections are ran-
domly drawn (which seems fine for many models)
statistical arguments (à la anarchy) lead us to pro-

pose a measure of the predictive power of a chosen
group.

II. PMNS AND CKM MATRICES FROM
REMNANT SYMMETRIES

Here we briefly review the setup we are using to
obtain the mixing matrices from remnant symme-
tries.

Lepton mixing can be obtained from a flavor
symmetry group via its breaking to remnant sym-
metries in the charged lepton and neutrino masses
respectively. The CKM matrix can be derived in
an analogous way using this method. The only
di↵erence is that usually di↵erent remnant sym-
metries are left of the up- and down-type quarks
mass matrices. This is usually achieved in con-
crete models via spontaneous symmetry breaking
of flavon fields in some vacuum alignment config-
urations. As in Ref. [7] we do not consider the
breaking mechanisms or models to achieve such
vacuum configuration, but rather we want to find
discrete symmetry groups that contain the residual
symmetry groups that can give rise to LO predic-
tion of PMNS and CKM matrices.

In this section we first assume that neutrinos are
Majorana particles. The PMNS and CKM matri-
ces are defined as

UPMNS = V

†
e V⌫ , UCKM = V

†
d Vu (1)

where the unitary matrices Vs and V⌫ diagonalize
the mass matrices

V

T
s MsM

†
sV

⇤
s = diag(m2

I ,m
2
II,m

2
III) (2)

and

V

T
⌫ M⌫V⌫ = diag(m1,m2,m3). (3)

We denote the symbol s 2 {e, d, u} and the nu-
meral I 2 {e, d, u}, II 2 {µ, s, c} and III 2 {⌧, b, u}.
The mass matrices are defined as L = e

T
Mee

c +
1
2⌫

T
M⌫⌫ + d

T
Mdd

c + u

T
Muu

c. We assume that
there is a discrete symmetry groupGf under which
the left-handed lepton doublets L = (⌫, e) trans-
form under a faithful unitary 3-dimensional repre-
sentation ⇢ : Gf ! GL(3,C):

L ! ⇢(g)L, g 2 Gf . (4)

Analogue we assume that there is a discrete sym-
metry group GQ under which the left-handed
quark doublets Q = (u, d) transforms:

Q ! ⇢(g)Q, g 2 GQ. (5)

2

Since all the quark and lepton masses are di↵erent,
these flavor symmetries has to be broken into two
set of di↵erent subgroups, i.e. {Ge, G⌫} for the
leptonic sector and {Gd, Gu} for the quark sector.
In general the generators of Gd and Gu only gen-
erate the group GQ which is a proper subgroup of
Gf , hence we only consider a direct breaking of Gf

into residual symmetries Gd and Gu as we would
like to find a common discrete group Gf that can
simultaneously predict the LO PMNS and CKM
matrix1. Within a set of the residual subgroups
{Ge, G⌫}, the intersection between the subgroups
in the set is trivial as we would like to predict 3
di↵erent mixing angles in the leptonic sector. This
condition is however relaxed for {Gd, Gu} as we do
not find any groups that predict 3 di↵erent quark
mixing angles at LO. Subgroups from di↵erent set,
e.g. Ge and Gd can have non-trivial intersection.
The mass matrix for each sector exhibits a residual
symmetry, satisfying

⇢(gs)
T
MsM

†
s⇢(gs)

⇤ = MsM
†
s , gs 2 Gs (6)

and

⇢(g⌫)
T
M⌫⇢(g⌫) = M⌫ , g⌫ 2 G⌫ . (7)

The residual subgroups {Ge, G⌫} and {Gd, Gu}
must be abelian due to the experimental fact that
all the masses of quarks and leptons are distin-
guishable. The 3-dimensional irreducible represen-
tation of the residual subgroups cannot be decom-
posed into three inequivalent 1-dimensional rep-
resentations had they possess a non-abelian char-
acter2. For Majorana neutrinos the residual sub-
group is given by the Klein group Z2 ⇥ Z2, while
Gs can be any abelian subgroups of Gf with order
n � 3. Once the generators of all the subgroups
are specified in a certain representation, the mix-
ing pattern of quark sector and leptonic sector can
be determined via the unitary matrices ⌦s and ⌦⌫

satisfying

⌦†
s,⌫⇢(gs,⌫)⌦s,⌫ = ⇢(gs,⌫)diag. (8)

The unitary matrix ⌦s and ⌦⌫ are determined up
to permutations of columns and also a diagonal
phase matrix. The PMNS and CKM matrix are
then determined by

UPMNS = ⌦†
e⌦⌫ , UCKM = ⌦†

d⌦u. (9)

1 This possibility is also briefly discussed in Ref. [5].
2 See Ref. [21] for the case where neutrinos masses are de-
generate.

which are unique up to the permutations of rows
and columns. The Dirac CP phases of the PMNS
and CKM matrices can also be determined from
this method.

III. MIXING PATTERN FROM COMMON
DISCRETE SYMMETRIES

As shown in Ref. [7], a scan of finite discrete
groups with order less than 1536 yields only 3 in-
teresting groups that give LO leptonic mixing pat-
terns which lie within 3-sigma of current best fit.
These 3 groups, namely �(6 ·102), (Z18⇥Z6)oS3

and �(6 · 162), provide a good starting point to
search for residual groups that can yield an accept-
able CKM matrix at LO. By searching the abelian
subgroups contained in these 3 groups, we obtain
the CKM matrix at LO in the following form:

UCKM =

0

@
cos ✓̃ sin ✓̃ 0
� sin ✓̃ cos ✓̃ 0

0 0 1

1

A
. (10)

The values of sin ✓̃ are given in Table I and the
form may be compared to best fit values of the
CKM matrix [22]

UCKM '

0

@
0.974 0.225 0.004
0.225 0.973 0.041
0.009 0.040 0.999

1

A
, (11)

indicating that NLO corrections of the order of
Ucb ⇠ �

2
c ⇠ 0.04 are needed, which is to be con-

trasted with the case of A4, for example, where
UCKM = 13 at LO and NLO corrections therefore
have to be of the size Ucs ⇠ �c ⌘ sin ✓c ⇠ 0.22.
Since there is no mixing between all three genera-
tions in Eq. (10) the CKM CP phase in undeter-
mined in this setup and will be a result of NLO
corrections.

Before we discuss the results of Table I, it is
useful to recall [7] that the groups in Table I
may be defined as being generated by the gener-
ators S, T and U(n, k), using the faithful irrep
⇢ : {S, T, U(n, k)} ! {S3, T3, U3(n, k)} with

T3 ⌘

0

@
0 1 0
0 0 1
1 0 0

1

A
, S3 ⌘

0

@
1 0 0
0 �1 0
0 0 �1

1

A (12)

and

U3(n, k) ⌘ �

0

@
1 0 0
0 0 zn,k

0 z

⇤
n,k 0

1

A (13)

3

n Gf GAP-Id sin ✓̃ type

5 �(6 · 102) [600, 179] 0.156 A
0.309 B

9 (Z18 ⇥ Z6)o S3 [648, 259] 0.259 A
16 �(6 · 162) n.a. 0.195 A

Table I. LO Cabibbo angles sin ✓̃ which are compatible
with experimental results generated by flavor groups
up to order 1536. Type A and B refers to di↵erent
residual symmetries (see text).

with zn,k = e

2⇡ik/n, n, k 2 N. In the leptonic
sector if one uses Ge = hT i ⇠= Z3 and G⌫ =
hS,U(n, k)i ⇠= Z2⇥Z2 one gets the TM2-like mix-
ing matrix [7]

UPMNS = UHPSU13(✓ =
1

2
arg(z)) (14)

with the 1-3 rotation matrix defined as

U13(✓) =

0

@
cos ✓ 0 sin ✓
0 1 0

� sin ✓ 0 cos ✓

1

A
. (15)

In the quark sector we found two di↵erent types
of solutions corresponding to di↵erent conserved
subgroups. From the form (10) of the LO CKM
matrix it is already clear that the intersection be-
tween Gu and Gd has to be non-vanishing, other-
wise there would be full 3 by 3 mixing (as in the
leptonic case). The generator of the intersection
can in principle be any generator, but we will al-
ways take S for concreteness. As a result of the
scan, we found 2 types of mixing patterns

• type A:

Gd = hS,U(n, p)i ⇠= Z2 ⇥ Z2,

Gu = h(ST )2TU(n,m)i ⇠= Z4

• type B:

Gd = hS,U(n, p)i ⇠= Z2 ⇥ Z2,

Gu = hS, (U(n,m)T 2)2(U(n,m)T )2U(n,m)i
⇠= Z2 ⇥ Z2

Both left-handed quarks and leptons may be as-
signed to the same representation, which provides
a possibility for model building of flavor symmetry
in the context of Grand Unified Theories.

Let us first discuss the case of type A. The LO
CKM matrix of Eq. (10) results from the break-
down of Gf down to Gd = hS,U(n,m)i ⇠= Z2 ⇥Z2

and Gu = h(ST )2TU(n, p)i ⇠= Z4. Note that

((ST )2TU(n, p))2 = S is an element of both Gd

and Gu.
The generator of the group Gu is given by

R3(n, p) ⌘ ⇢((ST )2TU(n, p))

=

0

@
1 0 0
0 0 �zn,p

0 z

⇤
n,p 0

1

A (16)

with z defined in Eq. (13). Note that typically one
needs to choose a di↵erent n-th root in Eq. (13)
and Eq. (16) in order to obtain experimentally ac-
ceptable PMNS and CKM matrices. For example,
if we choose the m-th of n-th root z in Eq. (13)
and p-th of n-th root z in Eq. (16), the product of
the unitary matrix

⌦u =
1p
2

0

@
0 0

p
2

ie

2⇡ip/n �ie

2⇡ip/n 0
1 1 0

1

A (17)

that diagonalizes R3(n, p) with the unitary matrix

⌦d =
1p
2

0

@
0 0

p
2

e

2⇡im/n �e

2⇡im/n 0
1 1 0

1

A (18)

that diagonalizes S3 and U3(n,m) simultaneously
will generate LO CKM matrix

UCKM = ⌦†
d⌦u (19)

=
1

2

0

@
1 + ie

�2⇡i(m�p)/n 1� ie

�2⇡i(m�p)/n 0
1� ie

�2⇡i(m�p)/n 1 + ie

�2⇡i(m�p)/n 0
0 0 2

1

A

or

sin ✓̃ =
1

2

s

2� 2 sin

✓
2⇡(m� p)

n

◆
(20)

The interesting cases quotes in Table I correspond
to (n = 5, p = 1,m = 2), (n = 9, p = 1,m = 4)
and (n = 16, p = 1,m = 2), respectively. Since Gu

and Gd have a non-trivial intersection, the group
generated by the elements of Gu and Gd is not the
full flavor group Gf . Rather it is a subgroup of
U(2), depending on the values of n, p and m. The
groups generated by these remnant symmetries are
isomorphic to (Z10 ⇥ Z2) o Z2, (Z6 ⇥ Z2) o Z2

and QD32 (the quasidihedral group of order 32),
respectively3.

3 See Ref. [23] for a review on the type of groups above.
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•  breaking to different subgroups 
yields LO mixing pattern where only 
Cabibbo angle is produced 

n Gf GAP-Id sin ✓̃ type

5 �(6 · 102) [600, 179] 0.156 A
0.309 B

9 (Z18 ⇥ Z6)o S3 [648, 259] 0.259 A
16 �(6 · 162) n.a. 0.195 A

Table I. LO Cabibbo angles sin ✓̃ which are compatible
with experimental results generated by flavor groups
up to order 1536. Type A and B refers to di↵erent
residual symmetries (see text).

with zn,k = e

2⇡ik/n, n, k 2 N. In the leptonic
sector if one uses Ge = hT i ⇠= Z3 and G⌫ =
hS,U(n, k)i ⇠= Z2⇥Z2 one gets the TM2-like mix-
ing matrix [7]
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with the 1-3 rotation matrix defined as

U13(✓) =

0
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0 1 0
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1

A
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In the quark sector we found two di↵erent types
of solutions corresponding to di↵erent conserved
subgroups. From the form (10) of the LO CKM
matrix it is already clear that the intersection be-
tween Gu and Gd has to be non-vanishing, other-
wise there would be full 3 by 3 mixing (as in the
leptonic case). The generator of the intersection
can in principle be any generator, but we will al-
ways take S for concreteness. As a result of the
scan, we found 2 types of mixing patterns

• type A:

Gd = hS,U(n, p)i ⇠= Z2 ⇥ Z2,

Gu = h(ST )2TU(n,m)i ⇠= Z4

• type B:

Gd = hS,U(n, p)i ⇠= Z2 ⇥ Z2,

Gu = hS, (U(n,m)T 2)2(U(n,m)T )2U(n,m)i
⇠= Z2 ⇥ Z2

Both left-handed quarks and leptons may be as-
signed to the same representation, which provides
a possibility for model building of flavor symmetry
in the context of Grand Unified Theories.

Let us first discuss the case of type A. The LO
CKM matrix of Eq. (10) results from the break-
down of Gf down to Gd = hS,U(n,m)i ⇠= Z2 ⇥Z2

and Gu = h(ST )2TU(n, p)i ⇠= Z4. Note that

((ST )2TU(n, p))2 = S is an element of both Gd

and Gu.
The generator of the group Gu is given by

R3(n, p) ⌘ ⇢((ST )2TU(n, p))

=

0

@
1 0 0
0 0 �zn,p

0 z

⇤
n,p 0

1

A (16)

with z defined in Eq. (13). Note that typically one
needs to choose a di↵erent n-th root in Eq. (13)
and Eq. (16) in order to obtain experimentally ac-
ceptable PMNS and CKM matrices. For example,
if we choose the m-th of n-th root z in Eq. (13)
and p-th of n-th root z in Eq. (16), the product of
the unitary matrix

⌦u =
1p
2

0

@
0 0

p
2

ie

2⇡ip/n �ie

2⇡ip/n 0
1 1 0

1

A (17)

that diagonalizes R3(n, p) with the unitary matrix

⌦d =
1p
2

0

@
0 0

p
2

e

2⇡im/n �e

2⇡im/n 0
1 1 0

1

A (18)

that diagonalizes S3 and U3(n,m) simultaneously
will generate LO CKM matrix

UCKM = ⌦†
d⌦u (19)

=
1

2

0

@
1 + ie

�2⇡i(m�p)/n 1� ie
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0 0 2
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or
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The interesting cases quotes in Table I correspond
to (n = 5, p = 1,m = 2), (n = 9, p = 1,m = 4)
and (n = 16, p = 1,m = 2), respectively. Since Gu

and Gd have a non-trivial intersection, the group
generated by the elements of Gu and Gd is not the
full flavor group Gf . Rather it is a subgroup of
U(2), depending on the values of n, p and m. The
groups generated by these remnant symmetries are
isomorphic to (Z10 ⇥ Z2) o Z2, (Z6 ⇥ Z2) o Z2

and QD32 (the quasidihedral group of order 32),
respectively3.

3 See Ref. [23] for a review on the type of groups above.
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Quark Mixing from the same groups 

n G GAP-Id sin2(✓12) sin2(✓13) sin2(✓23)

5 �(6 · 102) [600, 179] 0.3432 0.0288 0.3791

0.3432 0.0288 0.6209

9 (Z18 ⇥ Z6)o S3 [648, 259] 0.3402 0.0201 0.3992

0.3402 0.0201 0.6008

16 �(6 · 162) n.a. 0.3420 0.0254 0.3867

0.3420 0.0254 0.6134

Table 3: Mixing angles which are compatible with experimental results generated by flavor groups up to order

1536. The group identification function in SmallGroups is not available for group with order 1536.

always a Klein group, hS3, U3(n)i ⇠= Z2⇥Z2. For the group generated by T3, S3 and U3(n) to

be finite, z has to be of the form given in Eqn. (20), as may be seen by looking at the group

element (U3(n)T3)2 = diag(z, z, z⇤2) which is of finite order n 2 i↵ zn = 1. The requirement

hzi ⇠= Zn further fixes n to be the smallest n for which zn = 1. Note that di↵erent n-th root

of z will in general lead to di↵erent leptonic mixing angles via Eq. (19), as can be seen in

Figure 2. The group generated by T3, S3 and U3(n) is always the same due to the requirement

hzi ⇠= Zn. The names of the groups generated for n = 4, . . . , 16 can be found in Table 2 and

the groups �(96) (n = 4) and �(384) (n = 8) have been obtained before in [27]. Note that

not all of the groups generated in this way can be classified as �(6 · n2), e.g. the group

(Z18 ⇥ Z6) o S3
5. Another surprising observation is that all the groups which are restricted

to those shown in Figure 2 give a prediction of �CP = ⇡ or �CP = 0. In general other groups

that we have scanned which lie outside the region shown in Figure 2 do give non-trivial Dirac

CP phases. The predictions for mixing angles for all groups of size smaller or equal than 1536

groups is presented in Figure 2. It should be clear that if one allows for groups of arbitrary

size, the parabola depicted in Figure 2 will be densely covered. As one can see, the mixing

patterns corresponding to n = 5, n = 9 and n = 16 give a good descriptions of the leptonic

mixing matrix. See Table 3 for the resulting mixing angles.

3.2 G⌫ = Z2 ⇥ Z2, |Ge| > 3

In this section we will discuss the result of all the neutrino mixing angles scanned by relaxing

the condition on the charged lepton subgroups. We allow Ge to be any abelian groups which

are the subgroups of the original flavor group Gf . The Klein group is kept as a subgroup of

the remnant symmetry for the neutrino mass matrix. The scanning procedure is performed

as in Section 3.1, with a few subtleties changed. For instance if Ge consists of two or more

generators above, the unitary matrix ⌦e is constructed as a matrix which diagonalizes all the

generators of Ge simultaneously. We have scanned all the discrete finite groups Gf up to

order 511 with all the abelian subgroups Ge. The result is shown in Figure 3 and we obtain

only the neutrino mixing angles predicted by finite modular groups and their subgroups, as

discussed in [27]. Mixing angles which are not generated by finite modular groups appear

5(Z18 ⇥ Z6) o S3 is a subgroup of �(6 · 182), however we only consider the smallest group from our scan

that generates the experimentally allowed mixing angles, free from the embedding to larger group.
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Figure 1. Sketch of the setup considered in this paper.
Di↵erent subgroups of the flavor group Gf emerge as
remnant symmetries of the mixing matrices. The mis-
match of these groups creates quark and lepton mixing.

turns out that if one assigns the left-handed quarks
to the same 3-dimensional representations (of the
same groups) that were found to be interesting for
leptonic mixing, such an interesting quark mix-
ing pattern may be derived. Especially the group
(Z18 ⇥Z6)oS3 seems particularly promising, giv-
ing a Cabibbo angle of sin ✓c = 0.259. In this
setup the origin of the di↵erent patterns for the
leptonic and quark sectors thus stems from the
di↵erent remnant symmetries to which the origi-
nal group is broken in the respective sectors, as is
depicted in Fig. 1. The subgroups that give rise to
an acceptable LO Cabibbo angle can be system-
atically parametrized and we discuss some group
theoretical aspects of the remnant group structure.
We then broaden our discussion by giving up on
the assumption that neutrinos should be Majorana
particles, for which case we perform a scan of fi-
nite discrete groups up to the order of 200 with the
help of the computer algebra program GAP [10–13].

In the final chapter of the paper we discuss the
usefulness of large flavor groups more generally. It
should be clear that if one considers a very large
flavor group virtually any mixing pattern may be
realized. If one would break the group SU(3) down
to discrete remnant groups, for example, the re-
quirement of a breakdown to subgroups loses all
predictivity. The question one might now ask one-
self is the following: which setup is more predic-
tive, the case of a small group (such as A4 [14–
20] or S4 [1–3]) with large NLO corrections or a
larger group with smaller NLO corrections. Un-
der the assumption that NLO corrections are ran-
domly drawn (which seems fine for many models)
statistical arguments (à la anarchy) lead us to pro-

pose a measure of the predictive power of a chosen
group.

II. PMNS AND CKM MATRICES FROM
REMNANT SYMMETRIES

Here we briefly review the setup we are using to
obtain the mixing matrices from remnant symme-
tries.

Lepton mixing can be obtained from a flavor
symmetry group via its breaking to remnant sym-
metries in the charged lepton and neutrino masses
respectively. The CKM matrix can be derived in
an analogous way using this method. The only
di↵erence is that usually di↵erent remnant sym-
metries are left of the up- and down-type quarks
mass matrices. This is usually achieved in con-
crete models via spontaneous symmetry breaking
of flavon fields in some vacuum alignment config-
urations. As in Ref. [7] we do not consider the
breaking mechanisms or models to achieve such
vacuum configuration, but rather we want to find
discrete symmetry groups that contain the residual
symmetry groups that can give rise to LO predic-
tion of PMNS and CKM matrices.

In this section we first assume that neutrinos are
Majorana particles. The PMNS and CKM matri-
ces are defined as

UPMNS = V

†
e V⌫ , UCKM = V

†
d Vu (1)

where the unitary matrices Vs and V⌫ diagonalize
the mass matrices

V

T
s MsM

†
sV

⇤
s = diag(m2

I ,m
2
II,m

2
III) (2)

and

V

T
⌫ M⌫V⌫ = diag(m1,m2,m3). (3)

We denote the symbol s 2 {e, d, u} and the nu-
meral I 2 {e, d, u}, II 2 {µ, s, c} and III 2 {⌧, b, u}.
The mass matrices are defined as L = e

T
Mee

c +
1
2⌫

T
M⌫⌫ + d

T
Mdd

c + u

T
Muu

c. We assume that
there is a discrete symmetry groupGf under which
the left-handed lepton doublets L = (⌫, e) trans-
form under a faithful unitary 3-dimensional repre-
sentation ⇢ : Gf ! GL(3,C):

L ! ⇢(g)L, g 2 Gf . (4)

Analogue we assume that there is a discrete sym-
metry group GQ under which the left-handed
quark doublets Q = (u, d) transforms:

Q ! ⇢(g)Q, g 2 GQ. (5)

2

Since all the quark and lepton masses are di↵erent,
these flavor symmetries has to be broken into two
set of di↵erent subgroups, i.e. {Ge, G⌫} for the
leptonic sector and {Gd, Gu} for the quark sector.
In general the generators of Gd and Gu only gen-
erate the group GQ which is a proper subgroup of
Gf , hence we only consider a direct breaking of Gf

into residual symmetries Gd and Gu as we would
like to find a common discrete group Gf that can
simultaneously predict the LO PMNS and CKM
matrix1. Within a set of the residual subgroups
{Ge, G⌫}, the intersection between the subgroups
in the set is trivial as we would like to predict 3
di↵erent mixing angles in the leptonic sector. This
condition is however relaxed for {Gd, Gu} as we do
not find any groups that predict 3 di↵erent quark
mixing angles at LO. Subgroups from di↵erent set,
e.g. Ge and Gd can have non-trivial intersection.
The mass matrix for each sector exhibits a residual
symmetry, satisfying

⇢(gs)
T
MsM

†
s⇢(gs)

⇤ = MsM
†
s , gs 2 Gs (6)

and

⇢(g⌫)
T
M⌫⇢(g⌫) = M⌫ , g⌫ 2 G⌫ . (7)

The residual subgroups {Ge, G⌫} and {Gd, Gu}
must be abelian due to the experimental fact that
all the masses of quarks and leptons are distin-
guishable. The 3-dimensional irreducible represen-
tation of the residual subgroups cannot be decom-
posed into three inequivalent 1-dimensional rep-
resentations had they possess a non-abelian char-
acter2. For Majorana neutrinos the residual sub-
group is given by the Klein group Z2 ⇥ Z2, while
Gs can be any abelian subgroups of Gf with order
n � 3. Once the generators of all the subgroups
are specified in a certain representation, the mix-
ing pattern of quark sector and leptonic sector can
be determined via the unitary matrices ⌦s and ⌦⌫

satisfying

⌦†
s,⌫⇢(gs,⌫)⌦s,⌫ = ⇢(gs,⌫)diag. (8)

The unitary matrix ⌦s and ⌦⌫ are determined up
to permutations of columns and also a diagonal
phase matrix. The PMNS and CKM matrix are
then determined by

UPMNS = ⌦†
e⌦⌫ , UCKM = ⌦†

d⌦u. (9)

1 This possibility is also briefly discussed in Ref. [5].
2 See Ref. [21] for the case where neutrinos masses are de-
generate.

which are unique up to the permutations of rows
and columns. The Dirac CP phases of the PMNS
and CKM matrices can also be determined from
this method.

III. MIXING PATTERN FROM COMMON
DISCRETE SYMMETRIES

As shown in Ref. [7], a scan of finite discrete
groups with order less than 1536 yields only 3 in-
teresting groups that give LO leptonic mixing pat-
terns which lie within 3-sigma of current best fit.
These 3 groups, namely �(6 ·102), (Z18⇥Z6)oS3

and �(6 · 162), provide a good starting point to
search for residual groups that can yield an accept-
able CKM matrix at LO. By searching the abelian
subgroups contained in these 3 groups, we obtain
the CKM matrix at LO in the following form:

UCKM =

0

@
cos ✓̃ sin ✓̃ 0
� sin ✓̃ cos ✓̃ 0

0 0 1

1

A
. (10)

The values of sin ✓̃ are given in Table I and the
form may be compared to best fit values of the
CKM matrix [22]

UCKM '

0

@
0.974 0.225 0.004
0.225 0.973 0.041
0.009 0.040 0.999

1

A
, (11)

indicating that NLO corrections of the order of
Ucb ⇠ �

2
c ⇠ 0.04 are needed, which is to be con-

trasted with the case of A4, for example, where
UCKM = 13 at LO and NLO corrections therefore
have to be of the size Ucs ⇠ �c ⌘ sin ✓c ⇠ 0.22.
Since there is no mixing between all three genera-
tions in Eq. (10) the CKM CP phase in undeter-
mined in this setup and will be a result of NLO
corrections.

Before we discuss the results of Table I, it is
useful to recall [7] that the groups in Table I
may be defined as being generated by the gener-
ators S, T and U(n, k), using the faithful irrep
⇢ : {S, T, U(n, k)} ! {S3, T3, U3(n, k)} with

T3 ⌘

0

@
0 1 0
0 0 1
1 0 0

1

A
, S3 ⌘

0

@
1 0 0
0 �1 0
0 0 �1

1

A (12)

and

U3(n, k) ⌘ �

0

@
1 0 0
0 0 zn,k

0 z

⇤
n,k 0

1

A (13)

3

n Gf GAP-Id sin ✓̃ type

5 �(6 · 102) [600, 179] 0.156 A
0.309 B

9 (Z18 ⇥ Z6)o S3 [648, 259] 0.259 A
16 �(6 · 162) n.a. 0.195 A

Table I. LO Cabibbo angles sin ✓̃ which are compatible
with experimental results generated by flavor groups
up to order 1536. Type A and B refers to di↵erent
residual symmetries (see text).

with zn,k = e

2⇡ik/n, n, k 2 N. In the leptonic
sector if one uses Ge = hT i ⇠= Z3 and G⌫ =
hS,U(n, k)i ⇠= Z2⇥Z2 one gets the TM2-like mix-
ing matrix [7]

UPMNS = UHPSU13(✓ =
1

2
arg(z)) (14)

with the 1-3 rotation matrix defined as

U13(✓) =

0

@
cos ✓ 0 sin ✓
0 1 0

� sin ✓ 0 cos ✓

1

A
. (15)

In the quark sector we found two di↵erent types
of solutions corresponding to di↵erent conserved
subgroups. From the form (10) of the LO CKM
matrix it is already clear that the intersection be-
tween Gu and Gd has to be non-vanishing, other-
wise there would be full 3 by 3 mixing (as in the
leptonic case). The generator of the intersection
can in principle be any generator, but we will al-
ways take S for concreteness. As a result of the
scan, we found 2 types of mixing patterns

• type A:

Gd = hS,U(n, p)i ⇠= Z2 ⇥ Z2,

Gu = h(ST )2TU(n,m)i ⇠= Z4

• type B:

Gd = hS,U(n, p)i ⇠= Z2 ⇥ Z2,

Gu = hS, (U(n,m)T 2)2(U(n,m)T )2U(n,m)i
⇠= Z2 ⇥ Z2

Both left-handed quarks and leptons may be as-
signed to the same representation, which provides
a possibility for model building of flavor symmetry
in the context of Grand Unified Theories.

Let us first discuss the case of type A. The LO
CKM matrix of Eq. (10) results from the break-
down of Gf down to Gd = hS,U(n,m)i ⇠= Z2 ⇥Z2

and Gu = h(ST )2TU(n, p)i ⇠= Z4. Note that

((ST )2TU(n, p))2 = S is an element of both Gd

and Gu.
The generator of the group Gu is given by

R3(n, p) ⌘ ⇢((ST )2TU(n, p))

=

0

@
1 0 0
0 0 �zn,p

0 z

⇤
n,p 0

1

A (16)

with z defined in Eq. (13). Note that typically one
needs to choose a di↵erent n-th root in Eq. (13)
and Eq. (16) in order to obtain experimentally ac-
ceptable PMNS and CKM matrices. For example,
if we choose the m-th of n-th root z in Eq. (13)
and p-th of n-th root z in Eq. (16), the product of
the unitary matrix

⌦u =
1p
2

0

@
0 0

p
2

ie

2⇡ip/n �ie

2⇡ip/n 0
1 1 0

1

A (17)

that diagonalizes R3(n, p) with the unitary matrix

⌦d =
1p
2

0

@
0 0

p
2

e

2⇡im/n �e

2⇡im/n 0
1 1 0

1

A (18)

that diagonalizes S3 and U3(n,m) simultaneously
will generate LO CKM matrix

UCKM = ⌦†
d⌦u (19)

=
1

2

0

@
1 + ie

�2⇡i(m�p)/n 1� ie

�2⇡i(m�p)/n 0
1� ie

�2⇡i(m�p)/n 1 + ie

�2⇡i(m�p)/n 0
0 0 2

1

A

or

sin ✓̃ =
1

2

s

2� 2 sin

✓
2⇡(m� p)

n

◆
(20)

The interesting cases quotes in Table I correspond
to (n = 5, p = 1,m = 2), (n = 9, p = 1,m = 4)
and (n = 16, p = 1,m = 2), respectively. Since Gu

and Gd have a non-trivial intersection, the group
generated by the elements of Gu and Gd is not the
full flavor group Gf . Rather it is a subgroup of
U(2), depending on the values of n, p and m. The
groups generated by these remnant symmetries are
isomorphic to (Z10 ⇥ Z2) o Z2, (Z6 ⇥ Z2) o Z2

and QD32 (the quasidihedral group of order 32),
respectively3.

3 See Ref. [23] for a review on the type of groups above.
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•  breaking to different subgroups 
yields LO mixing pattern where only 
Cabibbo angle is produced 

n Gf GAP-Id sin ✓̃ type

5 �(6 · 102) [600, 179] 0.156 A
0.309 B

9 (Z18 ⇥ Z6)o S3 [648, 259] 0.259 A
16 �(6 · 162) n.a. 0.195 A

Table I. LO Cabibbo angles sin ✓̃ which are compatible
with experimental results generated by flavor groups
up to order 1536. Type A and B refers to di↵erent
residual symmetries (see text).
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2⇡ik/n, n, k 2 N. In the leptonic
sector if one uses Ge = hT i ⇠= Z3 and G⌫ =
hS,U(n, k)i ⇠= Z2⇥Z2 one gets the TM2-like mix-
ing matrix [7]
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with the 1-3 rotation matrix defined as
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0 1 0
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A
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In the quark sector we found two di↵erent types
of solutions corresponding to di↵erent conserved
subgroups. From the form (10) of the LO CKM
matrix it is already clear that the intersection be-
tween Gu and Gd has to be non-vanishing, other-
wise there would be full 3 by 3 mixing (as in the
leptonic case). The generator of the intersection
can in principle be any generator, but we will al-
ways take S for concreteness. As a result of the
scan, we found 2 types of mixing patterns

• type A:

Gd = hS,U(n, p)i ⇠= Z2 ⇥ Z2,

Gu = h(ST )2TU(n,m)i ⇠= Z4

• type B:

Gd = hS,U(n, p)i ⇠= Z2 ⇥ Z2,

Gu = hS, (U(n,m)T 2)2(U(n,m)T )2U(n,m)i
⇠= Z2 ⇥ Z2

Both left-handed quarks and leptons may be as-
signed to the same representation, which provides
a possibility for model building of flavor symmetry
in the context of Grand Unified Theories.

Let us first discuss the case of type A. The LO
CKM matrix of Eq. (10) results from the break-
down of Gf down to Gd = hS,U(n,m)i ⇠= Z2 ⇥Z2

and Gu = h(ST )2TU(n, p)i ⇠= Z4. Note that

((ST )2TU(n, p))2 = S is an element of both Gd

and Gu.
The generator of the group Gu is given by

R3(n, p) ⌘ ⇢((ST )2TU(n, p))

=

0
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1 0 0
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n,p 0
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A (16)

with z defined in Eq. (13). Note that typically one
needs to choose a di↵erent n-th root in Eq. (13)
and Eq. (16) in order to obtain experimentally ac-
ceptable PMNS and CKM matrices. For example,
if we choose the m-th of n-th root z in Eq. (13)
and p-th of n-th root z in Eq. (16), the product of
the unitary matrix

⌦u =
1p
2

0
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0 0
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2

ie
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2⇡ip/n 0
1 1 0

1
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that diagonalizes R3(n, p) with the unitary matrix
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that diagonalizes S3 and U3(n,m) simultaneously
will generate LO CKM matrix
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The interesting cases quotes in Table I correspond
to (n = 5, p = 1,m = 2), (n = 9, p = 1,m = 4)
and (n = 16, p = 1,m = 2), respectively. Since Gu

and Gd have a non-trivial intersection, the group
generated by the elements of Gu and Gd is not the
full flavor group Gf . Rather it is a subgroup of
U(2), depending on the values of n, p and m. The
groups generated by these remnant symmetries are
isomorphic to (Z10 ⇥ Z2) o Z2, (Z6 ⇥ Z2) o Z2

and QD32 (the quasidihedral group of order 32),
respectively3.

3 See Ref. [23] for a review on the type of groups above.
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 [MH, K.S. Lim, 1305.4356(PRD)] 

•  all other quark angles 
are NLO effects 

•  smaller NLO corrections 
possible 



Quo vadis? 

(a) S4 (b) (Z18 ⇥ Z6) o S3

Figure 2. The distribution µ(Gf ) is plotted for groups S4(left) and (Z18⇥Z6)oS3(right). The width of Gaussian
Distribution � in 1-sigma deviation is plotted in green. The blue (red) region represents the 3-sigma global fit
region for the leptonic (quark) mixing pattern.

measure.6

In this section we aim to give a quantita-
tive measure of the predictivity of discrete flavor
groups. The scenario we have in mind is the fol-
lowing: we assume the LO quark and/or lepton
mixing to be determined from mismatched rem-
nant symmetries, where we take each possible LO
mixing pattern to be equally likely. We further as-
sume that NLO corrections are randomly scattered
around the LO values. This seems to be well mo-
tivated from a model-building perspective as quite
often there are a multitude of higher-dimensional
operators contributing at NLO order.7 We dis-
card the comparison of CP phases as the Dirac CP
phase in the leptonic sector is not known while the
CKM CP phase in general is not predicted in our
approach.

We will work in the coordinates c

4
13 ⌘ cos4 ✓13,

s

2
12 ⌘ sin2 ✓12 and s

2
23 ⌘ sin2 ✓23 for which the

6 See also Ref. [32, 33] for a critical take on anarchy in the
lepton sector.

7 Since in typical models (e.g. [19, 20, 34, 35]) these higher
dimensional operators do not respect any remnant sym-
metries this agnostic approach seems warranted. How-
ever, it should be stressed that this does not apply for all
models and in a particular model the structure of NLO
corrections might very well be predictive [36]. Such se-
tups usually forbid higher dimensional operators in the
superpotential; care has to be taken to keep Kähler cor-
rections under control [37].

invariant Haar measure of SU(3) is flat. Under
the anarchy hypotheses, in this space each point
is equally likely pdV = dc413ds

2
12ds

2
23. Without

NLO corrections, the discrete group would pre-
dict a sum of Delta functions pdV =

P
i �

(3)(~x �
~xi)dc413ds

2
12ds

2
23 centered about the possible LO

predictions ~xi = (c413, s
2
12, s

2
23)

T . Since we ex-
pect the NLO corrections to be anarchically dis-
tributed around the LO predictions, we smear
out the Delta functions to 3-dimensional gaussians
p

(i)
f = exp(~x�~xi)2/�2 centered around the i-th LO

mixing with variance given by

�

2 = Min(�2
CKM) +Min(�2

PMNS) (22)

the quadratic sum of the shortest distance between
the best fit CKM angles ~xCKM and PMNS angles
~xPMNS to a LO prediction of the group

Min(�CKM/PMNS) ⌘ inf
i
|~xi � ~xCKM/PMNS|. (23)

The total normalized distribution pf of a discrete

group Gf is given by the sum of all the p

(i)
f . For

illustration in Fig. 2 we show the pf distribution
in the space of (c413, s

2
12, s

2
23) for the group S4 and

(Z18⇥Z6)oS3. The group (Z18⇥Z6)oS3 predicts
more mixing patterns than S4 with smaller covari-
ance �

2, as its predicted PMNS matrix values are
more accurate at LO.

As a measure of predictivity we now propose the
integration of pf within the 3-sigma region from
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small groups, large NLO corrections large groups, small NLO corrections 

for a possible measure comparing the ‚relative instrinsic precitvitiy‘ of flavour groups, see  
[MH, K.S. Lim, 1305.4356(PRD)] 

3 sigma values of 
exp. measured 
lepton/ quark angles 
possible values from 
Gf 



A Model Building Challenge: 
Vacuum Alignment Problem  
 based on  
 [MH, M.A. Schmidt JHEP 1201 (2012) 126, 1111.1730 [hep-ph] ] 
 and  
 [MH, M. Lindner, M.A. Schmidt 1211.5143 (PRD)]  



A4 Model Building Boot Camp 
!   (A4,Z4) charge assignments: L∼ (3,i), ec∼ 

(11,-i), 𝜇c∼ (12,-i), 𝜏c∼ (13,-i) ,𝜒 ∼(3,1), 
Φ∼(3,-1), 𝜉 ∼(1,-1) 

!   auxiliary Z4 separates neutral and 
charged lepton sectors at LO 

〈Φ〉∼(1,0,0) 

Z3=〈T〉 Z2=〈S〉 

TBM 

Vacuum alignment crucial! 
(symmetry U accidental) 

[e.g. Ma,Rajasekaran’01, Babu, Ma, Valle 
’03, Altarelli,Feruglio, ’05,’06] 

 

!   predictions for mixing angles are a 
result of remnant symmetries  

!   in a concrete model one therefore 
needs a peculiar breaking pattern 

In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘

0

B

@

1 0 0

0 �1 0

0 0 �1

1

C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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⇢(S) =

0

@
1 0 0
0 �1 0
0 0 �1

1

A⇢(T ) =

0

@
0 1 0
0 0 1
1 0 0

1

A



Can Vacuum Alignment be realized? 
•  random scan with order one parameter values 

•  two solutions: 

•  both flavons preserved 
same subgroup, angle 
zero 

•  no conserved subgroup, 
TBM vaccum has to be 
fine-tuned 

[for a general discussion of 
breakdown to discrete subgroups. see 
Michel 1980] 
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Figure 3.2: Distribution of the opening angle spanned by the two flavon fields for random values of potential
parameters for the most general scalar potential given in Eq. (3.1). The tri-bimaximal vacuum configuration
depicted in the inlay corresponds to an opening angle of 54.7�. As discussed in the text, the figure shows that
there is no phase where this vacuum configuration is realized, but rather two phases can be identified: one
phase where both flavons conserve the same subgroup and point in the same direction (angle=0) and one phase
where the symmetry is broken completely. The TBM vacuum is part of the later phase but it is not special.

where both VEVs are aligned in the (1, 0, 0) direction and conserve a Z
2

subgroup, (ii) another
phase where both VEVs are aligned, but this time in the Z

3

-conserving (1, 1, 1) direction and
(iii) a third phase where the symmetry is broken completely. The VEV configuration Eq. (2.46)
is part of this phase but it is only realized on a smaller dimensional sub-manifold of couplings,
indicating fine-tuning3. The discussion using soft-breaking terms makes it clear that this
problem cannot be solved by the introduction of additional singlets and the like, but rather
requires additional ingredients, which – this being particle physics after all – means additional
symmetries. The symmetry should forbid all couplings between the flavon sectors that break
A

4

to Z
2

and Z
3

, respectively, except for the quartic coupling where both couple in pairs
to singlets. This is equivalent to demanding that there are two independent A

4

symmetries
A⌫

4

⇥ Af
4

in the flavon potential, under which � transforms only under the first group factor,
� ⇠ (31,11) and � ⇠ (11,31). This cannot be a symmetry of the entire Lagrangian, however,
as it must be broken by couplings to the leptons (e.g. the ones given in Eqs. (2.44) and(2.45)).

Note, that the Kronecker product 3⇥3 = 11+12+13+3S +3A allows couplings of the form
(��)12

(��)13
, (��)13

(��)12
and (��)3(��)3 in the minimal A

4

model discussed above and

the desired vacuum alignment is thus not possible, without some additional mechanism. This
kind of coupling cannot be forbidden by assigning � or � to a unitary representation of an
additional internal symmetry group commuting with the flavour group, because non-trivial
contractions such as (�†�)3 and (�†�)3 will always be invariant under the commuting group.
In particular, it is not possible to forbid the coupling by introducing an additional commuting
group factor, which is a discrete group or a compact Lie group.

Setting these couplings to zero cannot be considered a viable option as loop e↵ects such as

3For a recent attempt to characterize the fine-tuning of a new physics model by the Hausdor↵ dimension of
the phenomenologically allowed sub-manifold of couplings, see [143]. Here we follow [87] and demand that
for a natural model the alignment is realized ‘in a whole region of the parameter space’. We will come back
to this in detail later.
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need a natural 
explanation for 
absence of 
dangerous cross-
coupling terms 

•  usually quite complicated costructions based on extra 
dimensions or continuous R symmetries in SUSY 

•  ALWAYS: engineered accidental A4xA4 symmetry ONLY of 
potential  Φ∼(3,1) & 𝜒 ∼(1,3)  

•  What is the smallest solution within 4D non-SUSY QFT? 

Chapter 3.

The Vacuum Alignment Problem in Flavour
Models

In Section 3.1 the vacuum alignment problem of flavour models is discussed and the two main
solutions that exist in the literature are presented. In Section 3.2 a solution based on group
theoretical considerations is presented and the results of a scan over a catalogue of small
groups is discussed. In Section 3.3 some of the small groups found in the preceding section are
introduced to set the stage for the model building e↵orts of the next chapter.

3.1. The Vacuum Alignment Problem and Solutions in the
Literature

In the last chapter we have seen (in Section 2.2 ) how mismatched remnant symmetries of the
charged lepton and neutrino mass matrices may account for structures in the leptonic mixing
matrix, and in Section 2.4 how such an idea may be realized in a model based on A

4

. There
we had introduced two triplet flavons �, � ⇠ 31, where an additional symmetry makes sure
that at leading order � only couples to charged leptons and � only couples to neutrinos. The
vacuum configuration h�i = (v0, v0, v0) and h�i = (u, 0, 0) of Eq. (2.46) realizes the breaking to
two di↵erent subgroups. We will now show that the complete potential

V = V�(�) + V�(�) + V
mix

(�, �) (3.1)

does not admit solutions of this type, without fine-tuning the parameters in the part of the
scalar potential that connects � and �

V
mix

(�, �) = 31
(��)31

(��)31
+

⇣
12

(��)12
(��)13

+ h.c.
⌘

+ ⇢31
�(��)31

,

via non-singlet contractions. Before discussing the full potential, it is useful to look at the
potential for one of the triplets separately1

V� = µ2

� (��)11
+ �0

1

(��)11
(��)11

+ �0
2

(��)12
(��)13

, (3.2)

where the cubic term is forbidden by the auxiliary Z
4

symmetry (see Table 2.3). All solutions
of the extremal conditions

0 =
@V�

@�i
=

2

3
�i

⇣p
3µ2

� + (2�0
1

� �0
2

)
�
�2

1

+ �2

2

+ �2

3

�
+ 3�0

2

�2

i

⌘
(3.3)

1The operator (��)
31

· (��)
31

, which one would naively expect, can be expressed as a linear combination of

the other operators.
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GV � Gf

GA � {e}

h�ii 6= 0 GA[h�ii] = h�ii

Figure 1. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

(sym. of pot.) GV � Gf (flavour sym. gr.)

(acc. sym.)GA � {e}

h�ii 6= 0 GA[h�ii] = h�ii

Figure 2. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

assume them to be a result of NLO corrections. It
turns out that if one assigns the left-handed quarks
to the same 3-dimensional representations (of the
same groups) that were found to be interesting for
leptonic mixing, such an interesting quark mix-
ing pattern may be derived. Especially the group
(Z18 ⇥Z6)oS3 seems particularly promising, giv-
ing a Cabibbo angle of sin ✓c = 0.259. In this setup
the origin of the di↵erent patterns for the leptonic
and quark sectors thus stems from the di↵erent
remnant symmetries to which the original group
is broken in the respective sectors, as is depicted
in Fig. 4.

The subgroups that give rise to an accept-
able LO Cabibbo angle can be systematically
parametrized and we discuss some group theoret-

CPV

(CP sym. of pot.)

(acc. sym.)GA � {e}

h�ii 6= 0 GA[h�ii] = h�ii

Figure 3. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

A4

hSi hT 2ST i hTST 2i

h�1i =

0

@
1
0
0

1

A

h�2i =

0

@
0
1
0

1

A

h�3i =

0

@
0
0
1

1

A

Figure 4. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

ical aspects of the remnant group structure. We
then broaden our discussion by giving up on the as-
sumption that neutrinos should be Majorana par-
ticles, for which case we perform a scan of finite
discrete groups up to the order of 200 with the
help of the computer algebra program GAP [? ? ?

? ].
In the final chapter of the paper we discuss the

usefulness of large flavor groups more generally. It
should be clear that if one considers a very large
flavor group virtually any mixing pattern may be
realized. If one would break the group SU(3) down
to discrete remnant groups, for example, the re-
quirement of a breakdown to subgroups loses all
predictivity. The question one might now ask one-
self is the following: which setup is more predic-
tive, the case of a small group (such as A4 [? ? ?

? ? ? ? ] or S4 [? ? ? ]) with large NLO correc-
tions or a larger group with smaller NLO correc-
tions. Under the assumption that NLO corrections
are randomly drawn (which seems fine for many
models) statistical arguments (à la anarchy) lead
us to propose a measure of the predictive power of
a chosen group.
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Figure 3.6: Cayley graph of Q
8

o A
4

. One can clearly distinguish the 12 normal Q
8

subgroups generated by
X(red) and Y (green) that are conjugated by the generators S(turquoise ) and T (violet) of A

4

.

and the faithful representation that solves the VEV alignment problem is given by

A =
1p
2

0

BB@

0 0 z13 z19

0 0 z13 z7

z11 z23 0 0
z5 z5 0 0

1

CCA and B =
1p
2

0

BB@

0 0 z5 z5

0 0 z23 z11

z19 z 0 0
z7 z 0 0

1

CCA , (3.33)

with z = ei⇡/12.

Q8 o T 0 ⇠= SG(192, 1022): The group T 0 =
⌦
s, t, r|s2 = r, t3 = (st)3 = r2 = E

↵
may be

extended by a semi-direct product in the same way as A
4

. For the generators s and t the
defining homomorphism is the same as for Q

8

o A
4

given in Eq. (3.30) and for r we have:

rXr�1 = X rY r�1 = Y.

The generator r therefore commutes with all group elements and the centre is therefore enlarged
to Z(Q

8

o T 0) = {E, r, rX2, X2} ⇠= Z
2

⇥ Z
2

. The relevant representations can be constructed
from the homomorphism g : Q

8

o T 0 ! Q
8

o A
4

defined by g : {r, s, t} ! {E, S, T}. To
solve the vacuum alignment problem, the leptons should be assigned to L ⇠ ⇢31

� g and the

neutrino sector flavon � ⇠ ⇢41
� g. The additional representations may be used to describe

the quark sector [103].
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3.3. Some Small Candidate Groups

In this section, we discuss the smallest group extensions of A
4

, S
4

and T 0 we found in our
scan. We go into more detail for the semidirect product group Q

8

o A
4

, since we will use this
group in the next chapter.

3.3.1. The Smallest Group Q8 o A4

While the A
4

subgroup is presented by

⌦
S, T |S2 = T 3 = (ST )3 = 1

↵
, (3.28)

the quaternionic subgroup Q
8

(also known as D0
4

, the double group of the dihedral group of
order 4) is defined by

⌦
X, Y |X4 = 1, X2 = Y 2, Y �1XY = X�1

↵
, (3.29)

and its Cayley graph is depicted in Fig. 3.5. The semidirect product Q
8

oA
4

we are considering
here is defined by the additional relations between the generators of Q

8

(X, Y ) and A
4

(S, T )

SXS�1 = X, SY S�1 = Y �1, TXT�1 = Y X, TY T�1 = X , (3.30)

and its Cayley graph is shown in Fig. 3.6. Note that the last relation allows one to replace
the generator Y = T 2XT , leading to the presentation

⌦
S, T, X|S2 = T 3 = X4 = SXSX3 = (ST )3 = T 2XT 2X3T 2X3 = STX3T 2STX3T 2 = E

↵
.

One can further see that the group element X2 commutes with all other elements. This
generates the centre Z(Q

8

o A
4

) = {E, X2} and representations can be classified according to
⇢(X2) = ± .

The defining representation matrices for the representations are given in Table 3.4. Notice
that there is a 3-dimensional representation

⇢31
(S) = S

3

⌘
0

@
1 0 0
0 �1 0
0 0 �1

1

A , ⇢31
(T ) = T

3

⌘
0

@
0 1 0
0 0 1
1 0 0

1

A , ⇢31
(X) =

3

,

which is exactly the representation we were looking for in Eq. (3.26) to solve the vacuum
alignment problem. Obviously, this representation only knows about the A

4

subgroup generated
by S and T and it is therefore not faithful. The other crucial ingredient we needed was a
faithful representation of G that did not contain any A

4

representation in its symmetric
product. This representation can be easily identified to be 41:

⇢41
(S) = S

4

⌘�
3

⌦ �
1

, ⇢41
(T ) = T

4

⌘

0

BB@

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

1

CCA , ⇢41
(X) = X

4

⌘ � i�
2

⌦ �
3

.
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1

S
TS

T

ST2

TST

ST

STS

T2

T2S

TST2

T2ST

(a) Cayley Graph of A
4

. Figure 3: The A
4

symmetry of tetrahedron.

From these forms, it is found obviously that A
4

is isomorphic to �(12) ' (Z
2

⇥ Z
2

) o Z
3

,
which is explained in section 9.

They are classified by the conjugacy classes as

C
1

: {a
1

}, h = 1,
C

3

: {a
2

, a
3

, a
4

}, h = 2,
C

4

: {b
1

, b
2

, b
3

, b
4

, }, h = 3,
C

4

0 : {c
1

, c
2

, c
3

, c
4

, }, h = 3,

(67)

where we have also shown the orders of each element in the conjugacy class by h. There
are four conjugacy classes and there must be four irreducible representations, i.e. m

1

+
m

2

+ m
3

+ · · · = 4.
The orthogonality relation (11) requires

X

↵

[�↵(C
1

)]2 =
X

n

mnn2 = m
1

+ 4m
2

+ 9m
3

+ · · · = 12, (68)

for mi, which satisfy m
1

+ m
2

+ m
3

+ · · · = 4. The solution is obtained as (m
1

, m
2

, m
3

) =
(3, 0, 1). That is, the A

4

group has three singlets, 1, 10, and 100, and a single triplet 3,
where the triplet corresponds to (66).

Another algebraic definition of A
4

is often used in the literature. We denote a
1

= e,
a

2

= s and b
1

= t. They satisfy the following algebraic relations,

s2 = t3 = (st)3 = e. (69)

The closed algebra of these elements, s and t, is defined as the A
4

. It is straightforward
to write all of ai, bi and ci elements by s and t. Then, the conjugacy classes are rewritten

19

(b) Geometrical interpretation of A
4

.

Figure 2.3: The symmetry group A
4

.The twelve group elements are connected by the generators S (red) and
T (blue). The picture 2.3b is taken from [88].

can define the semidirect product group N o' H via the multiplication rule

(n
1

, h
1

) ⇤ (n
2

, h
2

) = (n
1

'h
1

(n
2

), h
1

h
2

) for n
1,2 2 N and h

1,2 2 H. (2.35)

Note that there can be more than one semidirect product between two groups, but in the
following we will often drop the index ', as long as it is clear which group we are referring
to. (Another equivalent definition we will use is that a group G is a semidirect product of a
subgroup H and normal8 subgroup N if there exists a homomorphism G ! H which is the
identity on H and whose kernel9 is N.)

Let us present in some detail the case of the smallest group in Fig. 2.2, namely the
tetrahedral group A

4

. We will give the details for the other groups in the appendix. The group
A

4

may be written as A
4

⇠= (Z
2

⇥ Z
2

) o Z
3

where the Klein group N ⇠= Z
2

⇥ Z
2

is defined
by

⌦
S, X|X2 = S2 = E, XS = SX

↵
, the group H ⇠= Z

3

is defined by
⌦
T |T 3 = E

↵
and the

semidirect product is given by

'T (S) = TST�1 = XS, 'T (X) = TXT�1 = S. (2.36)

Note that the last relation allows one to replace one generator of N , e.g. X = T 2ST , and we
arrive at the standard presentation of A

4

:
⌦
S, T |S2 = T 3 = E, (ST )3 = E

↵
, (2.37)

that is represented graphically in Fig. 2.3a.
The other small groups in the tree shown in Fig. 2.2 can be represented in a similar way 10:

�(3n2) ⇠= (Zn ⇥ Zn) o Z
3

, �(6n2) ⇠= (Zn ⇥ Zn) o S
3

, Tn
⇠= Zn o Z

3

(2.38)

where S
4

⇠= �(24) and the defining homomorphisms are given in App. A.1. S
3

denotes the
group of permutations of three elements. It is in itself a semi-direct product S

3

⇠= Z
3

o Z
2

=⌦
r, a; r3 = a2 = E, ara�1 = r2

↵
and is not to be confused with the matrix defined in Eq. (2.27).

8A normal subgroup N of a group G, denoted by N C G, is a subgroup, which is invariant under conjugation
by an arbitrary group element of G, i.e. gNg�1 = N .

9The kernel of a representation ⇢ is defined by ker ⇢ = {g 2 G|⇢(g) = }.
10With respect to particle physics, �(3n2) has been studied in [89–92],T

7

has been studied in [93–95]and
�(6n2) has been studied in [88, 96].
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11 12 13 31 32 33 34 35 41 42 43

S 1 1 1 S
3

T
3

S
3

T 2

3

T
3

S
3

T 2

3

3

T 2

3

S
3

T
3

S
4

S
4

S
4

T 1 ! !2 T
3

T
3

T
3

T
3

T
3

T
4

!2T
4

!T
4

X 1 1 1
3

S
3

T 2

3

S
3

T
3

T
3

S
3

T 2

3

T 2

3

S
3

T
3

X
4

X
4

X
4

Table 3.4: Representations of Q
8

o A
4

in the chosen basis. The first 4 representations are the unfaithful
A

4

= hS, T i representations to which the leptons are assigned (with ⇢(X) = ). Note that the representations
4i are double valued, i.e. ⇢(Z(G) = X2) = � , whereas the other representations are single valued (⇢(X2) = ).
12,3 and 42,3 are complex, the other representations are real.

An explicit matrix representation of these generators for the remaining representations is given
in Table 3.4 and the character table is presented in Table 6.3, and will be discussed there in
more detail in Section 6.3.5. The Kronecker products

3i ⇥ 3i = 11 + 12 + 13 + 3iS + 3iA (3.31a)

3i ⇥ 3j =
5X

k=1

k 6=i,j

3k (i 6= j) (3.31b)

3i ⇥ 4j = 41 + 42 + 43 (3.31c)

41 ⇥ 41 = 11S + 31A + 32S + 33S + 34S + 35A (3.31d)

41 ⇥ 42 = 12S + 31A + 32S + 33S + 34S + 35A (3.31e)

X

X2

YX

X3Y3 XY

Y

1

Figure 3.5: Cayley graph of Q
8

. The gen-
erator X is depicted by red arrows and the
generator Y is depicted by blue arrows.

show that if one uses the unfaithful triplet � ⇠ 31 to
break A

4

in the charged lepton sector and the four di-
mensional faithful representation � ⇠ 41 in the neutrino
sector, there are no dangerous cross-coupling terms of
the form (��)31

(��)31
etc. allowed by the symmetry

that would forbid the required VEV alignment. This
will be the crucial property used to solve the vacuum
alignment problem in the model of the next chapter.

3.3.2. Other Small Groups

For concreteness, we also briefly describe the groups
that form the smallest extensions of S

4

and T 0.
Z4.S4

⇠= SG(96, 67): This group (in the GAP nota-

tion SG(96, 67)11) is the smallest extension of S
4

that
allows for a solution of the vacuum alignment problem. It is generated by 2 generators A and
B that fulfil the relations:

A4 = B4 = AB�1A�1BA�1B�1 = E, (3.32)

11In order to uniquely specify each group, we denote it by SG(O, N) where O is its order and N is the number
in the GAP4 [129] SmallGroups catalogue [128].
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3.3. Some Small Candidate Groups

In this section, we discuss the smallest group extensions of A
4

, S
4

and T 0 we found in our
scan. We go into more detail for the semidirect product group Q

8

o A
4

, since we will use this
group in the next chapter.

3.3.1. The Smallest Group Q8 o A4

While the A
4

subgroup is presented by

⌦
S, T |S2 = T 3 = (ST )3 = 1

↵
, (3.28)

the quaternionic subgroup Q
8

(also known as D0
4

, the double group of the dihedral group of
order 4) is defined by

⌦
X, Y |X4 = 1, X2 = Y 2, Y �1XY = X�1

↵
, (3.29)

and its Cayley graph is depicted in Fig. 3.5. The semidirect product Q
8

oA
4

we are considering
here is defined by the additional relations between the generators of Q

8

(X, Y ) and A
4

(S, T )

SXS�1 = X, SY S�1 = Y �1, TXT�1 = Y X, TY T�1 = X , (3.30)

and its Cayley graph is shown in Fig. 3.6. Note that the last relation allows one to replace
the generator Y = T 2XT , leading to the presentation

⌦
S, T, X|S2 = T 3 = X4 = SXSX3 = (ST )3 = T 2XT 2X3T 2X3 = STX3T 2STX3T 2 = E

↵
.

One can further see that the group element X2 commutes with all other elements. This
generates the centre Z(Q

8

o A
4

) = {E, X2} and representations can be classified according to
⇢(X2) = ± .

The defining representation matrices for the representations are given in Table 3.4. Notice
that there is a 3-dimensional representation

⇢31
(S) = S

3

⌘
0

@
1 0 0
0 �1 0
0 0 �1

1

A , ⇢31
(T ) = T

3

⌘
0

@
0 1 0
0 0 1
1 0 0

1

A , ⇢31
(X) =

3

,

which is exactly the representation we were looking for in Eq. (3.26) to solve the vacuum
alignment problem. Obviously, this representation only knows about the A

4

subgroup generated
by S and T and it is therefore not faithful. The other crucial ingredient we needed was a
faithful representation of G that did not contain any A

4

representation in its symmetric
product. This representation can be easily identified to be 41:

⇢41
(S) = S

4

⌘�
3

⌦ �
1

, ⇢41
(T ) = T

4

⌘

0

BB@

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

1

CCA , ⇢41
(X) = X

4

⌘ � i�
2

⌦ �
3

.
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3.3. Some Small Candidate Groups

In this section, we discuss the smallest group extensions of A
4

, S
4

and T 0 we found in our
scan. We go into more detail for the semidirect product group Q

8

o A
4

, since we will use this
group in the next chapter.

3.3.1. The Smallest Group Q8 o A4

While the A
4

subgroup is presented by

⌦
S, T |S2 = T 3 = (ST )3 = 1

↵
, (3.28)

the quaternionic subgroup Q
8

(also known as D0
4

, the double group of the dihedral group of
order 4) is defined by

⌦
X, Y |X4 = 1, X2 = Y 2, Y �1XY = X�1

↵
, (3.29)

and its Cayley graph is depicted in Fig. 3.5. The semidirect product Q
8

oA
4

we are considering
here is defined by the additional relations between the generators of Q

8

(X, Y ) and A
4

(S, T )

SXS�1 = X, SY S�1 = Y �1, TXT�1 = Y X, TY T�1 = X , (3.30)

and its Cayley graph is shown in Fig. 3.6. Note that the last relation allows one to replace
the generator Y = T 2XT , leading to the presentation

⌦
S, T, X|S2 = T 3 = X4 = SXSX3 = (ST )3 = T 2XT 2X3T 2X3 = STX3T 2STX3T 2 = E

↵
.

One can further see that the group element X2 commutes with all other elements. This
generates the centre Z(Q

8

o A
4

) = {E, X2} and representations can be classified according to
⇢(X2) = ± .

The defining representation matrices for the representations are given in Table 3.4. Notice
that there is a 3-dimensional representation

⇢31
(S) = S

3

⌘
0

@
1 0 0
0 �1 0
0 0 �1

1

A , ⇢31
(T ) = T

3

⌘
0

@
0 1 0
0 0 1
1 0 0

1

A , ⇢31
(X) =

3

,

which is exactly the representation we were looking for in Eq. (3.26) to solve the vacuum
alignment problem. Obviously, this representation only knows about the A

4

subgroup generated
by S and T and it is therefore not faithful. The other crucial ingredient we needed was a
faithful representation of G that did not contain any A

4

representation in its symmetric
product. This representation can be easily identified to be 41:

⇢41
(S) = S

4

⌘�
3

⌦ �
1

, ⇢41
(T ) = T

4

⌘

0

BB@

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

1

CCA , ⇢41
(X) = X

4

⌘ � i�
2

⌦ �
3

.
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3.3. Some Small Candidate Groups

11 12 13 31 32 33 34 35 41 42 43

S 1 1 1 S
3

T
3

S
3

T 2

3

T
3

S
3

T 2

3

3

T 2

3

S
3

T
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S
4

S
4

S
4

T 1 ! !2 T
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T
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T
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T
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T
3

T
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!2T
4
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4

X 1 1 1
3

S
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3

S
3

T
3

T
3

S
3
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3

T 2

3

S
3

T
3

X
4

X
4

X
4

Table 3.4: Representations of Q
8

o A
4

in the chosen basis. The first 4 representations are the unfaithful
A

4

= hS, T i representations to which the leptons are assigned (with ⇢(X) = ). Note that the representations
4i are double valued, i.e. ⇢(Z(G) = X2) = � , whereas the other representations are single valued (⇢(X2) = ).
12,3 and 42,3 are complex, the other representations are real.

An explicit matrix representation of these generators for the remaining representations is given
in Table 3.4 and the character table is presented in Table 6.3, and will be discussed there in
more detail in Section 6.3.5. The Kronecker products

3i ⇥ 3i = 11 + 12 + 13 + 3iS + 3iA (3.31a)

3i ⇥ 3j =
5X

k=1

k 6=i,j

3k (i 6= j) (3.31b)

3i ⇥ 4j = 41 + 42 + 43 (3.31c)

41 ⇥ 41 = 11S + 31A + 32S + 33S + 34S + 35A (3.31d)

41 ⇥ 42 = 12S + 31A + 32S + 33S + 34S + 35A (3.31e)

X

X2

YX

X3Y3 XY

Y

1

Figure 3.5: Cayley graph of Q
8

. The gen-
erator X is depicted by red arrows and the
generator Y is depicted by blue arrows.

show that if one uses the unfaithful triplet � ⇠ 31 to
break A

4

in the charged lepton sector and the four di-
mensional faithful representation � ⇠ 41 in the neutrino
sector, there are no dangerous cross-coupling terms of
the form (��)31

(��)31
etc. allowed by the symmetry

that would forbid the required VEV alignment. This
will be the crucial property used to solve the vacuum
alignment problem in the model of the next chapter.

3.3.2. Other Small Groups

For concreteness, we also briefly describe the groups
that form the smallest extensions of S

4

and T 0.
Z4.S4

⇠= SG(96, 67): This group (in the GAP nota-

tion SG(96, 67)11) is the smallest extension of S
4

that
allows for a solution of the vacuum alignment problem. It is generated by 2 generators A and
B that fulfil the relations:

A4 = B4 = AB�1A�1BA�1B�1 = E, (3.32)

11In order to uniquely specify each group, we denote it by SG(O, N) where O is its order and N is the number
in the GAP4 [129] SmallGroups catalogue [128].
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•  there is one representation which does not contain an A4 representation in is symmetric 
product 

•  therefore the coupling between a scalar transforming as 31 and 41 is non-renormalizable,  
     which leads to an accidental symmetry V=VΦ(Φ)+V𝜒(𝜒)+(ΦΦ)1(𝜒𝜒)1 



Scalar Potential & Vacuum Alignment 
!  random scan over order one parameter values 

•  no fine tuning needed to obtain TBM vacuum 
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Figure 4.1: Distribution of the opening angle spanned by the flavon field � and the e↵ective operator (�
1

�
2

)
31

for random values of potential parameters for the most general scalar potential given in Eq. (4.8). The
tri-bimaximal vacuum configuration depicted in the inlay corresponds to an opening angle of 54.7�. We see
that this vacuum configuration is obtained for a finite portion of parameter space, i.e. there is a phase with the
TBM vacuum. This is to be contrasted with the potential without the alignment mechanism in Fig. 3.2.

only five independent ones:

a
�
↵

+

�
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�
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�
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�
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+
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�
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�
+ U

1
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+ �bcd = 0 (4.10a)
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c
�
�

+

�
c2 + d2

�
+ ��

�
c2 � d2

�
+ �

+

�
a2 + b2

�
+ ��

�
a2 � b2

�
+ U

2

�
+ �abd = 0 (4.10c)
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� � ��
�
a2 � b2

�
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2

�
+ �abc = 0 (4.10d)

v0
⇣
4
p

3�
1

v02 + 3⇢
1

v0 + U
3

⌘
= 0, (4.10e)

where the equations have been rescaled to eliminate overall constant factors and with the
shorthand notations

Ui =
1

2

⇣
µ2

i +
p

3⇣i3 v02
⌘

for i = 1, 2 , U
3

= 2µ2

3

+ ⇣
13
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23
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9
=

; for hSY Xi .

The first four equations result from the derivatives taken with respect to the components of
�

1

and �
2

and the last one comes from the three-components of �. Note that the equations
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31 11 12 13 31 41 41

Z
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Table 4.1: Particle content of the minimal model with the correct spontaneous symmetry breaking. The
flavons �, �

1

and �
2

do not transform under the SM. The leptons transform in the usual way given in Table 2.1.

Indeed, in the numerical minimisation of the potential, we found a tendency for a similar size
of the two � contractions.

Since in this model there is no need for a singlet flavon ⇠, the number of degrees of freedom
exactly matches the numbers of degrees of freedom of one complex A

4

triplet and one complex
singlet, which is commonly used [9, 69]. The di↵erence here is that we do not have to introduce
additional degrees of freedom to obtain the correct vacuum alignment and we thus think it is
an attractive and economical model.

The mass matrices we have presented here are the leading order mass matrices and they will
undergo small changes due to higher dimensional operators that contribute at next-to-leading
order. These will be studied in Section 4.4.1.

4.3. Vacuum Alignment

In this section we demonstrate that the pattern of vacuum expectation values we used in the
last section can be obtained as the global minimum of the scalar potential. The most general
scalar potential invariant under the flavour symmetry is given by

V (�, �
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)11
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23
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�
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)11
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. (4.9)

Note that, by construction, there are no non-trivial couplings between the � and � breaking
sectors that would disturb the vacuum alignment. The potential thus has an ‘accidental’
(Q

8

o A
4

) ⇥ A
4

⇥ Z
4

symmetry under which the flavons transform as � ⇠ (11,31, 1), �
1

⇠
(41,11, 1) and �

2

⇠ (41,11, �1). This symmetry is explicitly broken to (Q
8

o A
4

) ⇥ Z
4

by the couplings to leptons and by higher dimensional operators in the potential. As the
accidental symmetry is discrete, there is no pseudo-Goldstone boson, as can easily happen in
constructions of this type [153].
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Note that, by construction, there are no non-trivial couplings between the � and � breaking
sectors that would disturb the vacuum alignment. The potential thus has an ‘accidental’
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⇠ (41,11, �1). This symmetry is explicitly broken to (Q
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by the couplings to leptons and by higher dimensional operators in the potential. As the
accidental symmetry is discrete, there is no pseudo-Goldstone boson, as can easily happen in
constructions of this type [153].
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4.2. Lepton Masses

sector is thus analogous to the usual construction in an A
4

model. In the neutrino sector, we
introduce the real flavons �

1,2 ⇠ 41.
To keep the discussion simple, we use an e↵ective field theory description. To lowest order,

the charged lepton masses arise from the operators

� L(5)

e = ye(L�)11
ecH̃/⇤ + yµ(L�)13

µcH̃/⇤ + y⌧ (L�)12
⌧ cH̃/⇤ + h.c. , (4.3)

with H̃ = i�
2

H⇤, and the neutrino masses are generated from the e↵ective interactions

L(7)

⌫ = xa(LHLH)11
(�

1

�
2

)11
/⇤3 + xd(LHLH)31

· (�
1

�
2

)31
/⇤3 + h.c. (4.4)

The notation should be self-explanatory and the relevant Kronecker products are given in
App. A.2. We will show in the next section that the vacuum configuration

h�i = (v0, v0, v0)T , h�
1

i =
1p
2
(a, a, b, �b)T , h�

2

i =
1p
2
(c, c, d, �d)T , (4.5)

with v0, a, b, c, d 2 R, can be obtained as the global minimum of the most general scalar
potential. This configuration gives

h(�
1

�
2

)31
i =

1

2
(bc � ad, 0, 0)T and h(�

1

�
2

)11
i =

1

2
(ac + bd)

and it breaks the flavour symmetry to the Z
2

subgroup generated by S. There are also
physically inequivalent minima of the potential that break to the Z

2

subgroups generated by
SY and SY X which lead to the same structure h(�

1

�
2

)31
i / (1, 0, 0)T . We will discuss these

issues in more detail the next section.
As the leptons only transform under the subgroup hS, T i ⇠= A

4

, the structure of the mass
matrices exactly mirrors the discussion of the prototype model in Section 2.4. The leading
order mass matrices are given by

ME =
vv0

⇤
p

2
⌦⇤

T diag(ye, yµ, y⌧ ), M⌫ =
v2

2
p

3⇤2

0

@
ã 0 0
0 ã d̃
0 d̃ ã

1

A (4.6)

with ã = xa
1

2

(ac + bd) and d̃ = xd
1

2

(bc � ad). Again, the matrix M⌫ is invariant under the
accidental symmetry U and thus the mixing matrix is of the tri-bimaximal form and the mass
spectrum is thus given by3

⌦T
T ME =

vv0
p

2
diag(ye, yµ, y⌧ ), ⌦T

UM⌫⌦U = diag(ã + d̃, ã, d̃ � ã). (4.7)

Note that in this model both ã and d̃ are generated by the the same VEVs of the same flavons.
This is quite di↵erent from the usual A

4

models reviewed in Section 2.4 where an additional
flavon ⇠ has to be introduced to generate ã. The two entries ã and d̃ in the mass matrix have
to be quite close to each other in magnitude [122, 154] to account for the small ratio of solar
to atmospheric mass squared di↵erence. Here, both contributions stem from VEVs of the
same fields, and a similar order of magnitude might therefore be considered more natural.

3The charged lepton mass hierarchy can be explained by a Froggatt-Nielsen U(1) symmetry in the usual way.
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to be quite close to each other in magnitude [122, 154] to account for the small ratio of solar
to atmospheric mass squared di↵erence. Here, both contributions stem from VEVs of the
same fields, and a similar order of magnitude might therefore be considered more natural.

3The charged lepton mass hierarchy can be explained by a Froggatt-Nielsen U(1) symmetry in the usual way.

51

•  check out Mathematica package Discrete 
[http://discrete.hepforge.org/] 



GV � Gf

GA � ?

h�ii 6= 0 GA[h�ii] = 0

Figure 1. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

(sym. of pot.) GV � Gf (flavour sym. gr.)

(acc. sym.)GA � {e}

h�ii 6= 0 GA[h�ii] = 0

Figure 2. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

assume them to be a result of NLO corrections. It
turns out that if one assigns the left-handed quarks
to the same 3-dimensional representations (of the
same groups) that were found to be interesting for
leptonic mixing, such an interesting quark mix-
ing pattern may be derived. Especially the group
(Z18 ⇥Z6)oS3 seems particularly promising, giv-
ing a Cabibbo angle of sin ✓c = 0.259. In this setup
the origin of the di↵erent patterns for the leptonic
and quark sectors thus stems from the di↵erent
remnant symmetries to which the original group
is broken in the respective sectors, as is depicted
in Fig. 3.

The subgroups that give rise to an accept-
able LO Cabibbo angle can be systematically
parametrized and we discuss some group theoret-

A4
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A

Figure 3. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

ical aspects of the remnant group structure. We
then broaden our discussion by giving up on the as-
sumption that neutrinos should be Majorana par-
ticles, for which case we perform a scan of finite
discrete groups up to the order of 200 with the
help of the computer algebra program GAP [? ? ?

? ].
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θ13 and Leptonic CP Violation 
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Ũ =

0

@
c
12

c
13

s
12

c
13

s
13

e�i�

�s
12

c
23

� c
12

s
23

s
13

ei� c
12

c
23

� s
12

s
23

s
13

ei� s
23

c
13

s
12

s
23

� c
12

c
23

s
13

ei� �c
12

s
23

� s
12

c
23

s
13

ei� c
23

c
13

1

A . (13)

We use the shorthand notation s
ij

= sin ✓
ij

and c
ij

= cos ✓
ij

. The mixing angles ✓
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vanish, if the PMNS matrix fulfills eq.(15). Thus, also the Majorana phases
↵ and � are trivial4
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3The Dirac phase has a physical meaning only if all angles are di↵erent from 0 and ⇡/2, as indicated
by the data.
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Furthermore, notice that one of the Majorana phases becomes unphysical, if the lightest neutrino mass
vanishes.
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•  Largish Θ13 means CP violation can be observed in oscillations in not-so-distant 
future 



•  natural next step: try to predict the CP phase using CP and discrete flavour symmetries 
(G. Ross: last chance) 

•  however, there was some confusion about how to implement CP in theories with discrete 
flavour symmetries 

Example: consider the group A4 with a triplet 
scalar  
and and a non-trivial singlet ξ transforming 
as 13 

Under the CP transformation 

encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]
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(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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is mapped to sth. not invariant: 
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•  CP extends the group A4 and forbids this invariant??  
•  Is is possible to impose CP without enlarging the group? 
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Predicting the CP phase 

some 
confusion in 
literature 
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13 : S = 1 , T = !2;

In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
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A

, ⇢31
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1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–
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theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to
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and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].

11

encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].

11

the A4 invariant 

is mapped to sth. not invariant: 

CP [I] = ⇠⇤
�
�⇤
1�

⇤
1 + !2�⇤

2�
⇤
2 + !�⇤

3�
⇤
3

�
⇠ 12

•  CP extends the group A4 and forbids this invariant??  
•  Is is possible to impose CP without enlarging the group? 

I = ⇠
�
�1�1 + !2�2�2 + !�3�3

�
⇠ 11

! = ei
2⇡
3

Predicting the CP phase 

some 
confusion in 
literature 

� = (�1,�2,�3)
T ⇠ 3

3 : S =

0

@
1 0 0
0 �1 0
0 0 �1

1

A , T =

0

@
0 1 0
0 0 1
1 0 0

1

A

13 : S = 1 , T = !2;

In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘

0

B

@

1 0 0

0 �1 0

0 0 �1

1

C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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1



•  natural next step: try to predict the CP phase using CP and discrete flavour symmetries 
(G. Ross: last chance) 

•  however, there was some confusion about how to implement CP in theories with discrete 
flavour symmetries 

Example: consider the group A4 with a triplet 
scalar  
and and a non-trivial singlet ξ transforming 
as 13 

Under the CP transformation 

encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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the A4 invariant 

is mapped to sth. not invariant: 

CP [I] = ⇠⇤
�
�⇤
1�

⇤
1 + !2�⇤

2�
⇤
2 + !�⇤

3�
⇤
3

�
⇠ 12

•  CP extends the group A4 and forbids this invariant??  
•  Is is possible to impose CP without enlarging the group? 

I = ⇠
�
�1�1 + !2�2�2 + !�3�3

�
⇠ 11

! = ei
2⇡
3

Predicting the CP phase 

some 
confusion in 
literature 

� = (�1,�2,�3)
T ⇠ 3

3 : S =

0

@
1 0 0
0 �1 0
0 0 �1

1

A , T =

0

@
0 1 0
0 0 1
1 0 0

1

A

13 : S = 1 , T = !2;

In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘
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A

, ⇢31
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. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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A supersymmetric SUð5Þ # T0 unified model of flavor with large !13
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We present a SUSY SUð5Þ # T0 unified flavor model with type I seesaw mechanism of neutrino mass

generation, which predicts the reactor neutrino angle to be !13 $ 0:14 close to the recent results from the

Daya Bay and RENO experiments. The model predicts also values of the solar and atmospheric neutrino

mixing angles, which are compatible with the existing data. The T0 breaking leads to tribimaximal mixing

in the neutrino sector, which is perturbed by sizeable corrections from the charged lepton sector. The

model exhibits geometrical CP violation, where all complex phases have their origin from the complex

Clebsch-Gordan coefficients of T0. The values of the Dirac and Majorana CP violating phases are

predicted. For the Dirac phase in the standard parametrization of the neutrino mixing matrix we get a

value close to 90%: " ffi #=2' 0:45!c ffi 84:3%, !c being the Cabibbo angle. The neutrino mass spectrum

can be with normal ordering (2 cases) or inverted ordering. In each case the values of the three light

neutrino masses are predicted with relatively small uncertainties, which allows one to get also unambig-

uous predictions for the neutrinoless double beta decay effective Majorana mass.

DOI: 10.1103/PhysRevD.86.113003 PACS numbers: 14.60.Pq, 12.10.Dm, 12.15.Ff, 12.60.Jv

I. INTRODUCTION

Understanding the origin of the patterns of neutrino
masses and mixing, emerging from the neutrino oscilla-
tion, 3H $ decay, etc. data is one of the most challenging
problems in neutrino physics. It is part of the more general
fundamental problem in particle physics of understanding
the origins of flavor, i.e., of the patterns of the quark,
charged lepton, and neutrino masses and of the quark and
lepton mixing.

At present we have compelling evidence for the exis-
tence of mixing of three light massive neutrinos %i, i ¼ 1,
2, 3, in the weak charged lepton current (see, e.g., Ref. [1]).
The massesmi of the three light neutrinos %i do not exceed
approximately 1 eV, mi & 1 eV, i.e., they are much
smaller than the masses of the charged leptons and quarks.
The three light neutrino mixing is described (to a good
approximation) by the Pontecorvo, Maki, Nakagawa,
Sakata (PMNS) 3# 3 unitary mixing matrix, UPMNS. In
the widely used standard parametrization [1], UPMNS is
expressed in terms of the solar, atmospheric, and reactor
neutrino mixing angles !12, !23, and !13, respectively, one
Dirac— ", and two Majorana [2]— $1 and $2 CP violat-
ing phases:

UPMNS ) U ¼ Vð!12; !23;!13;"ÞQð$1;$2Þ; (1.1)

where

V ¼
1 0 0

0 c23 s23

0 's23 c23

0
BB@

1
CCA

c13 0 s13e
'i"

0 1 0

's13e
i" 0 c13

0
BB@

1
CCA

#
c12 s12 0

's12 c12 0

0 0 1

0
BB@

1
CCA; (1.2)

and we have used the standard notation cij ) cos!ij, sij )
sin!ij, and

1

Q ¼ Diagðe'i$1=2; e'i$2=2; 1Þ: (1.3)

The neutrino oscillation data, accumulated over many
years, allowed us to determine the parameters that drive the
solar and atmospheric neutrino oscillations,!m2

* ) !m2
21,

!12 and j!m2
Aj ) j!m2

31j ffi j!m2
32j, !23, with a rather high

precision (see, e.g., Ref. [1]). Furthermore, there were
spectacular developments in the last year in what concerns
the angle !13. In June 2011 the T2K Collaboration reported
[3] evidence at 2:5& for a nonzero value of !13.
Subsequently the MINOS [4] and Double Chooz [5] col-
laborations also reported evidence for !13 ! 0, although
with a smaller statistical significance. Global analysis of
the neutrino oscillation data, including the data from the
T2K and MINOS experiments, performed in Ref. [6],
showed that actually sin!13 ! 0 at + 3&. In March 2012
the first data of the Daya Bay reactor antineutrino experi-
ment on !13 were published [7]. The value of sin

22!13 was

*aurora.meroni@sissa.it
†Also at Institute of Nuclear Research and Nuclear Energy,

Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria.
‡spinrath@sissa.it

1This parametrization differs from the standard one. We use it
for ‘‘technical’’ reasons related to the fitting code we will
employ. Obviously, the standard one can be obtained as
Diagð1;ei'21 ;ei'31 Þ¼ei$1=2Q, with '21 ¼ $1 ' $2 and '31¼$1.
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•  natural next step: try to predict the CP phase using CP and discrete flavour symmetries 
(G. Ross: last chance) 

•  however, there was some confusion about how to implement CP in theories with discrete 
flavour symmetries 

Example: consider the group A4 with a triplet 
scalar  
and and a non-trivial singlet ξ transforming 
as 13 

Under the CP transformation 

encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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•  Is is possible to impose CP without enlarging the group? 

I = ⇠
�
�1�1 + !2�2�2 + !�3�3

�
⇠ 11

! = ei
2⇡
3

Predicting the CP phase 

some 
confusion in 
literature 

� = (�1,�2,�3)
T ⇠ 3

3 : S =

0

@
1 0 0
0 �1 0
0 0 �1

1

A , T =

0

@
0 1 0
0 0 1
1 0 0

1

A

13 : S = 1 , T = !2;

In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘

0

B

@

1 0 0

0 �1 0

0 0 �1

1

C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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Abstract

We propose the complex group theoretical Clebsch-Gordon coefficients as a novel origin of CP violation.

This is manifest in our model based on SU(5) combined with the T ′ group as the family symmetry. The

complex CG coefficients in T ′ lead to explicit CP violation which is thus geometrical in origin. The predicted

CP violation measures in the quark sector are consistent with the current experimental data. The corrections

due to leptonic Dirac CP violating phase gives the experimental best fit value for the solar mixing angle,

and we also gets the right amount of the baryonic asymmetry.
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We present a SUSY SUð5Þ # T0 unified flavor model with type I seesaw mechanism of neutrino mass

generation, which predicts the reactor neutrino angle to be !13 $ 0:14 close to the recent results from the

Daya Bay and RENO experiments. The model predicts also values of the solar and atmospheric neutrino

mixing angles, which are compatible with the existing data. The T0 breaking leads to tribimaximal mixing

in the neutrino sector, which is perturbed by sizeable corrections from the charged lepton sector. The

model exhibits geometrical CP violation, where all complex phases have their origin from the complex

Clebsch-Gordan coefficients of T0. The values of the Dirac and Majorana CP violating phases are

predicted. For the Dirac phase in the standard parametrization of the neutrino mixing matrix we get a

value close to 90%: " ffi #=2' 0:45!c ffi 84:3%, !c being the Cabibbo angle. The neutrino mass spectrum

can be with normal ordering (2 cases) or inverted ordering. In each case the values of the three light

neutrino masses are predicted with relatively small uncertainties, which allows one to get also unambig-

uous predictions for the neutrinoless double beta decay effective Majorana mass.

DOI: 10.1103/PhysRevD.86.113003 PACS numbers: 14.60.Pq, 12.10.Dm, 12.15.Ff, 12.60.Jv

I. INTRODUCTION

Understanding the origin of the patterns of neutrino
masses and mixing, emerging from the neutrino oscilla-
tion, 3H $ decay, etc. data is one of the most challenging
problems in neutrino physics. It is part of the more general
fundamental problem in particle physics of understanding
the origins of flavor, i.e., of the patterns of the quark,
charged lepton, and neutrino masses and of the quark and
lepton mixing.

At present we have compelling evidence for the exis-
tence of mixing of three light massive neutrinos %i, i ¼ 1,
2, 3, in the weak charged lepton current (see, e.g., Ref. [1]).
The massesmi of the three light neutrinos %i do not exceed
approximately 1 eV, mi & 1 eV, i.e., they are much
smaller than the masses of the charged leptons and quarks.
The three light neutrino mixing is described (to a good
approximation) by the Pontecorvo, Maki, Nakagawa,
Sakata (PMNS) 3# 3 unitary mixing matrix, UPMNS. In
the widely used standard parametrization [1], UPMNS is
expressed in terms of the solar, atmospheric, and reactor
neutrino mixing angles !12, !23, and !13, respectively, one
Dirac— ", and two Majorana [2]— $1 and $2 CP violat-
ing phases:

UPMNS ) U ¼ Vð!12; !23;!13;"ÞQð$1;$2Þ; (1.1)

where

V ¼
1 0 0

0 c23 s23

0 's23 c23

0
BB@

1
CCA

c13 0 s13e
'i"

0 1 0

's13e
i" 0 c13

0
BB@

1
CCA

#
c12 s12 0

's12 c12 0

0 0 1

0
BB@

1
CCA; (1.2)

and we have used the standard notation cij ) cos!ij, sij )
sin!ij, and

1

Q ¼ Diagðe'i$1=2; e'i$2=2; 1Þ: (1.3)

The neutrino oscillation data, accumulated over many
years, allowed us to determine the parameters that drive the
solar and atmospheric neutrino oscillations,!m2

* ) !m2
21,

!12 and j!m2
Aj ) j!m2

31j ffi j!m2
32j, !23, with a rather high

precision (see, e.g., Ref. [1]). Furthermore, there were
spectacular developments in the last year in what concerns
the angle !13. In June 2011 the T2K Collaboration reported
[3] evidence at 2:5& for a nonzero value of !13.
Subsequently the MINOS [4] and Double Chooz [5] col-
laborations also reported evidence for !13 ! 0, although
with a smaller statistical significance. Global analysis of
the neutrino oscillation data, including the data from the
T2K and MINOS experiments, performed in Ref. [6],
showed that actually sin!13 ! 0 at + 3&. In March 2012
the first data of the Daya Bay reactor antineutrino experi-
ment on !13 were published [7]. The value of sin

22!13 was

*aurora.meroni@sissa.it
†Also at Institute of Nuclear Research and Nuclear Energy,

Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria.
‡spinrath@sissa.it

1This parametrization differs from the standard one. We use it
for ‘‘technical’’ reasons related to the fitting code we will
employ. Obviously, the standard one can be obtained as
Diagð1;ei'21 ;ei'31 Þ¼ei$1=2Q, with '21 ¼ $1 ' $2 and '31¼$1.
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Important Question for Model Building: 
 
How can CP be defined consistently in a theory with a discrete 
flavour symmetry? 



How to define CP consistently 
•  A generalized CP acts upon the vector of fields  

where U is unitary, to leave the kinetic term invariant. 

[Bernabeu, Branco, 
Gronau 86] 

CP : �(t, ~x) ! U�

⇤(t,�~x)
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U⇢(g)⇤�⇤

⇢(g0)� = U⇢(g)⇤U�1�

CP g

g0 CP�1

Figure 1: CP definition.

with U being a unitary matrix, which is not necessarily block-diagonal as the representation

matrices, because it generically interchanges representations, not only complex and pseudo-

real representations, but also real representations, which we will discuss later. If the repre-

sentation is real, i.e. ⇢ = ⇢⇤, there is always the trivial CP transformation � ! �⇤, which

acts trivially on the group. In the following, we will take ⇢ to be complex and faithful, i.e. ⇢

is injective. If ⇢ were not faithful then the theory would only be invariant under the smaller

symmetry group isomorphic to G/ ker ⇢ and the restricted representation would be faithful.

Note that Eq. (2.4) in combination with Eq. (2.1) implies the existence of a matrix W

with W 2 = 1 as well as �⇤ = W� and consequently

⇢(g) = W⇢(g)⇤W�1, (2.5)

i.e. W exchanges the complex conjugate components of �. See sec. 4.1 and especially Eq. (4.3)

for a concrete example. Comparing first performing a group transformation and then per-

forming a CP transformation with the inverse order of operations and demanding that the

resulting transformation is contained in the symmetry group G of the theory, as shown in

Fig. 1, one finds the requirement that

U⇢(g)⇤U�1 2 Im⇢ ⌘ ⇢(G) , (2.6)

i.e. the CP transformation maps group elements ⇢(g) onto group elements ⇢(g0). We will

refer to this condition as consistency condition and denote models satisfying this condition

consistent. If the condition (2.6) is not fulfilled, the group G is not the full symmetry group

of the Lagrangian and one would have to consider the larger group, which closes under CP

transformations (2.6). We do not consider this case further and will assume that the groupG is

the full symmetry group of the Lagrangian. Hence, a generalised CP transformation preserves

the group multiplication, i.e. U⇢(g1g2)⇤U�1 = U⇢(g1)⇤U�1U⇢(g2)⇤U�1 and U ⇤U�1 = ,

and therefore is a homomorphism 4. Furthermore the CP transformation is bijective, since

U is unitary and therefore invertible. Hence, CP is an automorphism 5 of the group, as is

depicted in Fig. 2.

4A (group) homomorphism µ : G ! H is a mapping preserving the group structure, i.e. µ(g1g2) =

µ(g1)µ(g2) 8g1,2 2 G, µ(g�1) = µ(g)�1, and µ(EG) = EH , where EG,H denotes the identity elements of G and

H, respectively.
5An automorphism µ of a group G is a bijective homomorphism µ : G ! G.

4

•  If G is the complete symmetry group, CP has to close in G: 

where U is unitary, to leave the kinetic term invariant. 

CONSISTENCY CONDITION: 

for gauge groups this has 
been investigated by 
[Grimus, Rebelo 95] 

[Bernabeu, Branco, 
Gronau 86] 

CP : �(t, ~x) ! U�

⇤(t,�~x)
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Figure 2: The matrix U that appears in the definition of CP defines an automorphism
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the following way. We first extend G to a group G0 containing G as a normal subgroup and

u(g) = g0gg0�1 8g 2 G with g0 2 G0. This can be achieved as follows. Taking the order of u 7

to be ord(u) = n, we define the homomorphism
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Keeping track of the multiplication rules, we find

(E, 1) ? (g, z) ? (E, 1)�1 = (u(g), z) , (2.11)

where E is the identity element of G. The outer 8 automorphism u of G becomes an inner
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for finding matrix representations of groups, for example by using the computer algebra system
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neutral: 

inverse: ⇢(g)⇤ = W⇢(g)W�1
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✓ : {0, ..., n� 1} ! Aut(G)

Inverse Direction: : Each automorphism u of G may 
be represented by such a matrix U. 

•   Construct group extended by automorphism u (un=id) 
  

(g1, z1) ? (g2, z2) = (g1✓z1(g2), z1 + z2)
•  u acts as conjugation within this group 

(E, 1) ? (g, 0) ? (E, 1)�1 = (u(g), 0)
•  Consider representation                                induced via  ⇢0 : G0 ! U(M) ⇢0(g, 0) = ⇢(g)

⇢(u(g)) = ⇢0(u(g), 0)

= ⇢0((E, 1) ? (g, 0) ? (E, 1)�1)

= ⇢0((E, 1))⇢0((g, 0))⇢0((E, 1))�1

= ⇢0((E, 1))W⇢(g)⇤W�1⇢0((E, 1))�1

•  automorphism u is 
represented by matrix 

U(u) = ⇢0((E, 1))W

Proof: 

⇢(g)⇤ = W⇢(g)W�1where 



An application: ‚Calculable Phases‘ 
!   in general one expects two different kinds of vacua of a CP 

conserving potential 
! either VEV is real, conserves CP and phase does not depend 

on potential parameters 
! or VEV is complex, breaks CP and phase depends on 

potential parameters 
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Highly desireable for model building: 
 
•  non-trivial phase that does not depend on 

potential parameters  
•  same reason as VEV alignment, makes predictive model 
•  called ‚calculable phases‘ or ‚geometric CP violation‘ 

•  calculable phases are a result of an accidental 
CP symmetry of potential 
•  explicit example Δ (27) [Branco, Gerard, Grimus 

1984] 



Possible CP transformations in Δ (27) 

E BABA ABA A BAB AB A2 B2 B BA2BAB AB2ABA

11 1 1 1 1 1 1 1 1 1 1 1

12 1 ! !2 1 ! !2 1 ! !2 1 1

13 1 !2 ! 1 !2 ! 1 !2 ! 1 1

14 1 ! ! !2 !2 !2 ! 1 1 1 1

15 1 !2 1 !2 1 ! ! ! !2 1 1

16 1 1 !2 !2 ! 1 ! !2 ! 1 1

17 1 !2 !2 ! ! ! !2 1 1 1 1

18 1 1 ! ! !2 1 !2 ! !2 1 1

19 1 ! 1 ! 1 !2 !2 !2 ! 1 1

3 3 . . . . . . . . 3! 3!2

3⇤ 3 . . . . . . . . 3!2 3!

Table 3: Character table of �(27). The first line indicates representatives of the di↵erent

conjugacy classes. Zeroes in the character table are denoted by a dot . and ! is the third root

of unity ! = e2⇡i/3. The arrows illustrate the generators of the outer automorphism group

u1(blue) and u2(red).

and

U(u2) =

 

0 Ũ

Ũ⇤ 0

!

with Ũ =

0

B

@

!2 0 0

0 0 !

0 !2 0

1

C

A

. (4.47)

All automorphisms can be generated from the generators ui by composition and the repre-

sentation matrices U(aut) may be obtained with the help of Eq. (2.17). We have therefore

found a complete classification of possible CP transformations that may be implemented in a

model based on �(27). There are 48 outer automorphisms generated by u1 and u2 that may

in principle give physically distinct CP transformations with distinct physical implications,

however as a model that is invariant under CP will also be invariant under CPn it is su�cient

to consider which subgroups of the automorphism groups is realised.

It is instructive to look at some of these subgroups in detail. Let us for example consider

the CP transformation � ! �⇤ or U(h1) = 3 that corresponds to the outer automorphism

h1 : (A,B) ! (A,B2), which can be expressed in terms of the generators as h1 = u1 � u22 �
u�1
1 � u2 � u�1

1 � u�1
2 � u�1

1 � conj(A)�1 � u�1
1 . This outer automorphism squares to one and

therefore generates a Z2 subgroup of the automorphism group. Contrary to the situation

we have encountered before, where the outer automorphism group was a Z2, this is not

the only solution. As a further example we may consider the Z2 subgroup generated by

u1 � u22 � u
�1
1 � u2 � u�1

1 � u�2
2 with h2 : (A,B) ! (ABA,B) which according to Eq. (2.17) is

represented by

U(h2) =

0

B

@

! 0 0

0 0 1

0 1 0

1

C

A

. (4.48)
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For usual spontaneous breaking of CP one would expect the phases of the fields to depend

on potential parameters and therefore not be determined by the group symmetry structure.

The only way to get ’calculable phases’, i.e. phases that do not depend on potential para-

meters, seems to be if this CP breaking vacua is connected to an additional (accidental) CP

symmetry of the potential as is the case for �(27) (see sec. 4.4). For T 0, however, there cannot

be such an additional generalised CP besides the CP transformations which are connected

to the unique non-trivial CP transformation by some group transformation, since the outer

automorphism group is Z2.

4.4 �(27) ⇠= (Z3 ⇥ Z3) o Z3
⇠= SG(27, 3)

The group �(27) =
⌦

A,B|A3 = B3 = (AB)3 = E
↵

21 is another interesting group from the

standpoint of CP violation. Its automorphism structure is quite involved. The centre of

the group is isomorphic to Z3 and generated by the group element X = A2BAB2 with

conj(X) = id and the inner automorphism group has the structure Z3 ⇥ Z3. The outer

automorphism group is generated by

u1 : (A,B) ! (ABA2, B2AB) , u2 : (A,B) ! (ABAB,B2) . (4.41)

It is isomorphic to GL(2, 3), i.e. the general linear group of 2 ⇥ 2 matrices over the field

Z3. The multitude of outer automorphisms can be traced back to the various symmetries

of the character table shown in Tab. 3 that are due to the fact that there are so many

one-dimensional representations. Together with the inner automorphisms these generators

generate the full automorphism group, which is of order 432. In summary the automorphism

structure presents itself as:

Z(�(27)) ⇠= Z3 Aut(�(27)) ⇠= (((Z3 ⇥ Z3)oQ8)o Z3)o Z2 (4.42)

Inn(�(27)) ⇠= Z3 ⇥ Z3 Out(�(27)) ⇠= GL(2, 3) .

The outer automorphism u1 acts on the representations as

12 $ 14, 13 $ 17, 16 $ 18, 3 $ 3⇤ (4.43)

where e.g. 12 ! 14 is to be read as ⇢14
= ⇢12

� u1 etc., and the outer automorphism u2
acts as

12 ! 19 ! 18 ! 13 ! 15 ! 16 ! 12 (4.44)

From this it is trivial to determine the representations of the automorphisms for the one-

dimensional representations. Let us therefore focus on the three dimensional representation

3 generated by

⇢(A) = T3, ⇢(B) = diag(1,!,!2). (4.45)

The two generators of the outer automorphism group act on � ⇠ (3,3⇤) as

U(u1) =

 

Ũ 0

0 Ũ⇤

!

with Ũ =
1p
3

0

B

@

!2 ! 1

! !2 1

1 1 1

1

C

A

(4.46)

21�(27) has been first used in the lepton sector in [35].
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21�(27) has been first used in the lepton sector in [35].
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of the character table shown in Tab. 3 that are due to the fact that there are so many

one-dimensional representations. Together with the inner automorphisms these generators

generate the full automorphism group, which is of order 432. In summary the automorphism

structure presents itself as:

Z(�(27)) ⇠= Z3 Aut(�(27)) ⇠= (((Z3 ⇥ Z3)oQ8)o Z3)o Z2 (4.42)

Inn(�(27)) ⇠= Z3 ⇥ Z3 Out(�(27)) ⇠= GL(2, 3) .

The outer automorphism u1 acts on the representations as

12 $ 14, 13 $ 17, 16 $ 18, 3 $ 3⇤ (4.43)

where e.g. 12 ! 14 is to be read as ⇢14
= ⇢12

� u1 etc., and the outer automorphism u2
acts as

12 ! 19 ! 18 ! 13 ! 15 ! 16 ! 12 (4.44)

From this it is trivial to determine the representations of the automorphisms for the one-

dimensional representations. Let us therefore focus on the three dimensional representation

3 generated by

⇢(A) = T3, ⇢(B) = diag(1,!,!2). (4.45)

The two generators of the outer automorphism group act on � ⇠ (3,3⇤) as

U(u1) =

 

Ũ 0

0 Ũ⇤

!

with Ũ =
1p
3

0

B

@

!2 ! 1

! !2 1

1 1 1

1

C

A

(4.46)

21�(27) has been first used in the lepton sector in [35].
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Calculable Phases in Δ (27)  

•  the potential only contains one phase dependent term 

•  if coupling λ4 multiplying I is positive, the global minimum is at 
     (or  a configuration that can be obtained by acting on this vacuum with a group element) 

•  if coupling λ4 is negative, the global minimum is at  
       (or  a configuration that can be obtained by acting on this vacuum with a group element) 

•  These phases do not depend on potential parameters! 
•  can this be used to predict (leptonic) CP phases? 
•  can they be understood in terms of generalized CP? 

We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find

CPu1 [I] = �1

3
I⇤ +

2

3
I +

X

i

1

3
(H†

iHi)
2 +

X

i 6=j

(H†
iHi)(H

†
jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation

 

H

H⇤

!

= U

 

H⇤

H

!

with U =

 

0 Ũ

Ũ⇤ 0

!

, Ũ =

0

B

@

0 0 !2

0 1 0

! 0 0

1

C

A

(4.54)

20

I ⌘ (H†
1H2)(H

†
1H3) + (H†

2H3)(H
†
2H1) + (H†

3H1)(H
†
3H2)

We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find
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3
I⇤ +

2

3
I +

X

i

1

3
(H†

iHi)
2 +

X

i 6=j

(H†
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†
jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find

CPu1 [I] = �1

3
I⇤ +
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I +
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(H†

iHi)
2 +

X

i 6=j

(H†
iHi)(H

†
jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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⇢(A) =

0

@
0 1 0
0 0 1
1 0 0

1

A ⇢(B) =

0

@
1 0 0
0 ! 0
0 0 !2

1

A

•  consider again a triplet of Higgs doublets 
    which transforms as 



Calculable Phases in Δ (27)  
•  The vacuum of the form                                leaves invariant the CP 

transformation 

We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find

CPu1 [I] = �1

3
I⇤ +

2

3
I +

X

i

1

3
(H†

iHi)
2 +

X

i 6=j

(H†
iHi)(H

†
jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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H ! ⇢(B2)H⇤ =

0

@
1 0 0
0 !2 0
0 0 !

1

AH⇤

•  which is a symmetry of I+I* 
•  no surprise there, CP symmetric potential has CP symmetric ground 

state 
•  for the other solution                           there is no group element that 

leaves H invariant 
•  this was called geometrical CP violation 

hHi = ⇢(g)hHi⇤

We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find

CPu1 [I] = �1

3
I⇤ +

2

3
I +

X

i

1

3
(H†

iHi)
2 +

X

i 6=j

(H†
iHi)(H

†
jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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We investigate the possibility of having spontaneous T violation arising from complex vacuum expectation values with 
calculable phases, assuming geometrical values, entirely determined by the symmetry of the scalar potential. 

It is well known [1 ] that in a theory with spon- 
taneous T violation, the breaking of this discrete sym- 
metry originates in phases coming from complex vac- 
uum expectation values (VEV's) of neutral scalars. In 
general, these phases depend on the values of the ar- 
bitrary parameters of the scalar potential. In this paper, 
we analyse the possibility of having these vacuum 
phases as "calculable quantities", assuming geometri- 
cal values entirely determined by some extra symme- 
try present in the scalar potential. We are particularly 
interested in investigating whether VEV's of this type 
can indeed cause a genuine breaking of T invariance. 
At this point it is worthwhile to dwell on the motiva- 
tion for investigating the above question. Obviously, 
having a calculable T-violating phase would represent 
one less free parameter in the theory. The desirability 
of having "geometrical values" for T-violating vacuum 
angles stems also from a phenomenological reason. 
The recently obtained constraints on the quark mix- 
ing angles [2] suggest that for a not very heavy top 
quark mass the Kobayashi-Maskawa (KM) phase 
(6KM) could be rather large [3]. However, a large val- 
ue for t~KM is hard to understand within the class of 
models which attempt to express t~KM , together with 
the other quark mixing angles, in terms of quark mass 
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ratios. Typically [4], one obtains too small values for 
tSKM , incompatible with the observed strength of CP 
breaking. The hope is then that in the class of theories 
considered here ~iKM can be both calculable and natu- 
rally large. 

Next, we shall search for a minimal model with cal- 
culable T-violating vacuum angles. We restrict our- 
selves to the Glashow-Weinberg-Salam model with n 
scalar multiplets ¢i transforming as SU(2) doublets. 
We will start by deriving some general conditions 
which have to be satisfied in order to have a T-invari- 
ant vacuum. Since we will consider theories which 
may be invariant under linear transformations which 
mix the various ~i's, we will assume the most general 
T transformation, defined by: 

T~i T -  I = Ui]¢~ / . (1) 

If the vacuum is T-invariant, then the following rela- 
tion can be easily derived: 

Ui~(Ol~]lO)* = (01~il0). (2) 

Given a particular set of VEV's, the simplest way of 
investigating whether they correspond to a T-breaking 
solution, is to construct an unitary matrix U satisfying 
eq. (2). If  there is no matrix Uwhich satisfies eq. (2) 
and corresponds at the same time to a symmetry of 
the lagrangian, namely: 

383 
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Calculable Phases as a Result of an 
accidental generalized CP transformation 

! every automorphism corresponds to a generalized CP 
transformation 
! automorphism group of Δ (27) is of order 432, 

generated by 

!   this allows one to search for CP transformation that 
leaves                           invariant and gives a real λ4  

! indeed there is such a CP transformation: 

 

For usual spontaneous breaking of CP one would expect the phases of the fields to depend

on potential parameters and therefore not be determined by the group symmetry structure.

The only way to get ’calculable phases’, i.e. phases that do not depend on potential para-

meters, seems to be if this CP breaking vacua is connected to an additional (accidental) CP

symmetry of the potential as is the case for �(27) (see sec. 4.4). For T 0, however, there cannot

be such an additional generalised CP besides the CP transformations which are connected

to the unique non-trivial CP transformation by some group transformation, since the outer

automorphism group is Z2.

4.4 �(27) ⇠= (Z3 ⇥ Z3) o Z3
⇠= SG(27, 3)

The group �(27) =
⌦

A,B|A3 = B3 = (AB)3 = E
↵

21 is another interesting group from the

standpoint of CP violation. Its automorphism structure is quite involved. The centre of

the group is isomorphic to Z3 and generated by the group element X = A2BAB2 with

conj(X) = id and the inner automorphism group has the structure Z3 ⇥ Z3. The outer

automorphism group is generated by

u1 : (A,B) ! (ABA2, B2AB) , u2 : (A,B) ! (ABAB,B2) . (4.41)

It is isomorphic to GL(2, 3), i.e. the general linear group of 2 ⇥ 2 matrices over the field

Z3. The multitude of outer automorphisms can be traced back to the various symmetries

of the character table shown in Tab. 3 that are due to the fact that there are so many

one-dimensional representations. Together with the inner automorphisms these generators

generate the full automorphism group, which is of order 432. In summary the automorphism

structure presents itself as:

Z(�(27)) ⇠= Z3 Aut(�(27)) ⇠= (((Z3 ⇥ Z3)oQ8)o Z3)o Z2 (4.42)

Inn(�(27)) ⇠= Z3 ⇥ Z3 Out(�(27)) ⇠= GL(2, 3) .

The outer automorphism u1 acts on the representations as

12 $ 14, 13 $ 17, 16 $ 18, 3 $ 3⇤ (4.43)

where e.g. 12 ! 14 is to be read as ⇢14
= ⇢12

� u1 etc., and the outer automorphism u2
acts as

12 ! 19 ! 18 ! 13 ! 15 ! 16 ! 12 (4.44)

From this it is trivial to determine the representations of the automorphisms for the one-

dimensional representations. Let us therefore focus on the three dimensional representation

3 generated by

⇢(A) = T3, ⇢(B) = diag(1,!,!2). (4.45)

The two generators of the outer automorphism group act on � ⇠ (3,3⇤) as

U(u1) =

 

Ũ 0

0 Ũ⇤

!

with Ũ =
1p
3

0

B

@

!2 ! 1

! !2 1

1 1 1

1

C

A

(4.46)

21�(27) has been first used in the lepton sector in [35].
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on potential parameters and therefore not be determined by the group symmetry structure.
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dimensional representations. Let us therefore focus on the three dimensional representation

3 generated by
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U(u1) =
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1p
3

0

B

@

!2 ! 1

! !2 1

1 1 1

1

C

A

(4.46)

21�(27) has been first used in the lepton sector in [35].
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We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find

CPu1 [I] = �1

3
I⇤ +

2

3
I +

X

i

1

3
(H†

iHi)
2 +

X

i 6=j

(H†
iHi)(H

†
jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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1
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(4.54)
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which represents the outer automorphism u : (A,B) ! (AB2AB,AB2A2) via Eq. (2.8),

where u = u32 � conj(A) and that gives

CPu[hHi] = hHi for hHi = vp
3
(!2, 1, 1), CPu[I] = I (4.55)

Note that this CP transformation acts as H ! ŨH, which is not something you would

naively expect, but it is an outer automorphism and therefore it is justified to call it a

CP transformation. Furthermore, this becomes apparent when one looks at how the outer

automorphism u acts on representations. It interchanges the one-dimensional representations

12 $ 13, 15 $ 19, 16 $ 18, (4.56)

making the ”CP-character” of the transformation more apparent. An alternative independent

explanation of geometric CP violation has been given in Ref. [31].

4.5 Z9 o Z3
⇠= SG(27, 4)

Similarly to �(27), the group Z9 o Z3 = SG(27, 4) =
⌦

A,B|A9 = B3 = BAB2A2 = E
↵

22 has

a more complicated automorphism group structure. The group is the semi-direct product

of Z9 generated by A (with A9 = E) with Z3 generated by B (with B3 = E) defined by

BAB�1 = A7. The centre of the group is isomorphic to Z3 and generated by A3. Hence,

the inner automorphism group has the structure Z3 ⇥ Z3. The outer automorphism group is

generated by

u1 :(A,B) ! (AB,B2A6B2A3) (4.57)

u2 :(A,B) ! (AB4AB4A6, B2A6B2A6) .

and the structure of the automorphism group may be summarised as

Z(G) ⇠= Z3 Aut(G) ⇠= ((Z3 ⇥ Z3)o Z3)o Z2 (4.58)

Inn(G) ⇠= Z3 ⇥ Z3 Out(G) ⇠= S3 .

There is a faithful three dimensional representation given by

⇢(A) =

0

B

@

0 1 0

0 0 !2

!2 0 0

1

C

A

, ⇢(B) =

0

B

@

!2 0 0

0 1 0

0 0 !

1

C

A

. (4.59)

The generators of the outer automorphisms can be obtained in the same way as before and

act on (3,3⇤) as

U(u1) =

 

0 Ũ

Ũ⇤ 0

!

with Ũ = diag(1, 1,!2) (4.60)

22The possibility of having Z9 o Z3 as a flavour group in the lepton sector has been first mentioned in

Ref. [36].
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The generators of the outer automorphisms can be obtained in the same way as before and

act on (3,3⇤) as
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CP transformation. Furthermore, this becomes apparent when one looks at how the outer

automorphism u acts on representations. It interchanges the one-dimensional representations
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making the ”CP-character” of the transformation more apparent. An alternative independent

explanation of geometric CP violation has been given in Ref. [31].
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1 Introduction

From a multitude of experimental observations, quantum chromodynamics (QCD) has emerged
as the well-established theory of strong interactions. However, the smallness of CP violation in
strong interactions has been a puzzle in particle physics since the 1970s when it was realised
that the QCD Lagrangian violates CP due to instanton e↵ects [1,2]. The CP violation in strong
interactions is described by the strong CP phase

✓̄ = ✓ + arg det(MuMd) , (1.1)

where ✓ is the coe�cient of ↵s/(8⇡)G̃µ⌫Gµ⌫ , Gµ⌫ is the field strength tensor of QCD, G̃µ⌫ its
dual, and arg det(MuMd) is the contribution from the quark masses. While ✓ and arg det(MuMd)
are transformed into each other via a chiral transformation, the combination ✓̄ stays invariant.
The most stringent limits originate from experimental bounds on the electric dipole moment of
the neutron and result in ✓̄ . 10�11 [3, 4], which is much smaller than the Jarlskog invariant,
J =

�
2.96+0.20

�0.16

�
⇥ 10�5 [3]. Therefore, the strong CP problem is the question why the two

contributions to ✓̄ sum up to such a small number.
There are three main ideas to explain the smallness of strong CP violation. The first and

simplest solution is that one of the quarks is massless [2]. In this case the strong CP phase ✓̄ is
unphysical, since it can be absorbed in the massless quark by a phase transformation. However,
recent data strongly suggests that all quarks are massive [3].

The second very popular solution is the axion solution [5] where ✓̄ is promoted to a dynamical
degree of freedom which is set to small values by a potential. This solution is very elegant but
albeit there have been extensive searches for axions there have been no experimental hints for
their existence so far [3].

The third approach solves the strong CP problem by breaking parity (or CP) spontaneously.
As the topological term ↵s/(8⇡)G̃µ⌫Gµ⌫ violates parity (as well as CP), there are two possibilities
to forbid it by either imposing parity and/or CP, which we will briefly discuss in the following.

(i) Left-right symmetric theories naturally conserve parity and therefore predict ✓̄ = 0.
This has been pointed out in Ref. [6] and further developed in Ref. [7]. Although the Yukawa
couplings are Hermitian, a solution to the strong CP problem requires that the breaking of
parity does not introduce a complex phase in the mass matrices via a complex phase of a
vacuum expectation value (vev). However, there are several viable models in the literature. See,
e.g., [6, 7] for non-supersymmetric models and Ref. [8] for a supersymmetric (SUSY) model.

(ii) Promoting CP to a fundamental symmetry of the Lagrangian sets ✓̄ = 0. In order to
explain the CP violation in weak processes, CP has to be broken spontaneously [9] in such a way
that arg det(MuMd) stays su�ciently small, while the CP violation in weak interactions is large.
The most popular class of models accommodating this are the Nelson-Barr models [10,11]. See,
for instance, Ref. [12] for a minimal implementation as well as Ref. [13] for an implementation
within SUSY. In supersymmetry the smallness of the strong CP phase is further protected by
the non-renormalization theorems [14]. This has been used in the SUSY model of Ref. [15],
where a large CKM phase is generated by renormalization group running. Obviously, it is also
possible to invoke parity as well as CP conservation to address the strong CP problem, which has
been used in an extra-dimensional model with split fermion profiles in Ref. [16]. Recently, Fong
and Nardi [17] showed that by imposing CP and promoting the Yukawa couplings to spurions
of the maximal SU(3)3 flavour symmetry, the spurion potential results in a real determinant
and therefore a solution of the strong CP problem.

Nevertheless, the class of models proposed here is based as well on spontaneous CP violation,
but di↵erent to the previously mentioned class of models by using a specific texture of quark
mass matrices. As we will discuss in the next section, where we outline our strategy, our class
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1 Introduction

From a multitude of experimental observations, quantum chromodynamics (QCD) has emerged
as the well-established theory of strong interactions. However, the smallness of CP violation in
strong interactions has been a puzzle in particle physics since the 1970s when it was realised
that the QCD Lagrangian violates CP due to instanton e↵ects [1,2]. The CP violation in strong
interactions is described by the strong CP phase
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dual, and arg det(MuMd) is the contribution from the quark masses. While ✓ and arg det(MuMd)
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There are three main ideas to explain the smallness of strong CP violation. The first and

simplest solution is that one of the quarks is massless [2]. In this case the strong CP phase ✓̄ is
unphysical, since it can be absorbed in the massless quark by a phase transformation. However,
recent data strongly suggests that all quarks are massive [3].

The second very popular solution is the axion solution [5] where ✓̄ is promoted to a dynamical
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that arg det(MuMd) stays su�ciently small, while the CP violation in weak interactions is large.
The most popular class of models accommodating this are the Nelson-Barr models [10,11]. See,
for instance, Ref. [12] for a minimal implementation as well as Ref. [13] for an implementation
within SUSY. In supersymmetry the smallness of the strong CP phase is further protected by
the non-renormalization theorems [14]. This has been used in the SUSY model of Ref. [15],
where a large CKM phase is generated by renormalization group running. Obviously, it is also
possible to invoke parity as well as CP conservation to address the strong CP problem, which has
been used in an extra-dimensional model with split fermion profiles in Ref. [16]. Recently, Fong
and Nardi [17] showed that by imposing CP and promoting the Yukawa couplings to spurions
of the maximal SU(3)3 flavour symmetry, the spurion potential results in a real determinant
and therefore a solution of the strong CP problem.

Nevertheless, the class of models proposed here is based as well on spontaneous CP violation,
but di↵erent to the previously mentioned class of models by using a specific texture of quark
mass matrices. As we will discuss in the next section, where we outline our strategy, our class

1

α= (88.7 ± 
3.1)° [UTFit 
Winter 13] 
 

use discrete flavour symmetries 
and spontaneous CP violation in 
model to explain both 
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Strong CP Phase 

! Make CP fundamental: ϴ=0 

!   Break CP spontaneously while maintaining arg det(MuMd)=0 
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• We0parameterise0the0mixing0matrices0as,0e.g.

• For0mass0matrices0with0vanishing01I30element:
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The-Phase-Sum-Rule
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U †
d = Ud

23U
d
13U

d
12 with Ud

12 =

0

@
cd12 sd12e

�i �d12 0

�sd12e
i �d12 cd12 0

0 0 1

1

A (UdMdM
†
dU

†
d = diag.)

↵ ⇡ �d12 � �u12
!⇡ 90�

[Antusch, King, Malinsky, MS '09] see also
[Fritzsch and Xing; Masina and Savoy '06;
Harrison, Dallison, Roythorne, Scott '09]

9

Md =

0

@
0 ⇤ 0
⇤ i ⇤ ⇤
0 0 ⇤

1

A , Mu real ) �d12 = 90� , �u12 = 0

 
arg det(MuMd)=0 
 
α= 90° 

to realize this in a model we need  
•  special VEV alignment 
•  high control over NLO corrections, have to avoid  

•  higher dim. operators, which would spoil structure of mass matrices 
•  SUSY breaking terms 

fields [34], such that it is impossible to define a CP transformation, which is left invariant by
the vevs, and CP is spontaneously broken. The interplay between the di↵erent flavon fields will
ensure that CP is broken in our model, as will be discussed in Sec. 4.1.

Using these ingredients we will present in Sec. 4 a consistent flavour model with spontaneous
CP violation for the quark sector which resembles a real Mu and the structure of Md from
eq. (2.1).

Due to the stringent constraints on ✓̄, special care needs to be taken with corrections to this
parameter. The most important corrections are:

• Higher dimensional contributions to the superpotential that would spoil the structure of
the mass matrices.

• Corrections which are induced from SUSY breaking terms.

In the following we will discuss these corrections. The first point will be addressed by introducing
shaping symmetries fixing the phases of the flavon vevs as well as by specifying the messenger
sector which gives us full control over all higher order operators. Even a small higher order
contribution �M would contribute to ✓̄ as

�✓̄ ⇡ arg det(�M M�1) , (2.8)

which has to be smaller than 10�11. The same applies to corrections coming from the SUSY
sector of the theory which we discuss in the upcoming section.

3 Corrections from SUSY breaking

There are two important consequences when a solution to the strong CP problem is applied to
a SUSY model: On the one hand, as long as SUSY is unbroken, non-renormalisation theorems
guarantee that ✓̄ will not be generated radiatively at any loop order. On the other hand,
the SUSY breaking sector can in principle also introduce new sources of CP violation, which
can then have an impact on ✓̄ (see e.g. [15, 21, 35]). Before we turn to the construction of
an example flavour model where our strategy of Sec. 2 is realised, let us therefore discuss the
possible corrections to ✓̄ from SUSY breaking. We note that although our general strategy
applies also to non-SUSY models, our example model will be formulated in a SUSY framework
and also our method to fix the phases of the flavon vevs, and thus the phases of the mass matrix
entries, relies on SUSY.

To illustrate the possible e↵ects of SUSY breaking on ✓̄, we start by noting that with a
general complex gluino mass parameter mg̃, ✓̄ would get an additional contribution of the form
�✓̄ = 3arg(mg̃). Furthermore, there is a contribution from SUSY loop corrections to the quark
mass matrices and the gluino mass, as shown in Fig. 1. In general these corrections depend on
plenty of SUSY breaking parameters, for instance, on the trilinear couplings. Explicit formulae
can be found, e.g. in [36]. Also in the MSSM with complex parameters the Higgs vevs vu and vd
can become complex and may in principle introduce additional CP violating phases. However,
fortunately, many of these potential sources of corrections to ✓̄ are safely under control. Due to
our assumption that the fundamental theory conserves CP, one could easily imagine that the
SUSY breaking potential by itself does not introduce CP breaking. Then, parameters like mg̃

and the µ parameter are real and various potential corrections to ✓̄ vanish.
In this case, the discussion of corrections from SUSY breaking boils down to the question

of how well the conventional SUSY flavour and CP problem is solved. In this paper, we will
not construct an explicit SUSY breaking sector, but rather refer to the discussion on this issue
which already exists in the literature, and add some remarks on the connection to non-Abelian

4



Model Overview 

! symmetry of the model 
 
 

! only consider the quark sector (dR is A4 triplet) 

!   5 singlet flavons  with real vevs, 4 triplets:  
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Coupling to Matter 

! the effective superpotential reads 
 
 
 
 
 
 

! giving the desired mass matrix structure 
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+Q1ū2Hu
⇠u⇠c
⇤2

+Q2ū2Hu
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GV � Gf

GA � {e}

h�ii 6= 0 GA[h�ii] = h�ii

Figure 1. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

(sym. of pot.) GV � Gf (flavour sym. gr.)

(acc. sym.)GA � {e}

h�ii 6= 0 GA[h�ii] = h�ii

Figure 2. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

assume them to be a result of NLO corrections. It
turns out that if one assigns the left-handed quarks
to the same 3-dimensional representations (of the
same groups) that were found to be interesting for
leptonic mixing, such an interesting quark mix-
ing pattern may be derived. Especially the group
(Z18 ⇥Z6)oS3 seems particularly promising, giv-
ing a Cabibbo angle of sin ✓c = 0.259. In this setup
the origin of the di↵erent patterns for the leptonic
and quark sectors thus stems from the di↵erent
remnant symmetries to which the original group
is broken in the respective sectors, as is depicted
in Fig. 4.

The subgroups that give rise to an accept-
able LO Cabibbo angle can be systematically
parametrized and we discuss some group theoret-

CPV

(CP sym. of pot.)

(acc. sym.)GA � {e}

h�ii 6= 0 GA[h�ii] = h�ii

Figure 3. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

A4

hSi hT 2ST i hTST 2i
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@
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0
0

1

A

h�2i =

0

@
0
1
0

1

A

h�3i =
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@
0
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1

1

A

Figure 4. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

ical aspects of the remnant group structure. We
then broaden our discussion by giving up on the as-
sumption that neutrinos should be Majorana par-
ticles, for which case we perform a scan of finite
discrete groups up to the order of 200 with the
help of the computer algebra program GAP [? ? ?

? ].
In the final chapter of the paper we discuss the

usefulness of large flavor groups more generally. It
should be clear that if one considers a very large
flavor group virtually any mixing pattern may be
realized. If one would break the group SU(3) down
to discrete remnant groups, for example, the re-
quirement of a breakdown to subgroups loses all
predictivity. The question one might now ask one-
self is the following: which setup is more predic-
tive, the case of a small group (such as A4 [? ? ?

? ? ? ? ] or S4 [? ? ? ]) with large NLO correc-
tions or a larger group with smaller NLO correc-
tions. Under the assumption that NLO corrections
are randomly drawn (which seems fine for many
models) statistical arguments (à la anarchy) lead
us to propose a measure of the predictive power of
a chosen group.
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manuscript. We also want to thank Yusuke
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tal Symmetries.2

Flavon Alignment 

! the flavon superpotential is given by 
 

! it has the accidental symmetries 

 

which are conserved by the VEV configuration 
 
 

•  the phases are are a result of the accidental 
CP transformation 

particularly important here since one has to make sure that such operators do not induce a too
large value of ✓̄.

After symmetry breaking, the mass matrices will be generated by the superpotential

Wd = Q
1

d̄Hd
�
2

⇠d
⇤2

+Q
2

d̄Hd
�
1

⇠d + �̃
2

⇠s + �
3

⇠t
⇤2

+Q
3

d̄Hd
�
3

⇤
, (4.6)

Wu = Q
1

ū
1

Hu
⇠2u
⇤2

+Q
1

ū
2

Hu
⇠u⇠c
⇤2

+Q
2

ū
2

Hu
⇠c
⇤

+ (Q
2

ū
3

+Q
3

ū
2

)Hu
⇠t
⇤

+Q
3

ū
3

Hu , (4.7)

which results from integrating out the heavy messenger fields. For the superpotential, we use
a notation where prefactors are dropped for brevity, trivial A

4

contractions are not explicitly
shown 4 and where ⇤ denotes a generic messenger scale which is larger than the family symmetry
breaking scale MF . After plugging in the Higgs and flavon vevs we find the following mass
matrices

Md =

0

@
0 bd 0
b0d i cd dd
0 0 ed

1

A and Mu =

0

@
au bu 0
0 cu du
0 d0u eu

1

A . (4.8)

where we used the left-right convention �L = uiL(Mu)iju
j
R+diL(Md)ijd

j
R+ H.c.. Note that due

to the fundamental CP symmetry and its peculiar breaking pattern, eq. (4.4), all entries are
real apart from the 2-2 element of Md. As discussed before, it predicts the right quark unitarity
triangle [18] in terms of a phase sum rule

↵ ⇡ �d
12

� �u
12

⇡ 90� , (4.9)

where the angle ↵ of the CKM unitarity triangle is measured to be close to 90� [3]. In this
toy model, we concentrate on the explanation of CP violation in strong and weak interactions.
Therefore, we are content with the prediction of the smallness of the strong CP phase and the
correct CP phase in the CKM matrix. We are able to fit all masses and mixing angles (cf. [18]).
A more realistic model should obviously aim at predicting the masses and mixing angles as well,
which happens quite naturally in a GUT context, for instance. In fact, a similar texture has
been obtained in a GUT based model [28], which might solve the strong CP problem as well.

4.3 Alignment

To obtain the vev structure given in Eq. (4.4) we make use of the discrete vacuum alignment
techniques mentioned in the strategy Sec. 2. The resulting setup is rather simple. The sym-
metries of the model allows one to write down the potential (Ai are A

4

triplets, Oi;j and P A
4

singlets)

W = Ai · (�i ? �i) +Oi;j(�i · �j) +
P

⇤2

�
�4

i ±M4

F

�
, (4.10)

where i and j run over the indices as in tables 1 and 3 and we used the notation ’?’ (’⇥’) for
the (anti-)symmetric triplet contraction of two triplets (see, for example, [55]). Note that the
family symmetry breaking scale MF is real due to the underlying CP symmetry.

As has been discussed in Ref. [56], highly symmetric vev configurations such as the one in
eq. (2.3), may be interpreted as resulting from accidental symmetries of the flavon superpoten-
tial. We will collectively denote these symmetries as GW . By calling them accidental we mean

4The only non-trivial contraction is between d̄ and the �i, which form a singlet contracted by the SO(3)-type
inner product ’·’.
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�
1

�
2

�
3

�̃
2

Ai O
1;3

O
2;3

Õ
1;2

Õ
2;3

Z
2

S �S �S �S S - + - +
Z
2

�T 2ST T 2ST �T 2ST T 2ST T 2ST + - - -
Z
2

�TST 2 �TST 2 TST 2 �TST 2 TST 2 - - + -

Table 4: Accidental symmetries of the flavon superpotential of Eq. (4.10), which are left
unbroken by the vev configuration. Note that this is not a symmetry of the full theory but
rather emerges as a consequence of symmetries and particle content of the full theory.

0 = @W
@Ai

force the the vev of the fields �
1

, �
2

, �
3

and �̃
2

to have at most one non-vanishing

component while 0 = @W
@Oi;j

makes the vevs of the pairs (�
1

,�
3

), (�
2

,�
3

), (�
1

, �̃
2

) and (�̃
2

,�
3

)

orthogonal. From these conditions the direction of h�
2

i is not completely determined. There
are two degenerate minima with �

2

⇠ (1, 0, 0)T and h�
2

i ⇠ (0, 1, 0)T (after we have chosen a
basis where h�

3

i ⇠ (0, 0, 1)T and h�
1

i ⇠ (1, 0, 0)T ) and we choose the second one.
The vev of the singlet flavons ⇠i is determined via

W =
P

⇤2

�
⇠4i �M4

F

�
+ P

✓
⇠2c +

⇠c⇠2t
⇤

�M2

F

◆
, (4.14)

where i = d, s, u, t. Note that an e↵ective ⇠4c term is allowed by the symmetries but not allowed
by the messenger sector which we will discuss in the next section. We are working in a basis
for the P fields in which the terms for ⇠d,s,u,t are diagonal up to this order (Note that they do
not mix with each other, i.e. no term P ⇠2u⇠

2

t is allowed). After these fields have received their
(real) vev also the phase of the ⇠c flavon is fixed to be real.

Note that the UV completion discussed in the following paragraph allows additional higher-
dimensional operators, which are highly suppressed and do not change the alignment as dis-
cussed here.

4.4 The renormalizable superpotential and higher-dimensional Operators

In this section we present an UV completion of our toy model from Sec. 4 which justifies
completely the e↵ective operators we have given there. We will furthermore discuss all higher-
dimensional operators which give corrections to the mass matrices and to the flavon alignment.
We will show that they do not alter the structure of the mass matrices and hence our conclusions
remain unchanged.

First of all, let us note that in the renormalizable superpotential only one monomial term,
PM2, appears. All other fields cannot appear alone due to the symmetries.

The messenger fields listed in table 5 receive pairwise a mass term

W
⇤

=
X

i

M
�i�i�̄i +

X

i

M
⌥i⌥i⌥̄i +

X

i

M
⌅i⌅i⌅̄i +

X

i

M
⌃i⌃i⌃̄i , (4.15)

where we assume that all these masses are larger than the family symmetry breaking scale
MF and we have labelled them before generically as ⇤. Apart from these mass terms also the
combinations Q

3

⌥̄
1

and ⇠c⌃̄4

are allowed to have mass terms. But in fact we can rotate Q
3

and
⌥

1

and ⇠c and ⌃
4

respectively so that these combinations are massless.
We come now to the trilinear couplings in the renormalisable superpotential and start with
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conventions used, see [18]). Now any model, which generates such a structure can do the trick,
but the question is, whether such models exist.

Before we will discuss a toy model in Sec. 4 we outline how this could be achieved in the
context of discrete family symmetries which have gained a lot of attention for describing the
mixing in the lepton sector.

Suppose we have a family symmetry GF with triplet representations (we will use later on
A

4

, but S
4

, T 0, �(27), etc. would work equally well). See Ref. [30] for a recent review on flavour
symmetries. Then we assume the right-handed down-type quarks to transform as triplets under
GF while all other quarks are singlets. The rows of Md are then proportional to the vacuum
expectation values (vevs) of family symmetry breaking Higgs fields, the so-called flavon fields,
which are triplets under GF . Mu is generated by vevs of singlet flavon fields.

Introducing four flavon triplets with the following alignments in flavour space

h�
1

i ⇠

0

@
1
0
0

1

A , h�
2

i ⇠

0

@
0
1
0

1

A , h�
3

i ⇠

0

@
0
0
1

1

A , h�̃
2

i ⇠ i

0

@
0
1
0

1

A , (2.3)

which can be achieved by standard vacuum alignment techniques we can reproduce the desired
structure for Md. Note that we have explicitly written out any complex phases (we assume h�ii,
i = 1, 2, 3, to be real while only h�̃

2

i is purely imaginary).
Indeed it is not quite trivial to fix the phases of these vevs. The method described in [25],

which we want to sketch here for a singlet flavon field ⇠, is one possibility to achieve it. Suppose
⇠ is charged under a discrete Zn symmetry and apart from that neutral then we can write down
a superpotential for ⇠

W = P

✓
⇠n

⇤n�2

⌥M2

◆
, (2.4)

where P is a total singlet and M and ⇤ mass scales. We have dropped prefactors for brevity
and since we assume fundamental CP symmetry these prefactors and the mass scales are real.1

From the potential for ⇠,

|FP |2 =
����

⇠n

⇤n�2

⌥M2

����
2

. (2.5)

Since |FP | = 0 the vev of ⇠ has to satisfy

h⇠ni = ±⇤n�2M2 . (2.6)

and hence

arg(h⇠i) =
(

2⇡
n q , q = 1, . . . , n for “�” in Eq. (2.5),
2⇡
n q + ⇡

n , q = 1, . . . , n for “+” in Eq. (2.5).
(2.7)

Here the phases of the vevs do not depend on potential parameters, a situation which has been
dubbed ’calculable phases’ in the literature [33]. In Ref. [32] this phenomenon was interpreted
as the result of an accidental CP symmetry of the potential. The same discussion applies here.
For a real coupling, the potential (2.4) is invariant under the CP transformation ⇠ ! z⇠⇤ with
zn = 1. This generalized CP transformation emerges as an accidental symmetry of the potential
but will be explicitly broken elsewhere (e.g. in the couplings to the matter sector). If the whole
Lagrangian was invariant under this CP transformation, then there would be no CP violation in
physical observables. We furthermore note that it is necessary to break CP with two di↵erent

1Note that we use the generalised CP transformation, which is trivial with respect to A4. It agrees with the
ordinary CP transformation for real representations of A4. See [31, 32] for a recent discussion of generalised CP
in the context of non-Abelian discrete symmetries.

3

G
SM

A
4

U(1)R Z
2

Z
4

Z
4

Z
4

Z
4

Z
4

O
1;3

(1,1, 0) 1 2 0 1 2 1 1 0
O

2;3

(1,1, 0) 1 2 0 3 1 1 0 0
Õ

1;2

(1,1, 0) 1 2 1 2 1 1 1 0
Õ

2;3

(1,1, 0) 1 2 1 1 1 0 0 0

A
1

(1,1, 0) 3 2 0 2 2 2 2 0
A

2

(1,1, 0) 3 2 0 2 0 2 0 0
A

3

(1,1, 0) 3 2 0 0 2 0 0 0
Ã

2

(1,1, 0) 3 2 0 2 0 0 0 0

P (1,1, 0) 1 2 0 0 0 0 0 0

Table 3: The driving field content of our model. Note that we only show here one P field.
Indeed one has to introduce as many P fields as flavons to fix the phases of vevs. Since they will
have all the same quantum numbers they will mix and we can go to a basis where the terms to
fix the phase for each flavon is separated from the others. This was discussed in the appendix
of [25].

that they may be broken explicitly by other parts of the superpotential. The symmetry group
GF of the full theory is in general only a subgroup GF ⇢ GW .

For the later discussion of corrections to the alignment it is useful to discuss the accidental
symmetries of the flavon superpotential of Eq. (4.10) in some detail. First of all, we have the
symmetries Z3

2

given in Table 4, which have as a symmetric solution the vev alignment

h�
1

i ⇠ ei↵1

0

@
1
0
0

1

A , h�
2

i ⇠ ei↵2

0

@
0
1
0

1

A , h�
3

i ⇠ ei↵3

0

@
0
0
1

1

A , h�̃
2

i ⇠ ei ↵̃2

0

@
0
1
0

1

A . (4.11)

The phases of the vevs in eq. (2.3), ↵i = 0 and ↵̃
2

= ⇡/2, are a result of the CP transformation

�̃
2

! ��̃⇤
2

, Õi;j ! �Õ⇤
i;j , ' ! '⇤ (4.12)

where ' denotes all other fields in the theory. All of these symmetries are not symmetries of the
full theory but rather emerge as accidental symmetries of Eq. (4.10) due to the chosen particle
content and due to the symmetries of the original theory.

Note that there are of course other discrete accidental symmetries whose symmetric solu-
tions correspond to a vev configuration where, for instance, other fields have imaginary vevs.
However, these solutions are physically distinct from our solution, as they correspond to di↵er-
ent conserved subgroups [57]. Since our alignment including phases is related to the accidental
Z3

2

and CP symmetry only correction terms which explicitly break one of these groups might
disturb the structure of the vevs. We will show in Sec. 4.4 that the higher dimensional opera-
tors in our model indeed do not violate the accidental symmetries and hence there are no NLO
corrections to the vev structure.

To see how the vacuum alignment follows dynamically from minimisation conditions in the
supersymmetric limit we study the F -term condition

0 =
@W
@P

=
1

⇤2

�
�4

i ±M4

F

�
, (4.13)

which forces the the fourth power of the flavon vevs to be real. For �̃
2

we choose the complex
solution while the other three �i flavon vevs are chosen to be real. The F -term conditions
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GV � Gf

GA � {e}

h�ii 6= 0 GA[h�ii] = h�ii

Figure 1. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

(sym. of pot.) GV � Gf (flavour sym. gr.)

(acc. sym.)GA � {e}

h�ii 6= 0 GA[h�ii] = h�ii

Figure 2. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

assume them to be a result of NLO corrections. It
turns out that if one assigns the left-handed quarks
to the same 3-dimensional representations (of the
same groups) that were found to be interesting for
leptonic mixing, such an interesting quark mix-
ing pattern may be derived. Especially the group
(Z18 ⇥Z6)oS3 seems particularly promising, giv-
ing a Cabibbo angle of sin ✓c = 0.259. In this setup
the origin of the di↵erent patterns for the leptonic
and quark sectors thus stems from the di↵erent
remnant symmetries to which the original group
is broken in the respective sectors, as is depicted
in Fig. 4.

The subgroups that give rise to an accept-
able LO Cabibbo angle can be systematically
parametrized and we discuss some group theoret-

CPV

(CP sym. of pot.)

(acc. sym.)GA � {e}

h�ii 6= 0 GA[h�ii] = h�ii

Figure 3. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

A4

hSi hT 2ST i hTST 2i

h�1i =

0

@
1
0
0

1

A

h�2i =

0

@
0
1
0

1

A

h�3i =

0

@
0
0
1

1

A

Figure 4. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

ical aspects of the remnant group structure. We
then broaden our discussion by giving up on the as-
sumption that neutrinos should be Majorana par-
ticles, for which case we perform a scan of finite
discrete groups up to the order of 200 with the
help of the computer algebra program GAP [? ? ?

? ].
In the final chapter of the paper we discuss the

usefulness of large flavor groups more generally. It
should be clear that if one considers a very large
flavor group virtually any mixing pattern may be
realized. If one would break the group SU(3) down
to discrete remnant groups, for example, the re-
quirement of a breakdown to subgroups loses all
predictivity. The question one might now ask one-
self is the following: which setup is more predic-
tive, the case of a small group (such as A4 [? ? ?

? ? ? ? ] or S4 [? ? ? ]) with large NLO correc-
tions or a larger group with smaller NLO correc-
tions. Under the assumption that NLO corrections
are randomly drawn (which seems fine for many
models) statistical arguments (à la anarchy) lead
us to propose a measure of the predictive power of
a chosen group.
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Flavon Alignment 

! the flavon superpotential is given by 
 

! it has the accidental symmetries 

 

which are conserved by the VEV configuration 
 
 

•  the phases are are a result of the accidental 
CP transformation 

particularly important here since one has to make sure that such operators do not induce a too
large value of ✓̄.

After symmetry breaking, the mass matrices will be generated by the superpotential

Wd = Q
1

d̄Hd
�
2

⇠d
⇤2

+Q
2

d̄Hd
�
1

⇠d + �̃
2

⇠s + �
3

⇠t
⇤2

+Q
3

d̄Hd
�
3

⇤
, (4.6)

Wu = Q
1

ū
1

Hu
⇠2u
⇤2

+Q
1

ū
2

Hu
⇠u⇠c
⇤2

+Q
2

ū
2

Hu
⇠c
⇤

+ (Q
2

ū
3

+Q
3

ū
2

)Hu
⇠t
⇤

+Q
3

ū
3

Hu , (4.7)

which results from integrating out the heavy messenger fields. For the superpotential, we use
a notation where prefactors are dropped for brevity, trivial A

4

contractions are not explicitly
shown 4 and where ⇤ denotes a generic messenger scale which is larger than the family symmetry
breaking scale MF . After plugging in the Higgs and flavon vevs we find the following mass
matrices

Md =

0

@
0 bd 0
b0d i cd dd
0 0 ed

1

A and Mu =

0

@
au bu 0
0 cu du
0 d0u eu

1

A . (4.8)

where we used the left-right convention �L = uiL(Mu)iju
j
R+diL(Md)ijd

j
R+ H.c.. Note that due

to the fundamental CP symmetry and its peculiar breaking pattern, eq. (4.4), all entries are
real apart from the 2-2 element of Md. As discussed before, it predicts the right quark unitarity
triangle [18] in terms of a phase sum rule

↵ ⇡ �d
12

� �u
12

⇡ 90� , (4.9)

where the angle ↵ of the CKM unitarity triangle is measured to be close to 90� [3]. In this
toy model, we concentrate on the explanation of CP violation in strong and weak interactions.
Therefore, we are content with the prediction of the smallness of the strong CP phase and the
correct CP phase in the CKM matrix. We are able to fit all masses and mixing angles (cf. [18]).
A more realistic model should obviously aim at predicting the masses and mixing angles as well,
which happens quite naturally in a GUT context, for instance. In fact, a similar texture has
been obtained in a GUT based model [28], which might solve the strong CP problem as well.

4.3 Alignment

To obtain the vev structure given in Eq. (4.4) we make use of the discrete vacuum alignment
techniques mentioned in the strategy Sec. 2. The resulting setup is rather simple. The sym-
metries of the model allows one to write down the potential (Ai are A

4

triplets, Oi;j and P A
4

singlets)

W = Ai · (�i ? �i) +Oi;j(�i · �j) +
P

⇤2

�
�4

i ±M4

F

�
, (4.10)

where i and j run over the indices as in tables 1 and 3 and we used the notation ’?’ (’⇥’) for
the (anti-)symmetric triplet contraction of two triplets (see, for example, [55]). Note that the
family symmetry breaking scale MF is real due to the underlying CP symmetry.

As has been discussed in Ref. [56], highly symmetric vev configurations such as the one in
eq. (2.3), may be interpreted as resulting from accidental symmetries of the flavon superpoten-
tial. We will collectively denote these symmetries as GW . By calling them accidental we mean

4The only non-trivial contraction is between d̄ and the �i, which form a singlet contracted by the SO(3)-type
inner product ’·’.
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�
1

�
2

�
3

�̃
2

Ai O
1;3

O
2;3

Õ
1;2

Õ
2;3

Z
2

S �S �S �S S - + - +
Z
2

�T 2ST T 2ST �T 2ST T 2ST T 2ST + - - -
Z
2

�TST 2 �TST 2 TST 2 �TST 2 TST 2 - - + -

Table 4: Accidental symmetries of the flavon superpotential of Eq. (4.10), which are left
unbroken by the vev configuration. Note that this is not a symmetry of the full theory but
rather emerges as a consequence of symmetries and particle content of the full theory.

0 = @W
@Ai

force the the vev of the fields �
1

, �
2

, �
3

and �̃
2

to have at most one non-vanishing

component while 0 = @W
@Oi;j

makes the vevs of the pairs (�
1

,�
3

), (�
2

,�
3

), (�
1

, �̃
2

) and (�̃
2

,�
3

)

orthogonal. From these conditions the direction of h�
2

i is not completely determined. There
are two degenerate minima with �

2

⇠ (1, 0, 0)T and h�
2

i ⇠ (0, 1, 0)T (after we have chosen a
basis where h�

3

i ⇠ (0, 0, 1)T and h�
1

i ⇠ (1, 0, 0)T ) and we choose the second one.
The vev of the singlet flavons ⇠i is determined via

W =
P

⇤2

�
⇠4i �M4

F

�
+ P

✓
⇠2c +

⇠c⇠2t
⇤

�M2

F

◆
, (4.14)

where i = d, s, u, t. Note that an e↵ective ⇠4c term is allowed by the symmetries but not allowed
by the messenger sector which we will discuss in the next section. We are working in a basis
for the P fields in which the terms for ⇠d,s,u,t are diagonal up to this order (Note that they do
not mix with each other, i.e. no term P ⇠2u⇠

2

t is allowed). After these fields have received their
(real) vev also the phase of the ⇠c flavon is fixed to be real.

Note that the UV completion discussed in the following paragraph allows additional higher-
dimensional operators, which are highly suppressed and do not change the alignment as dis-
cussed here.

4.4 The renormalizable superpotential and higher-dimensional Operators

In this section we present an UV completion of our toy model from Sec. 4 which justifies
completely the e↵ective operators we have given there. We will furthermore discuss all higher-
dimensional operators which give corrections to the mass matrices and to the flavon alignment.
We will show that they do not alter the structure of the mass matrices and hence our conclusions
remain unchanged.

First of all, let us note that in the renormalizable superpotential only one monomial term,
PM2, appears. All other fields cannot appear alone due to the symmetries.

The messenger fields listed in table 5 receive pairwise a mass term

W
⇤

=
X

i

M
�i�i�̄i +

X

i

M
⌥i⌥i⌥̄i +

X

i

M
⌅i⌅i⌅̄i +

X

i

M
⌃i⌃i⌃̄i , (4.15)

where we assume that all these masses are larger than the family symmetry breaking scale
MF and we have labelled them before generically as ⇤. Apart from these mass terms also the
combinations Q

3

⌥̄
1

and ⇠c⌃̄4

are allowed to have mass terms. But in fact we can rotate Q
3

and
⌥

1

and ⇠c and ⌃
4

respectively so that these combinations are massless.
We come now to the trilinear couplings in the renormalisable superpotential and start with
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conventions used, see [18]). Now any model, which generates such a structure can do the trick,
but the question is, whether such models exist.

Before we will discuss a toy model in Sec. 4 we outline how this could be achieved in the
context of discrete family symmetries which have gained a lot of attention for describing the
mixing in the lepton sector.

Suppose we have a family symmetry GF with triplet representations (we will use later on
A

4

, but S
4

, T 0, �(27), etc. would work equally well). See Ref. [30] for a recent review on flavour
symmetries. Then we assume the right-handed down-type quarks to transform as triplets under
GF while all other quarks are singlets. The rows of Md are then proportional to the vacuum
expectation values (vevs) of family symmetry breaking Higgs fields, the so-called flavon fields,
which are triplets under GF . Mu is generated by vevs of singlet flavon fields.

Introducing four flavon triplets with the following alignments in flavour space

h�
1

i ⇠

0

@
1
0
0

1

A , h�
2

i ⇠

0

@
0
1
0

1

A , h�
3

i ⇠

0

@
0
0
1

1

A , h�̃
2

i ⇠ i

0

@
0
1
0

1

A , (2.3)

which can be achieved by standard vacuum alignment techniques we can reproduce the desired
structure for Md. Note that we have explicitly written out any complex phases (we assume h�ii,
i = 1, 2, 3, to be real while only h�̃

2

i is purely imaginary).
Indeed it is not quite trivial to fix the phases of these vevs. The method described in [25],

which we want to sketch here for a singlet flavon field ⇠, is one possibility to achieve it. Suppose
⇠ is charged under a discrete Zn symmetry and apart from that neutral then we can write down
a superpotential for ⇠

W = P

✓
⇠n

⇤n�2

⌥M2

◆
, (2.4)

where P is a total singlet and M and ⇤ mass scales. We have dropped prefactors for brevity
and since we assume fundamental CP symmetry these prefactors and the mass scales are real.1

From the potential for ⇠,

|FP |2 =
����

⇠n

⇤n�2

⌥M2

����
2

. (2.5)

Since |FP | = 0 the vev of ⇠ has to satisfy

h⇠ni = ±⇤n�2M2 . (2.6)

and hence

arg(h⇠i) =
(

2⇡
n q , q = 1, . . . , n for “�” in Eq. (2.5),
2⇡
n q + ⇡

n , q = 1, . . . , n for “+” in Eq. (2.5).
(2.7)

Here the phases of the vevs do not depend on potential parameters, a situation which has been
dubbed ’calculable phases’ in the literature [33]. In Ref. [32] this phenomenon was interpreted
as the result of an accidental CP symmetry of the potential. The same discussion applies here.
For a real coupling, the potential (2.4) is invariant under the CP transformation ⇠ ! z⇠⇤ with
zn = 1. This generalized CP transformation emerges as an accidental symmetry of the potential
but will be explicitly broken elsewhere (e.g. in the couplings to the matter sector). If the whole
Lagrangian was invariant under this CP transformation, then there would be no CP violation in
physical observables. We furthermore note that it is necessary to break CP with two di↵erent

1Note that we use the generalised CP transformation, which is trivial with respect to A4. It agrees with the
ordinary CP transformation for real representations of A4. See [31, 32] for a recent discussion of generalised CP
in the context of non-Abelian discrete symmetries.

3

G
SM

A
4

U(1)R Z
2

Z
4

Z
4

Z
4

Z
4

Z
4

O
1;3

(1,1, 0) 1 2 0 1 2 1 1 0
O

2;3

(1,1, 0) 1 2 0 3 1 1 0 0
Õ

1;2

(1,1, 0) 1 2 1 2 1 1 1 0
Õ

2;3

(1,1, 0) 1 2 1 1 1 0 0 0

A
1

(1,1, 0) 3 2 0 2 2 2 2 0
A

2

(1,1, 0) 3 2 0 2 0 2 0 0
A

3

(1,1, 0) 3 2 0 0 2 0 0 0
Ã

2

(1,1, 0) 3 2 0 2 0 0 0 0

P (1,1, 0) 1 2 0 0 0 0 0 0

Table 3: The driving field content of our model. Note that we only show here one P field.
Indeed one has to introduce as many P fields as flavons to fix the phases of vevs. Since they will
have all the same quantum numbers they will mix and we can go to a basis where the terms to
fix the phase for each flavon is separated from the others. This was discussed in the appendix
of [25].

that they may be broken explicitly by other parts of the superpotential. The symmetry group
GF of the full theory is in general only a subgroup GF ⇢ GW .

For the later discussion of corrections to the alignment it is useful to discuss the accidental
symmetries of the flavon superpotential of Eq. (4.10) in some detail. First of all, we have the
symmetries Z3

2

given in Table 4, which have as a symmetric solution the vev alignment

h�
1

i ⇠ ei↵1

0

@
1
0
0

1

A , h�
2

i ⇠ ei↵2

0

@
0
1
0

1

A , h�
3

i ⇠ ei↵3

0

@
0
0
1

1

A , h�̃
2

i ⇠ ei ↵̃2

0

@
0
1
0

1

A . (4.11)

The phases of the vevs in eq. (2.3), ↵i = 0 and ↵̃
2

= ⇡/2, are a result of the CP transformation

�̃
2

! ��̃⇤
2

, Õi;j ! �Õ⇤
i;j , ' ! '⇤ (4.12)

where ' denotes all other fields in the theory. All of these symmetries are not symmetries of the
full theory but rather emerge as accidental symmetries of Eq. (4.10) due to the chosen particle
content and due to the symmetries of the original theory.

Note that there are of course other discrete accidental symmetries whose symmetric solu-
tions correspond to a vev configuration where, for instance, other fields have imaginary vevs.
However, these solutions are physically distinct from our solution, as they correspond to di↵er-
ent conserved subgroups [57]. Since our alignment including phases is related to the accidental
Z3

2

and CP symmetry only correction terms which explicitly break one of these groups might
disturb the structure of the vevs. We will show in Sec. 4.4 that the higher dimensional opera-
tors in our model indeed do not violate the accidental symmetries and hence there are no NLO
corrections to the vev structure.

To see how the vacuum alignment follows dynamically from minimisation conditions in the
supersymmetric limit we study the F -term condition

0 =
@W
@P

=
1

⇤2

�
�4

i ±M4

F

�
, (4.13)

which forces the the fourth power of the flavon vevs to be real. For �̃
2

we choose the complex
solution while the other three �i flavon vevs are chosen to be real. The F -term conditions
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Higher Dimensional 
Operators  

! flavon sector corrections 
! at least dim. seven, 

directions and phases 
unchanged 

! up sector corrections 
! suppressed (real) 

corrections to 1-1, 1-2, 
2-2 elements of Mu 

!   down sector corrections 
! no corrections from 

higher-dimensional 
operators! 

! we give a "UV 
completion" of the model 
giving full control over the 
effective operators!  

Hd

d̄

Q3

�3

Hd

d̄

Q1

�2

⇠d

Hd

d̄

⇠s
Q2

�̃2

Q2

�1

Hd

d̄

⇠d

�1 �̄1

�1 �̄1 �3 �̄3

�1 �̄1

�1 �̄1

�2 �̄2

�3 �̄3

Hd

d̄

�1 �̄1

�3

⌥̄1 ⌥1

⇠t

Q2

Figure 3: The supergraphs before integrating out the messengers for the down-type quark
sector.
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ū3

Hu

Q1

⇠c

⇠u

ū2
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⇠u

Q1
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Q2(Q3) ⇠c(⇠t)

Hu

⌥2

⌥̄2

ū2

Figure 4: The supergraphs before integrating out the messengers for the up-type quark sector.
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no corrections to structure of mass matrices, therefore 
•  arg det(MuMd)=0 
•  α= 90° 
survives 



Possible Corrections from 
SUSY Breaking 

! as long as SUSY is unbroken, non-renormalization theorems 
guarantee theta=0 

!   SUSY breaking might give corrections 
 

!   also LR sfermion mixing gives corrections 
 
 
 

! if SUSY breaking conserves CP and is (nearly) minimal 
flavour violating, corrections are potentially small enough 
! note that SUSY breaking has to be flavour (and CP) non-generic, if 

SUSY@TeV 

fields [34], such that it is impossible to define a CP transformation, which is left invariant by
the vevs, and CP is spontaneously broken. The interplay between the di↵erent flavon fields will
ensure that CP is broken in our model, as will be discussed in Sec. 4.1.

Using these ingredients we will present in Sec. 4 a consistent flavour model with spontaneous
CP violation for the quark sector which resembles a real Mu and the structure of Md from
eq. (2.1).

Due to the stringent constraints on ✓̄, special care needs to be taken with corrections to this
parameter. The most important corrections are:

• Higher dimensional contributions to the superpotential that would spoil the structure of
the mass matrices.

• Corrections which are induced from SUSY breaking terms.

In the following we will discuss these corrections. The first point will be addressed by introducing
shaping symmetries fixing the phases of the flavon vevs as well as by specifying the messenger
sector which gives us full control over all higher order operators. Even a small higher order
contribution �M would contribute to ✓̄ as

�✓̄ ⇡ arg det(�M M�1) , (2.8)

which has to be smaller than 10�11. The same applies to corrections coming from the SUSY
sector of the theory which we discuss in the upcoming section.

3 Corrections from SUSY breaking

There are two important consequences when a solution to the strong CP problem is applied to
a SUSY model: On the one hand, as long as SUSY is unbroken, non-renormalisation theorems
guarantee that ✓̄ will not be generated radiatively at any loop order. On the other hand,
the SUSY breaking sector can in principle also introduce new sources of CP violation, which
can then have an impact on ✓̄ (see e.g. [15, 21, 35]). Before we turn to the construction of
an example flavour model where our strategy of Sec. 2 is realised, let us therefore discuss the
possible corrections to ✓̄ from SUSY breaking. We note that although our general strategy
applies also to non-SUSY models, our example model will be formulated in a SUSY framework
and also our method to fix the phases of the flavon vevs, and thus the phases of the mass matrix
entries, relies on SUSY.

To illustrate the possible e↵ects of SUSY breaking on ✓̄, we start by noting that with a
general complex gluino mass parameter mg̃, ✓̄ would get an additional contribution of the form
�✓̄ = 3arg(mg̃). Furthermore, there is a contribution from SUSY loop corrections to the quark
mass matrices and the gluino mass, as shown in Fig. 1. In general these corrections depend on
plenty of SUSY breaking parameters, for instance, on the trilinear couplings. Explicit formulae
can be found, e.g. in [36]. Also in the MSSM with complex parameters the Higgs vevs vu and vd
can become complex and may in principle introduce additional CP violating phases. However,
fortunately, many of these potential sources of corrections to ✓̄ are safely under control. Due to
our assumption that the fundamental theory conserves CP, one could easily imagine that the
SUSY breaking potential by itself does not introduce CP breaking. Then, parameters like mg̃

and the µ parameter are real and various potential corrections to ✓̄ vanish.
In this case, the discussion of corrections from SUSY breaking boils down to the question

of how well the conventional SUSY flavour and CP problem is solved. In this paper, we will
not construct an explicit SUSY breaking sector, but rather refer to the discussion on this issue
which already exists in the literature, and add some remarks on the connection to non-Abelian

4

q
mg̃

qc

m2

LR
q̃cq̃

g̃ g̃

(a) Contribution to quark mass.

g̃
mq

g̃

m2

LR
q̃cq̃

q qc

(b) Contribution to gluino mass.

Figure 1: Diagrams contributing to ✓̄ in a theory with broken SUSY.

family symmetries: To start with, it has been discussed, e.g. in [15], that anomaly mediation or
gauge mediation can in principle provide useful frameworks. In the context of flavour models
with Abelian symmetries, a solution by “flavour alignment” has been suggested by Nir and
Seiberg in Ref. [37] and a discussion in the context of solutions to the strong CP problem can
be found in [20].

On the other hand, flavour models with non-Abelian family symmetries by themselves can
provide promising frameworks for solving the SUSY flavour problem (see, e.g. [38–46]). With
the three families of matter fields embedded into triplet representations of a non-Abelian family
symmetry group GF , the soft terms are universal before family symmetry breaking, and non-
universalities only get induced after spontaneous GF breaking. This allows to control the flavour
(and CP) structure of the SUSY breaking terms in explicit “SUSY-flavour” models.

When constructing a “SUSY-flavour” model of this type, care has to be taken of the con-
tributions to the soft terms from flavon F -terms [47, 48]. These contributions are especially
relevant, because if CP symmetry is broken by the flavon vevs, their F -terms can in principle
generate a CP violating non-universality in the A-terms and might thereby introduce a sizeable
contribution to ✓̄, e.g. via the diagrams in Fig. 1. In a supergravity scenario with sequestered
Kähler and superpotential (as, e.g. in [49]), universalities in the A-terms would only stem from
the flavon F -terms, so controlling them is crucial. In [39] it has been argued that their size is
typically of the order m

3/2h�i, where m
3/2 is the gravitino mass and h�i is a flavon vev, which

could easily spoil the solution to the strong CP problem.
However, it has been shown in [47] that the flavon F -terms are strongly suppressed for

flavon superpotentials with driving fields, as we are going to use in this paper, by powers of
m

3/2/⇤, with ⇤ being the messenger scale of the flavour model.2 Such a suppression would
render them harmless to the solution of the strong CP problem. Without going into further
details, we conclude that models of the class we propose in this paper, amended by a suitable
SUSY breaking sector, have the potential to be safe from dangerously large corrections to ✓̄.

4 The model

In this section we aim to flesh out the preceding discussion by constructing an explicit model
which conforms to the general strategy discussed in Section 2 and assume a SUSY breaking
sector along the lines of the discussion in the preceding section. While the model presented here
only discusses the quark sector, it employs model building techniques that were primarily used
to describe the lepton sector. There, it has been long known to be useful to assign the left-
handed lepton doublets to three-dimensional irreducible representations of some non-Abelian

2Furthermore, in supergravity the flavon vevs can provide an additional contribution to the flavour structure
via higher-dimensional operators in the Kähler potential, leading to corrections via canonical normalisation (see,
e.g. [50]). The size of these corrections depends on the details of the messenger sector of the model. However, in
any case, canonical normalisation cannot induce a contribution to the ✓̄ term [14].
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Summary 
! Discrete Flavour Groups may still be a viable approach to 

the SM flavour puzzle 
! either NLO corrections or large symmetry groups needed to 

account for large value of θ13 
!   3 candiate groups found in scan over 1.3m groups, testable 

predictions 

! the vacuum alignment problem of such flavour models can 
be solved by a non-trivial extension of the flavour group 

! Consistency Conditions should be kept in mind when 
constructing models that contain CP and Flavour 
Symmetries 
! generalized CP transformations may be viewed as furnishing a 

representation of the automorphism group   
! geometrical CP violation may be interpreted as a consequence 

of (accidental) generalized CP symmetries of the potential 

! possible solution of strong CP problem with discrete flavour 
symmetries and CP  
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Babu and Gabriel(2010) proposed the flavour group (S3)4⋊A4, which has the properties   
!  leptons transform only under A4 subgroup 

!  if one takes Φ∼16, vacuum alignment possible as V=V(Φ)+V(𝜒)+(Φ Φ)1(𝜒𝜒)1 

!  neutrino masses then generated by coupling to〈Φ4 ∼(1,0,0) 

Altarelli, Feruglio 2005 

Altarelli, Feruglio 2006 
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 ALWAYS:  
engineered accidental symmetry of potential 

A4 x A4:  Φ∼(3,1), 𝜒 ∼(1,3)  
 

What is the minimal amount of engineering possible?  
 [MH, M.A. Schmidt JHEP 1201 (2012) 126, 1111.1730 [hep-ph] ] 

 



Can Vacuum Alignment be realized? 

λ1 

λ2 

vacuum unstable 

Effect of breaking to Z2 in another sector can be included by adding: 
 

Minimization conditions then give: 
 

•  This thus requires mA= mB= mC=0, i.e. 
all non-trivial contractions between Φ 
and 𝜒 have to vanish in the potential. 

•  potential should be of the form 
V=VΦ(Φ)+V𝜒(𝜒)+(ΦΦ)1(𝜒𝜒)1.  
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Figure 2.5: Various possibilities to go beyond ✓
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= 0.

There are thus only two parameters determining the three neutrino masses, which is a special
feature of this particular model and not a consequence of the remnant symmetries S and U ,
as the most general neutrino mass matrix invariant under this Klein group is given by [120]

M⌫ ⇠
0

@
ã + 2b̃ 0 0

0 ã � b̃ d̃
0 d̃ ã � b̃

1

A (2.52)

and thus has three independent masses. It has been pointed out [121] that this can lead
to testable predictions in neutrinoless double beta decay. To get the right values for the
atmospheric and solar mass splitting one needs to have a certain cancellation [122], i.e. for
the (overly simplistic) case of real ã, d̃, one needs d̃ ⇡ �1.88ã.

2.5. Model Building Pathways Beyond Vanishing ✓13

In Section 2.2 we have seen how special structures such as the tri-bimaximal neutrino mixing
pattern can be explained in terms of a mismatched breaking of a flavour symmetry into
di↵erent subgroups in the charged lepton and neutrino sectors. The recent results of the
reactor experiments Double Chooz, Daya Bay and RENO have, however, laid to rest this
simple picture of lepton mixing. In this section we attempt to give an overview of the vast
literature that has emerged since word of these results reached model builders.

One logical possibility that looks much more favoured now, is that there might not be
any special structure in lepton mixings that needs to be explained. It could rather be that
mixing angles are determined at a high scale from some (quasi-) random process. Indeed if one
randomly draws unitary 3⇥3 matrices with a probability measure given by the Haar measure of
U(3), i.e. the unique measure that is invariant under a change of basis for the three generations,
one finds a probability of 44% for nature to have taken a more ‘unusual’ choice [123]. This
cannot be interpreted, however, as an indication in favour of anarchy [124, 125], as the sample
(3 mixing angles and one mass ratio) is clearly too small to reconstruct the probability measure
to any degree of certainty [126]. The only statement one can make is that the (very limited)
data cannot rule out the anarchy hypothesis. For any values of the mixing angles one can
always find a flavour model which is in better agreement with the data14.

14It has been argued [127] that this can be done without increasing the degree of complexity of the model.
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Discrete groups with non-vanishingθ13   

•  new starting patterns: large groups 
•  maybe ‚indirect‘ origin  [e.g. King, Luhn 09] 

•  if one starts from TBM, large NLO corrections are needed 
•  charged lepton corrections & GUT relations [e.g. Antusch,King 04, ...] 
•  TM1, TM2,.... [for a review e.g. King, Luhn 13] 

•  anarchy [Hall, Murayama, Weiner 1999] 
•  possible, works better for neutrinos than for quarks 

∆(6·n2) 



CP and discrete flavour 
symmetries 

•  consistency conditions for CP transformations 

•  CP transformations = representations of automorphisms 

•  application to A4 model building 



CP vs. A4 
! the ‚CP transformation‘ that is trivial with regard to A4 runs into 

trouble if one considers a non-trivial singlet                in addition 
to the triplet 

! if one would use                and                one finds that the 
invariant is mapped to sth. non-invariant 

encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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! the real flavour group is larger, this has to be 

considered when constructing Lagrangian 

often overlooked in literature 
[Toorop et. al. 2011, Ferreira, 
Lavoura 2011,....] 



Alignments, calculable phases 
and all that 
•  highly symmetric VEV configurations are the result of accidental 

symmetry transformations of scalar potential in flavour space 
•  calculable phases (a.k.a geometrical CP violation) are a result of 

accidental CP symmetries of the potential 



Accidental symmetries as the origin of 
vacuum alignment mechanisms 
! usual flavour symmetry setup: a 

flavour group Gf is broken to 
different subgroups by different 
VEVs; in total the group is 
completely broken 

!   in general, this VEV state is 
unprotected by any symmetry 
and one therefore has to tune 
parameters to get VEVs 
! kills predictivity of models 
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Figure 1. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.
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h�ii 6= 0 GA[h�ii] = 0

Figure 2. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

assume them to be a result of NLO corrections. It
turns out that if one assigns the left-handed quarks
to the same 3-dimensional representations (of the
same groups) that were found to be interesting for
leptonic mixing, such an interesting quark mix-
ing pattern may be derived. Especially the group
(Z18 ⇥Z6)oS3 seems particularly promising, giv-
ing a Cabibbo angle of sin ✓c = 0.259. In this setup
the origin of the di↵erent patterns for the leptonic
and quark sectors thus stems from the di↵erent
remnant symmetries to which the original group
is broken in the respective sectors, as is depicted
in Fig. 3.

The subgroups that give rise to an accept-
able LO Cabibbo angle can be systematically
parametrized and we discuss some group theoret-
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Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

ical aspects of the remnant group structure. We
then broaden our discussion by giving up on the as-
sumption that neutrinos should be Majorana par-
ticles, for which case we perform a scan of finite
discrete groups up to the order of 200 with the
help of the computer algebra program GAP [? ? ?

? ].
In the final chapter of the paper we discuss the

usefulness of large flavor groups more generally. It
should be clear that if one considers a very large
flavor group virtually any mixing pattern may be
realized. If one would break the group SU(3) down
to discrete remnant groups, for example, the re-
quirement of a breakdown to subgroups loses all
predictivity. The question one might now ask one-
self is the following: which setup is more predic-
tive, the case of a small group (such as A4 [? ? ?

? ? ? ? ] or S4 [? ? ? ]) with large NLO correc-
tions or a larger group with smaller NLO correc-
tions. Under the assumption that NLO corrections
are randomly drawn (which seems fine for many
models) statistical arguments (à la anarchy) lead
us to propose a measure of the predictive power of
a chosen group.
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Michael A. Schmidt, Claudia Hagedorn and
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manuscript. We also want to thank Yusuke
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edges support by the International Max-Planck
Research School for Precision Tests of Fundamen-
tal Symmetries.
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•  Extra dimensions: GF=A4 but GV=A4xA4 
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Accidental symmetries of popular 
VEV alignment models 

•  Extra dimensions: GF=A4 but GV=A4xA4 

•  AF-type driving fields: GF=A4 but GV=A4xA4 

where, at leading order in a 1/Λ expansion, wl is given by the right-hand side of eq. (12)

and the “driving” term wd reads:

wd = M(ϕT
0 ϕT ) + g(ϕT

0 ϕTϕT )

+ g1(ϕ
S
0 ϕSϕS) + g2ξ̃(ϕ

S
0 ϕS) + g3ξ0(ϕSϕS) + g4ξ0ξ

2 + g5ξ0ξξ̃ + g6ξ0ξ̃
2 . (25)

At this level there is no fundamental distinction between the singlets ξ and ξ̃. Thus we
are free to define ξ̃ as the combination that couples to (ϕS

0 ϕS) in the superpotential wd.

We notice that at the leading order there are no terms involving the Higgs fields hu,d. We
assume that the electroweak symmetry is broken by some mechanism, such as radiative

effects when SUSY is broken. It is interesting that at the leading order the electroweak
scale does not mix with the potentially large scales u, v and v′. The scalar potential is

given by:

V =
∑

i
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∣
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∂φi

∣

∣

∣

∣

∣

2

+ m2
i |φi|2 + ... (26)

where φi denote collectively all the scalar fields of the theory, m2
i are soft masses and dots

stand for D-terms for the fields charged under the gauge group and possible additional soft

breaking terms. Since mi are expected to be much smaller than the mass scales involved
in wd, it makes sense to minimize V in the supersymmetric limit and to account for soft

breaking effects subsequently. From the driving sector we have:

∂w

∂ϕT
01
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3
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2
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3
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∂w

∂ξ0
= g4ξ

2 + g5ξξ̃ + g6ξ̃
2 + g3(ϕS

2
1 + 2ϕS2ϕS3) = 0 (27)

A solution to the first three equations is:

ϕT = (vT , 0, 0) , vT = −
3M

2g
. (28)

This VEV breaks A4 down to GT
1. The need of an additional singlet can be understood

by looking at the remaining equations. Indeed, if a unique singlet were present, which can
1More precisely, since the solutions lie in an orbit of the group A4, the non trivial solutions are

(28) and those generated by acting on (28) by the elements of A4: ϕT = (M/2g)(1,−2,−2), ϕT =
(M/2g)(1,−2ω2,−2ω) and ϕT = (M/2g)(1,−2ω,−2ω2). Each of these vacua leaves unbroken a Z3

subgroup of A4. It is not restrictive to choose the vacuum ϕT = −(3M/2g)(1, 0, 0). The trivial solution
ϕT = (0, 0, 0) can be eliminated by choosing m2

ϕT
< 0.
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assume them to be a result of NLO corrections. It
turns out that if one assigns the left-handed quarks
to the same 3-dimensional representations (of the
same groups) that were found to be interesting for
leptonic mixing, such an interesting quark mix-
ing pattern may be derived. Especially the group
(Z18 ⇥Z6)oS3 seems particularly promising, giv-
ing a Cabibbo angle of sin ✓c = 0.259. In this setup
the origin of the di↵erent patterns for the leptonic
and quark sectors thus stems from the di↵erent
remnant symmetries to which the original group
is broken in the respective sectors, as is depicted
in Fig. 4.

The subgroups that give rise to an accept-
able LO Cabibbo angle can be systematically
parametrized and we discuss some group theoret-
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Figure 4. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

ical aspects of the remnant group structure. We
then broaden our discussion by giving up on the as-
sumption that neutrinos should be Majorana par-
ticles, for which case we perform a scan of finite
discrete groups up to the order of 200 with the
help of the computer algebra program GAP [? ? ?

? ].
In the final chapter of the paper we discuss the

usefulness of large flavor groups more generally. It
should be clear that if one considers a very large
flavor group virtually any mixing pattern may be
realized. If one would break the group SU(3) down
to discrete remnant groups, for example, the re-
quirement of a breakdown to subgroups loses all
predictivity. The question one might now ask one-
self is the following: which setup is more predic-
tive, the case of a small group (such as A4 [? ? ?

? ? ? ? ] or S4 [? ? ? ]) with large NLO correc-
tions or a larger group with smaller NLO correc-
tions. Under the assumption that NLO corrections
are randomly drawn (which seems fine for many
models) statistical arguments (à la anarchy) lead
us to propose a measure of the predictive power of
a chosen group.
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Accidental symmetries of popular 
VEV alignment models 

•  Extra dimensions: GF=A4 but GV=A4xA4 

•  AF-type driving fields: GF=A4 but GV=A4xA4 

•  minimal realization discussed in [MH, M.A. Schmidt JHEP 1201 (2012)], 
 GF=Q8 ⋊A4 but GV=(Q8 ⋊A4 )xA4 

where, at leading order in a 1/Λ expansion, wl is given by the right-hand side of eq. (12)

and the “driving” term wd reads:
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0 ϕS) in the superpotential wd.
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(acc. sym.)GA � {e}

h�ii 6= 0 GA[h�ii] = 0

Figure 2. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

assume them to be a result of NLO corrections. It
turns out that if one assigns the left-handed quarks
to the same 3-dimensional representations (of the
same groups) that were found to be interesting for
leptonic mixing, such an interesting quark mix-
ing pattern may be derived. Especially the group
(Z18 ⇥Z6)oS3 seems particularly promising, giv-
ing a Cabibbo angle of sin ✓c = 0.259. In this setup
the origin of the di↵erent patterns for the leptonic
and quark sectors thus stems from the di↵erent
remnant symmetries to which the original group
is broken in the respective sectors, as is depicted
in Fig. 3.

The subgroups that give rise to an accept-
able LO Cabibbo angle can be systematically
parametrized and we discuss some group theoret-

A4

hSi hT 2ST i hTST 2i

h�1i =

0

@
1
0
0

1

A

h�2i =

0

@
0
1
0

1

A

h�3i =

0

@
0
0
1

1

A

Figure 3. Sketch of the setup considered in this paper.

Di↵erent subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mis-

match of these groups creates quark and lepton mixing.

ical aspects of the remnant group structure. We
then broaden our discussion by giving up on the as-
sumption that neutrinos should be Majorana par-
ticles, for which case we perform a scan of finite
discrete groups up to the order of 200 with the
help of the computer algebra program GAP [? ? ?

? ].
In the final chapter of the paper we discuss the

usefulness of large flavor groups more generally. It
should be clear that if one considers a very large
flavor group virtually any mixing pattern may be
realized. If one would break the group SU(3) down
to discrete remnant groups, for example, the re-
quirement of a breakdown to subgroups loses all
predictivity. The question one might now ask one-
self is the following: which setup is more predic-
tive, the case of a small group (such as A4 [? ? ?

? ? ? ? ] or S4 [? ? ? ]) with large NLO correc-
tions or a larger group with smaller NLO correc-
tions. Under the assumption that NLO corrections
are randomly drawn (which seems fine for many
models) statistical arguments (à la anarchy) lead
us to propose a measure of the predictive power of
a chosen group.
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Accidental symmetries of popular 
VEV alignment models 

•  Extra dimensions: GF=A4 but GV=A4xA4 

•  AF-type driving fields: GF=A4 but GV=A4xA4 

•  minimal realization discussed in [MH, M.A. Schmidt JHEP 1201 (2012)], 
 GF=Q8 ⋊A4 but GV=(Q8 ⋊A4 )xA4 

•  model of last talk: GA=Z2xZ2xZ2  
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�
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�̃
2

Ai O
1;3

O
2;3

Õ
1;2

Õ
2;3

Z
2

S �S �S �S S - + - +
Z
2

�T 2ST T 2ST �T 2ST T 2ST T 2ST + - - -
Z
2

�TST 2 �TST 2 TST 2 �TST 2 TST 2 - - + -

Table 4: Symmetries of the flavon superpotential of Eq. (4.10), which may be
viewed as being responsible for the chosen vev configuration, i.e. our vev configuration is the
symmetric solution under this symmetry. Note that this is not a symmetry of the full theory but
rather emerges as a consequence of symmetries and particle content of the full theory.

To see how the vacuum alignment follows dynamically from minimization conditions in the
supersymmetric limit we study the F -term condition

0 =
@W
@P

=
1

⇤2

�
�4

i ±M4

F

�
, (4.13)

which forces the the fourth power of the flavon vevs to be real. For �̃
2

we choose the complex
solution while the other three �i flavon vevs are chosen to be real. The F -term conditions
0 = @W

@Ai
force the the vev of the fields �

1

, �
2

, �
3

and �̃
2

to have at most one non-vanishing

component while 0 = @W
@Oi;j

makes the vevs of the pairs (�
1

,�
3

), (�
2

,�
3

), (�
1

, �̃
2

) and (�̃
2

,�
3

)

orthogonal. From these conditions the direction of h�
2

i is not completely determined. There
are two degenerate minima with �

2

⇠ (1, 0, 0)T and h�
2

i ⇠ (0, 1, 0)T (after we have chosen a
basis where h�

3

i ⇠ (0, 0, 1)T and h�
1

i ⇠ (1, 0, 0)T ) and we choose the second one.
The vev of the singlet flavons ⇠i is determined via

W =
P

⇤2

�
⇠4i �M4

F

�
+ P

✓
⇠2c +

⇠c⇠2t
⇤

�M2

F

◆
, (4.14)

where i = d, s, u, t. Note that an e↵ective ⇠4c term is allowed by the symmetries but not allowed
by the messenger sector which we will discuss in the next section. We are working in a basis
for the P fields in which the terms for ⇠d,s,u,t are diagonal up to this order (Note that they do
not mix with each other, i.e. no term P ⇠2u⇠

2

t is allowed). After these fields have received their
(real) vev also the phase of the ⇠c flavon is fixed to be real.

Note that the UV completion discussed in the following paragraph allows additional higher-
dimensional operators, which are highly suppressed and do not change the alignment as dis-
cussed here.

4.4 The renormalizable superpotential and higher-dimensional Operators

In this section we present an UV completion of our toy model from Sec. 4 which justifies
completely the e↵ective operators we have given there. We will furthermore discuss all higher-
dimensional operators which give corrections to the mass matrices and to the flavon alignment.
We will show that they do not alter the stucture of the mass matrices and hence our conclusions
remain unchanged.

First of all, let us note that in the renormalizable superpotential only one monomial term,
PM2, appears. All other fields cannot appear alone due to the symmetries.

The messenger fields listed in table 5 receive pairwise a mass term
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M
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M
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X

i

M
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X

i

M
⌃i⌃i⌃̄i , (4.15)
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particularly important here since one has to make sure that such operators do not induce a too
large value of ✓̄.

After symmetry breaking, the mass matrices will be generated by the superpotential

Wd = Q
1

d̄ ·Hd
�
2

⇠d
⇤2

+Q
2

d̄ ·Hd
�
1
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2
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3
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�
3

⇤
, (4.6)
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which results from integrating out the heavy messenger fields. For the superpotential, we use
a notation where prefactors are dropped for brevity, trivial A

4

contractions are not explicitly
shown 4 and where ⇤ denotes a generic messenger scale which is bigger than the family symmetry
breaking scale MF . After plugging in the Higgs and flavon vevs we find the following mass
matrices

Md =

0

@
0 bd 0
b0d i cd dd
0 0 ed

1

A and Mu =

0

@
au bu 0
0 cu du
0 d0u eu

1

A . (4.8)

where we used the left-right convention �L = uiL(Mu)iju
j
R + diL(Md)ijd

j
R + H.c.. Note that

due to the fundamental CP symmetry and its peculiar breaking pattern eq. (4.4), all entries are
real apart from the 2-2 element of Md. As discussed before, it predicts the right quark unitarity
triangle [18] in terms of a phase sum rule

↵ ⇡ �d
12

� �u
12

⇡ 90� , (4.9)

where the angle ↵ of the CKM unitarity triangle is measured to be close to 90� [2]. In this
toy model, we concentrate on the explanation of CP violation in strong and weak interactions.
Therefore, we are content with the prediction of the smallness of the strong CP phase and the
correct CP phase in the CKM matrix. We are able to fit all masses and mixing angles (cf. [18]).
A more realistic model should obviously aim at predicting the masses and mixing angles as well,
which happens quite naturally in a GUT context, for instance. In fact, a similar texture has
been obtained in a GUT based model [28], which might solve the strong CP problem as well.

4.3 Alignment

To obtain the vev structure given in Eq. (4.4) we make use of the discrete vacuum alignment
techniques mentioned in the strategy Sec. 2. The resulting setup is rather simple. The sym-
metries of the model allows one to write down the potential (Ai are A

4

triplets, Oi;j and P A
4

singlets)

W = Ai · (�i ? �i) +Oi;j(�i · �j) +
P

⇤2

�
�4

i ±M4

F

�
, (4.10)

where i and j run over the indices as in tables 1 and 3 and we used the notation ’?’ (’⇥’) for
the (anti-)symmetric triplet contraction of two triplets (see, for example, [55]). Note that the
family symmetry breaking scale MF is real due to the underlying CP symmetry.

As has been discussed in Ref. [56], highly symmetric vev configurations such as
the one in eq. (2.3), may be interpreted as resulting from accidental symmetries of
the flavon superpotential. We will collectively denote these symmetries as GW . By

4The only non-trivial contraction is between d̄ and the �i, which form a singlet contracted by the SO(3)-type
inner product ’·’.
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where, at leading order in a 1/Λ expansion, wl is given by the right-hand side of eq. (12)

and the “driving” term wd reads:

wd = M(ϕT
0 ϕT ) + g(ϕT

0 ϕTϕT )

+ g1(ϕ
S
0 ϕSϕS) + g2ξ̃(ϕ

S
0 ϕS) + g3ξ0(ϕSϕS) + g4ξ0ξ

2 + g5ξ0ξξ̃ + g6ξ0ξ̃
2 . (25)

At this level there is no fundamental distinction between the singlets ξ and ξ̃. Thus we
are free to define ξ̃ as the combination that couples to (ϕS

0 ϕS) in the superpotential wd.

We notice that at the leading order there are no terms involving the Higgs fields hu,d. We
assume that the electroweak symmetry is broken by some mechanism, such as radiative

effects when SUSY is broken. It is interesting that at the leading order the electroweak
scale does not mix with the potentially large scales u, v and v′. The scalar potential is

given by:

V =
∑

i

∣

∣

∣

∣

∣

∂w

∂φi

∣

∣

∣

∣

∣

2

+ m2
i |φi|2 + ... (26)

where φi denote collectively all the scalar fields of the theory, m2
i are soft masses and dots

stand for D-terms for the fields charged under the gauge group and possible additional soft

breaking terms. Since mi are expected to be much smaller than the mass scales involved
in wd, it makes sense to minimize V in the supersymmetric limit and to account for soft

breaking effects subsequently. From the driving sector we have:

∂w

∂ϕT
01

= MϕT 1 +
2g

3
(ϕT

2
1 − ϕT 2ϕT 3) = 0

∂w

∂ϕT
02

= MϕT 3 +
2g

3
(ϕT

2
2 − ϕT 1ϕT 3) = 0

∂w

∂ϕT
03

= MϕT 2 +
2g

3
(ϕT

2
3 − ϕT 1ϕT 2) = 0

∂w

∂ϕS
01

= g2ξ̃ϕS1 +
2g1

3
(ϕS

2
1 − ϕS2ϕS3) = 0

∂w

∂ϕS
02

= g2ξ̃ϕS3 +
2g1

3
(ϕS

2
2 − ϕS1ϕS3) = 0

∂w

∂ϕS
03

= g2ξ̃ϕS2 +
2g1

3
(ϕS

2
3 − ϕS1ϕS2) = 0

∂w

∂ξ0
= g4ξ

2 + g5ξξ̃ + g6ξ̃
2 + g3(ϕS

2
1 + 2ϕS2ϕS3) = 0 (27)

A solution to the first three equations is:

ϕT = (vT , 0, 0) , vT = −
3M

2g
. (28)

This VEV breaks A4 down to GT
1. The need of an additional singlet can be understood

by looking at the remaining equations. Indeed, if a unique singlet were present, which can
1More precisely, since the solutions lie in an orbit of the group A4, the non trivial solutions are

(28) and those generated by acting on (28) by the elements of A4: ϕT = (M/2g)(1,−2,−2), ϕT =
(M/2g)(1,−2ω2,−2ω) and ϕT = (M/2g)(1,−2ω,−2ω2). Each of these vacua leaves unbroken a Z3

subgroup of A4. It is not restrictive to choose the vacuum ϕT = −(3M/2g)(1, 0, 0). The trivial solution
ϕT = (0, 0, 0) can be eliminated by choosing m2

ϕT
< 0.
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CP vs. A4 

In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘

0

B

@

1 0 0

0 �1 0

0 0 �1

1

C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.

10

on 3-dim representation  
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encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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Figure 1: CP definition.

with U being a unitary matrix, which is not necessarily block-diagonal as the representation

matrices, because it generically interchanges representations, not only complex and pseudo-
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5An automorphism µ of a group G is a bijective homomorphism µ : G ! G.
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In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘
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, ⇢31
(T ) = T3 ⌘
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0 0 1
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A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
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In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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Chapter 2. Discrete Symmetry Groups and Lepton Mixing

1

S
TS

T

ST2

TST

ST
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T2ST

(a) Cayley Graph of A
4

. Figure 3: The A
4

symmetry of tetrahedron.

From these forms, it is found obviously that A
4

is isomorphic to �(12) ' (Z
2

⇥ Z
2

) o Z
3

,
which is explained in section 9.

They are classified by the conjugacy classes as

C
1

: {a
1

}, h = 1,
C

3

: {a
2

, a
3

, a
4

}, h = 2,
C

4

: {b
1

, b
2

, b
3

, b
4

, }, h = 3,
C

4

0 : {c
1

, c
2

, c
3

, c
4

, }, h = 3,

(67)

where we have also shown the orders of each element in the conjugacy class by h. There
are four conjugacy classes and there must be four irreducible representations, i.e. m

1

+
m

2

+ m
3

+ · · · = 4.
The orthogonality relation (11) requires

X

↵

[�↵(C
1

)]2 =
X

n

mnn2 = m
1

+ 4m
2

+ 9m
3

+ · · · = 12, (68)

for mi, which satisfy m
1

+ m
2

+ m
3

+ · · · = 4. The solution is obtained as (m
1

, m
2

, m
3

) =
(3, 0, 1). That is, the A

4

group has three singlets, 1, 10, and 100, and a single triplet 3,
where the triplet corresponds to (66).

Another algebraic definition of A
4

is often used in the literature. We denote a
1

= e,
a

2

= s and b
1

= t. They satisfy the following algebraic relations,

s2 = t3 = (st)3 = e. (69)

The closed algebra of these elements, s and t, is defined as the A
4

. It is straightforward
to write all of ai, bi and ci elements by s and t. Then, the conjugacy classes are rewritten
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(b) Geometrical interpretation of A
4

.

Figure 2.3: The symmetry group A
4

.The twelve group elements are connected by the generators S (red) and
T (blue). The picture 2.3b is taken from [88].

can define the semidirect product group N o' H via the multiplication rule

(n
1

, h
1

) ⇤ (n
2

, h
2

) = (n
1

'h
1

(n
2

), h
1

h
2

) for n
1,2 2 N and h

1,2 2 H. (2.35)

Note that there can be more than one semidirect product between two groups, but in the
following we will often drop the index ', as long as it is clear which group we are referring
to. (Another equivalent definition we will use is that a group G is a semidirect product of a
subgroup H and normal8 subgroup N if there exists a homomorphism G ! H which is the
identity on H and whose kernel9 is N.)

Let us present in some detail the case of the smallest group in Fig. 2.2, namely the
tetrahedral group A

4

. We will give the details for the other groups in the appendix. The group
A

4

may be written as A
4

⇠= (Z
2

⇥ Z
2

) o Z
3

where the Klein group N ⇠= Z
2

⇥ Z
2

is defined
by

⌦
S, X|X2 = S2 = E, XS = SX

↵
, the group H ⇠= Z

3

is defined by
⌦
T |T 3 = E

↵
and the

semidirect product is given by

'T (S) = TST�1 = XS, 'T (X) = TXT�1 = S. (2.36)

Note that the last relation allows one to replace one generator of N , e.g. X = T 2ST , and we
arrive at the standard presentation of A

4

:
⌦
S, T |S2 = T 3 = E, (ST )3 = E

↵
, (2.37)

that is represented graphically in Fig. 2.3a.
The other small groups in the tree shown in Fig. 2.2 can be represented in a similar way 10:

�(3n2) ⇠= (Zn ⇥ Zn) o Z
3

, �(6n2) ⇠= (Zn ⇥ Zn) o S
3

, Tn
⇠= Zn o Z

3

(2.38)

where S
4

⇠= �(24) and the defining homomorphisms are given in App. A.1. S
3

denotes the
group of permutations of three elements. It is in itself a semi-direct product S

3

⇠= Z
3

o Z
2

=⌦
r, a; r3 = a2 = E, ara�1 = r2

↵
and is not to be confused with the matrix defined in Eq. (2.27).

8A normal subgroup N of a group G, denoted by N C G, is a subgroup, which is invariant under conjugation
by an arbitrary group element of G, i.e. gNg�1 = N .

9The kernel of a representation ⇢ is defined by ker ⇢ = {g 2 G|⇢(g) = }.
10With respect to particle physics, �(3n2) has been studied in [89–92],T

7

has been studied in [93–95]and
�(6n2) has been studied in [88, 96].
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In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
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(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘

0

B

@

1 0 0

0 �1 0

0 0 �1
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C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1
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1
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. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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U =

0

@
0 1 0
1 0 0
0 0 3

1

A .

encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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� ! U3�⇤ = U3�. Adding the generator U to A4 results in S4 because A4 can be embedded

in Aut(G).

Summarising our discussion, there is only one non-trivial CP transformation (up to inner

automorphisms) acting on the reducible representation � ⇠ 11 � 12 � 13 � 3, which takes

the form � ! U�⇤ with

U =

0

B

B

B

@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 U3

1

C

C

C

A

. (4.14)

The trivial CP transformation corresponding to the trivial automorphism idA4 is determined

by � ! U�⇤ with

U =

0

B

B

B

@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 3

1

C

C

C

A

, (4.15)

which is equivalent to the transformation � ! � as can be easily checked. There are no other

CP transformations (up to inner automorphisms).

Since this case is of some relevance to model building, let us dwell on it a bit more and

repeat the discussion for the basis

S =
1

3

0

B

@

�1 2 2

2 �1 2

2 2 �1

1

C

A

, T =

0

B

@

1 0 0

0 !2 0

0 0 !

1

C

A

(4.16)

first used by Altarelli and Feruglio[28]. Here the group elements are complex but the Clebsch-

Gordon coe�cients are real. The unique result of Eq. (2.6) is U = 3 up to inner automor-

phisms. This basis is therefore a CP basis, as defined in Eq. (2.21). Note that in this

basis

(��)12
= (�2�2 + �1�3 + �3�1), (��)13

= (�3�3 + �1�2 + �2�1) (4.17)

and thus

(��)12
! [(��)12

]⇤ ⇠ 13. (4.18)

as it should be.

Let us look at a physical situation where a certain confusion about the definition of CP

can be alleviated by our definition14. If one considers the potential for one electroweak Higgs

doublet transforming as 31 denoted by � = (�1,�2,�3)T in the basis (4.7), there is one

potentially complex coupling in the potential [23; 24; 26]

�5 (�†�)31

⇣

�†�
⌘

31
+ h.c. = �5



⇣

�†
1�2

⌘2
+
⇣

�†
2�3

⌘2
+
⇣

�†
3�1

⌘2
�

+ h.c.. (4.19)

14For a related discussion, see [29–31].
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trivial map 

encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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⇠ ! ⇠

if one does not want to extend the group one therefore has 
the options 

g 2 G

⇢(g)⇤ U⇢(g)⇤U�1 = ⇢(g0)

u(g) = g0 2 G

⇢
⇢�1

u : G ! G

Figure 2: The matrix U that appears in the definition of CP defines an automorphism

u : G ! G of the group G.

Indeed, the possible matrices U of Eq. (2.6) form a representation of the automorphism

group 6 Aut(G) of G, which we are showing in the following.

U represents the automorphism u : G ! G given by

u : g 2 G ! ⇢(g) ! U⇢(g)⇤U�1 = ⇢(g0) ! g0 = ⇢�1(U⇢(g)⇤U�1) 2 G (2.7)

or

U⇢(g)⇤U�1 = ⇢(u(g)) . (2.8)

It is straightforward to show that this mapping u : G ! G is an automorphism, indeed.

Vice versa, if u : G ! G is an automorphism, we can explicitly construct a matrix U in

the following way. We first extend G to a group G0 containing G as a normal subgroup and

u(g) = g0gg0�1 8g 2 G with g0 2 G0. This can be achieved as follows. Taking the order of u 7

to be ord(u) = n, we define the homomorphism

✓ : Zn = ({0, .., n� 1},+) ! Aut(G) : 1 ! ✓1 ⌘ u , (2.9)

which has a trivial kernel. This homomorphism thus defines the semi-direct product group

G0 = Go✓ Zn with the group multiplication

(g1, z1) ? (g2, z2) = (g1✓z1(g2), z1 + z2) . (2.10)

Keeping track of the multiplication rules, we find

(E, 1) ? (g, z) ? (E, 1)�1 = (u(g), z) , (2.11)

where E is the identity element of G. The outer 8 automorphism u of G becomes an inner

automorphism ofG0 and we can obtain a matrix representation of u by the standard techniques

for finding matrix representations of groups, for example by using the computer algebra system

GAP [16] .

6The automorphism group Aut(G) is the set of all automorphisms of G with composition as group multi-

plication.
7The order of a group element u of G is given by the smallest n 2 with un = idG.
8An inner automorphism µh of a group G is an automorphism, which is represented by conjugation with

an element h 2 G, i.e. µh ⌘ conj(h) : g ! hgh�1. If an automorphism can not be represented by conjugation

with a group element, it is called an outer automorphism.
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to fulfil the consistency condition 

Note that complex VEVs of the 
type (1,z,z*) conserve this CP 

U3 =

0

@
1 0 0
0 0 1
0 1 0

1

A



CP vs. A4 - Application 
� = (�1,�2,�3)

T ⇠ 3•  consider a triplet of Higgs doublets 

� ! U3�⇤ = U3�. Adding the generator U to A4 results in S4 because A4 can be embedded

in Aut(G).

Summarising our discussion, there is only one non-trivial CP transformation (up to inner

automorphisms) acting on the reducible representation � ⇠ 11 � 12 � 13 � 3, which takes

the form � ! U�⇤ with

U =

0

B

B

B

@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 U3

1

C

C

C

A

. (4.14)

The trivial CP transformation corresponding to the trivial automorphism idA4 is determined

by � ! U�⇤ with

U =

0

B

B

B

@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 3

1

C

C

C

A

, (4.15)

which is equivalent to the transformation � ! � as can be easily checked. There are no other

CP transformations (up to inner automorphisms).

Since this case is of some relevance to model building, let us dwell on it a bit more and

repeat the discussion for the basis

S =
1

3

0

B

@

�1 2 2

2 �1 2

2 2 �1

1

C

A

, T =

0

B

@

1 0 0

0 !2 0

0 0 !

1

C

A

(4.16)

first used by Altarelli and Feruglio[28]. Here the group elements are complex but the Clebsch-

Gordon coe�cients are real. The unique result of Eq. (2.6) is U = 3 up to inner automor-

phisms. This basis is therefore a CP basis, as defined in Eq. (2.21). Note that in this

basis

(��)12
= (�2�2 + �1�3 + �3�1), (��)13

= (�3�3 + �1�2 + �2�1) (4.17)

and thus

(��)12
! [(��)12

]⇤ ⇠ 13. (4.18)

as it should be.

Let us look at a physical situation where a certain confusion about the definition of CP

can be alleviated by our definition14. If one considers the potential for one electroweak Higgs

doublet transforming as 31 denoted by � = (�1,�2,�3)T in the basis (4.7), there is one

potentially complex coupling in the potential [23; 24; 26]

�5 (�†�)31

⇣

�†�
⌘

31
+ h.c. = �5



⇣

�†
1�2

⌘2
+

⇣

�†
2�3

⌘2
+

⇣

�†
3�1

⌘2
�

+ h.c.. (4.19)

14For a related discussion, see [29–31].
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•  there is one phase-dependent term in the potential 

It can be easily checked that the generalised CP transformation � ! U3�⇤ acts as

I ⌘


⇣

�†
1�2

⌘2
+
⇣

�†
2�3

⌘2
+
⇣

�†
3�1

⌘2
�

!


⇣

�†
1�2

⌘2
+

⇣

�†
2�3

⌘2
+
⇣

�†
3�1

⌘2
�

= I (4.20)

and thus does not give a restriction on the phase of �5. Note that the naive CP transformation

� ! �⇤ transforms the group invariant I into I⇤ and therefore restricts �5 to be real as was

e.g. done in Ref. [25]. However, we have seen that this naive CP transformation cannot

be consistently implemented on the Lagrangian level if there are complex representations,

unless it is either the trivial generalised CP transformation, idA4 , or the symmetry group

A4 is extended such that it is closed under this naive CP transformation. Therefore it is

inappropriate to call the phase of �5 a CP phase. This also explains an observation made in

Ref. [24], where it was shown that even for arg �5 6= 0 the VEV configuration

h�i = V (1, 1, 1), h�i = V (1, 0, 0) V 2 , (4.21)

which of course respects both, the trivial as well as the non-trivial, generalised CP transfor-

mations, can be obtained without fine-tuning. This would have been somewhat surprising, as

usually symmetry conserving solutions cannot be obtained from explicitly symmetry breaking

potentials. However, the phase of �5 does not break the consistent definition of generalised

CP, i.e. does not violate condition (2.6), as does the VEV configuration (4.21), therefore

everything is consistent.

4.3 T 0 ⇠= SG(24, 3)

The group T 0 =
⌦

S, T |S4 = T 3 = (ST )3 = E
↵ ⇠= SL(2, 3) 15, is also an important group in

the context of CP violation [6; 7]. It has two elements Z(T 0) = {E,S2} ⇠= Z2 that commute

with all group elements and therefore Inn(T 0) ⇠= T 0/Z(T 0) ⇠= A4. There is one non-trivial

outer automorphism (up to inner automorphisms) u : (S, T ) ! (S3, T 2). Therefore the

automorphism structure can be summarised as:

Z(T 0) ⇠= Z2 Aut(T 0) ⇠= S4 (4.22)

Inn(T 0) ⇠= A4 Out(T 0) ⇠= Z2

A non-trivial CP transformation therefore has to be a representation of u in the sense of

Eq. (2.6). Let us now see how it is represented for the various representations of T 0.

There is a faithful pseudo-real representation

21 : S = A1, T = !A2 (4.23)

with �†
2S�2 = S⇤ and �†

2T�2 = T ⇤ and the two faithful complex representations

22 : S = A1 T = !2A2; 23 : S = A1, T = A2 (4.24)

15T 0 has been first discussed in a particle physics context in [32].
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•   the CP trafo                      would restrict the phase to be zero 

•  even for non-vanishing phase, the VEV configuration  
can be obtained. [Toorop et. al. 2011] 

•  Spontaneous CP restoration?? 
•  This can be understood if one considers the CP transformation 

•  this is a symmetry of the potential for any phase of λ5  
•  also the VEVs preserve the CP transformation 
•  therefore this CP is conserved in this case 

•  accidental CP transformations seem to be origin of ‚calculable phases‘ 

It can be easily checked that the generalised CP transformation � ! U3�⇤ acts as

I ⌘


⇣

�†
1�2

⌘2
+
⇣

�†
2�3

⌘2
+
⇣

�†
3�1

⌘2
�

!


⇣

�†
1�2

⌘2
+
⇣

�†
2�3

⌘2
+
⇣

�†
3�1

⌘2
�

= I (4.20)

and thus does not give a restriction on the phase of �5. Note that the naive CP transformation

� ! �⇤ transforms the group invariant I into I⇤ and therefore restricts �5 to be real as was

e.g. done in Ref. [25]. However, we have seen that this naive CP transformation cannot

be consistently implemented on the Lagrangian level if there are complex representations,

unless it is either the trivial generalised CP transformation, idA4 , or the symmetry group

A4 is extended such that it is closed under this naive CP transformation. Therefore it is

inappropriate to call the phase of �5 a CP phase. This also explains an observation made in

Ref. [24], where it was shown that even for arg �5 6= 0 the VEV configuration

h�i = V (1, 1, 1), h�i = V (1, 0, 0) V 2 , (4.21)

which of course respects both, the trivial as well as the non-trivial, generalised CP transfor-

mations, can be obtained without fine-tuning. This would have been somewhat surprising, as

usually symmetry conserving solutions cannot be obtained from explicitly symmetry breaking

potentials. However, the phase of �5 does not break the consistent definition of generalised

CP, i.e. does not violate condition (2.6), as does the VEV configuration (4.21), therefore

everything is consistent.

4.3 T 0 ⇠= SG(24, 3)

The group T 0 =
⌦

S, T |S4 = T 3 = (ST )3 = E
↵ ⇠= SL(2, 3) 15, is also an important group in

the context of CP violation [6; 7]. It has two elements Z(T 0) = {E,S2} ⇠= Z2 that commute

with all group elements and therefore Inn(T 0) ⇠= T 0/Z(T 0) ⇠= A4. There is one non-trivial

outer automorphism (up to inner automorphisms) u : (S, T ) ! (S3, T 2). Therefore the

automorphism structure can be summarised as:

Z(T 0) ⇠= Z2 Aut(T 0) ⇠= S4 (4.22)

Inn(T 0) ⇠= A4 Out(T 0) ⇠= Z2

A non-trivial CP transformation therefore has to be a representation of u in the sense of

Eq. (2.6). Let us now see how it is represented for the various representations of T 0.

There is a faithful pseudo-real representation

21 : S = A1, T = !A2 (4.23)

with �†
2S�2 = S⇤ and �†

2T�2 = T ⇤ and the two faithful complex representations

22 : S = A1 T = !2A2; 23 : S = A1, T = A2 (4.24)

15T 0 has been first discussed in a particle physics context in [32].
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It can be easily checked that the generalised CP transformation � ! U3�⇤ acts as

I ⌘


⇣

�†
1�2

⌘2
+

⇣

�†
2�3

⌘2
+

⇣

�†
3�1

⌘2
�

!


⇣

�†
1�2

⌘2
+

⇣

�†
2�3

⌘2
+

⇣

�†
3�1

⌘2
�

= I (4.20)

and thus does not give a restriction on the phase of �5. Note that the naive CP transformation

� ! �⇤ transforms the group invariant I into I⇤ and therefore restricts �5 to be real as was

e.g. done in Ref. [25]. However, we have seen that this naive CP transformation cannot

be consistently implemented on the Lagrangian level if there are complex representations,

unless it is either the trivial generalised CP transformation, idA4 , or the symmetry group

A4 is extended such that it is closed under this naive CP transformation. Therefore it is

inappropriate to call the phase of �5 a CP phase. This also explains an observation made in

Ref. [24], where it was shown that even for arg �5 6= 0 the VEV configuration

h�i = V (1, 1, 1), h�i = V (1, 0, 0) V 2 , (4.21)

which of course respects both, the trivial as well as the non-trivial, generalised CP transfor-

mations, can be obtained without fine-tuning. This would have been somewhat surprising, as

usually symmetry conserving solutions cannot be obtained from explicitly symmetry breaking

potentials. However, the phase of �5 does not break the consistent definition of generalised

CP, i.e. does not violate condition (2.6), as does the VEV configuration (4.21), therefore

everything is consistent.

4.3 T 0 ⇠= SG(24, 3)

The group T 0 =
⌦

S, T |S4 = T 3 = (ST )3 = E
↵ ⇠= SL(2, 3) 15, is also an important group in

the context of CP violation [6; 7]. It has two elements Z(T 0) = {E,S2} ⇠= Z2 that commute

with all group elements and therefore Inn(T 0) ⇠= T 0/Z(T 0) ⇠= A4. There is one non-trivial

outer automorphism (up to inner automorphisms) u : (S, T ) ! (S3, T 2). Therefore the

automorphism structure can be summarised as:

Z(T 0) ⇠= Z2 Aut(T 0) ⇠= S4 (4.22)

Inn(T 0) ⇠= A4 Out(T 0) ⇠= Z2

A non-trivial CP transformation therefore has to be a representation of u in the sense of

Eq. (2.6). Let us now see how it is represented for the various representations of T 0.

There is a faithful pseudo-real representation

21 : S = A1, T = !A2 (4.23)

with �†
2S�2 = S⇤ and �†

2T�2 = T ⇤ and the two faithful complex representations

22 : S = A1 T = !2A2; 23 : S = A1, T = A2 (4.24)

15T 0 has been first discussed in a particle physics context in [32].

13

� ! U3�⇤ = U3�. Adding the generator U to A4 results in S4 because A4 can be embedded

in Aut(G).

Summarising our discussion, there is only one non-trivial CP transformation (up to inner

automorphisms) acting on the reducible representation � ⇠ 11 � 12 � 13 � 3, which takes

the form � ! U�⇤ with

U =

0

B

B

B

@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 U3

1

C

C

C

A

. (4.14)

The trivial CP transformation corresponding to the trivial automorphism idA4 is determined

by � ! U�⇤ with

U =

0

B

B

B

@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 3

1

C

C

C

A

, (4.15)

which is equivalent to the transformation � ! � as can be easily checked. There are no other

CP transformations (up to inner automorphisms).

Since this case is of some relevance to model building, let us dwell on it a bit more and

repeat the discussion for the basis

S =
1

3

0

B

@

�1 2 2

2 �1 2

2 2 �1

1

C

A

, T =

0

B

@

1 0 0

0 !2 0

0 0 !

1

C

A

(4.16)

first used by Altarelli and Feruglio[28]. Here the group elements are complex but the Clebsch-

Gordon coe�cients are real. The unique result of Eq. (2.6) is U = 3 up to inner automor-

phisms. This basis is therefore a CP basis, as defined in Eq. (2.21). Note that in this

basis

(��)12
= (�2�2 + �1�3 + �3�1), (��)13

= (�3�3 + �1�2 + �2�1) (4.17)

and thus

(��)12
! [(��)12

]⇤ ⇠ 13. (4.18)

as it should be.

Let us look at a physical situation where a certain confusion about the definition of CP

can be alleviated by our definition14. If one considers the potential for one electroweak Higgs

doublet transforming as 31 denoted by � = (�1,�2,�3)T in the basis (4.7), there is one

potentially complex coupling in the potential [23; 24; 26]

�5 (�†�)31

⇣

�†�
⌘

31
+ h.c. = �5



⇣

�†
1�2

⌘2
+
⇣

�†
2�3

⌘2
+
⇣

�†
3�1

⌘2
�

+ h.c.. (4.19)

14For a related discussion, see [29–31].
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Outer automorphism group  

•  if U is solution of                                    then so is 
•  corresponds to performing a CP transformation followed by a group 

transformation described by ρ(g)  
•  The group transformation corresponds to an inner homomorphism, which 

does not pose any new restrictions  

•  therefore interesting generalized CP transformations 
correspond to 

g 2 G

⇢(g)⇤ U⇢(g)⇤U�1 = ⇢(g0)

u(g) = g0 2 G

⇢
⇢�1

u : G ! G

Figure 2: The matrix U that appears in the definition of CP defines an automorphism

u : G ! G of the group G.

Indeed, the possible matrices U of Eq. (2.6) form a representation of the automorphism

group 6 Aut(G) of G, which we are showing in the following.

U represents the automorphism u : G ! G given by

u : g 2 G ! ⇢(g) ! U⇢(g)⇤U�1 = ⇢(g0) ! g0 = ⇢�1(U⇢(g)⇤U�1) 2 G (2.7)

or

U⇢(g)⇤U�1 = ⇢(u(g)) . (2.8)

It is straightforward to show that this mapping u : G ! G is an automorphism, indeed.

Vice versa, if u : G ! G is an automorphism, we can explicitly construct a matrix U in

the following way. We first extend G to a group G0 containing G as a normal subgroup and

u(g) = g0gg0�1 8g 2 G with g0 2 G0. This can be achieved as follows. Taking the order of u 7

to be ord(u) = n, we define the homomorphism

✓ : Zn = ({0, .., n� 1},+) ! Aut(G) : 1 ! ✓1 ⌘ u , (2.9)

which has a trivial kernel. This homomorphism thus defines the semi-direct product group

G0 = Go✓ Zn with the group multiplication

(g1, z1) ? (g2, z2) = (g1✓z1(g2), z1 + z2) . (2.10)

Keeping track of the multiplication rules, we find

(E, 1) ? (g, z) ? (E, 1)�1 = (u(g), z) , (2.11)

where E is the identity element of G. The outer 8 automorphism u of G becomes an inner

automorphism ofG0 and we can obtain a matrix representation of u by the standard techniques

for finding matrix representations of groups, for example by using the computer algebra system

GAP [16] .

6The automorphism group Aut(G) is the set of all automorphisms of G with composition as group multi-

plication.
7The order of a group element u of G is given by the smallest n 2 with un = idG.
8An inner automorphism µh of a group G is an automorphism, which is represented by conjugation with

an element h 2 G, i.e. µh ⌘ conj(h) : g ! hgh�1. If an automorphism can not be represented by conjugation

with a group element, it is called an outer automorphism.
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⇢(g0)U

Hence, there is a unitary matrix U 0 with

U 0⇢(g)U 0�1 = ⇢(u(g)) . (2.12)

The matrix W introduced in Eq. (2.5) allows to write a CP transformation as

� ! U�⇤ = UW� (2.13)

and therefore

U⇢(g)⇤U�1 = ⇢(u(g)) (2.14)

with U = U 0W .

The automorphisms form a group with composition as group multiplication, i.e. u0 = ũ�u
is again an automorphism represented by

U 0⇢(g)⇤U 0�1 = ⇢(u0(g)) (2.15)

with

⇢(u0(g)) = ⇢(ũ(u(g))) = ŨW⇢(u(g))WŨ�1 = ŨWU⇢(g)⇤U�1WŨ�1 (2.16)

and thus

U 0 = ŨWU. (2.17)

The trivial automorphism id(g) = g 8g 2 G is represented by U = W and the inverse

automorphism u�1 is represented by WU�1W . We thus have a homomorphism from the

automorphism group to the group of matrices U defined in Eq. (2.4) with the conjunction

?: (A,B) ! A ? B ⌘ AWB. With respect to this conjunction the matrices U form a

representation of the automorphism group. ⌅
For any solution U of Eq. (2.6) the matrix ⇢(g)U is also a solution for any g 2 G, which

corresponds to performing a CP transformation followed by a group transformation described

by ⇢(g). The group transformation corresponds to an inner homomorphism, which does not

pose any new restrictions 9. It is therefore su�cient to consider automorphisms with inner

automorphisms modded out. Hence the group of generalised CP transformations is given by

the outer automorphism group, which is defined by

Out(G) ⌘ Aut(G)/Inn(G) , (2.18)

where Inn(G) denotes the inner automorphism group 10, the set of all inner automorphisms.
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6
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↵
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The two generators of the outer automorphism group act on � ⇠ (3,3⇤) as

U(u1) =

 

Ũ 0

0 Ũ⇤

!

with Ũ =
1p
3

0

B

@

!2 ! 1

! !2 1

1 1 1

1

C

A

(4.46)

21�(27) has been first used in the lepton sector in [35].
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geometrical CP violation in T‘? 

! if we consider just one doublet                there is only 
one phase dependent term in the potential 

where D ⇠ 3 is a driving field, � ⇠ 3 and ⇣ 0 ⇠ 12. CP invariance with respect to Eq. (4.31)

requires  to be real and arg(�) = ⇡/4. Assuming the VEV alignment (4.34), the F-term

equation
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leads to a complex VEV for  00 with arg( 00
0) = 7⇡/8 + Z⇡ for � < 0, which conserve CP,

and 3⇡/8 + Z⇡ for � > 0, which preserves  00
0 ! �CP [ 00

0 ], a di↵erent CP transformation,

which can also be extended to a symmetry of the full theory by changing the CP transfor-

mation of the doublets to CP 0 : 2i ! �CP [2i]. Hence, it is not possible to break both

CP transformations by the VEV of  00 alone. However, the VEV of a second doublet can

break the remaining CP transformation, but the phases of the VEVs depend on a discrete

choice. The other doublet VEVs are related to the VEV of  00 via arg( ̃00
0) = arg( 00

0)+Z⇡/2

and arg( 0
0), arg( ̃

0
0) = � arg( 00

0) + Z⇡/2, where the shift Z⇡/2 depends on the sign of the

respective couplings. Hence, there is a discrete set of phases of the VEVs. In analogy to

the VEV of  00, each VEV breaks one of the two CP transformations. Concluding, as soon

as there are two VEVs, which break di↵erent CP transformations, it is possible to have CP

violation.

It might be instructive to look at the potential for one doublet field  ⇠ 22 and study

the VEV configurations that can be obtained in order to see if it is possible to obtain a phase

prediction from a spontaneous breaking of the generalised CP. On renormalizable level there

is only one coupling that depends on phases
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3
1 � (2� 2i) 3
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+ h.c., (4.40)

where the phases have been adjusted such, that CP forces � to be real. We will focus

on VEVs of the form h i = (V ei↵, 0)T with V > 0 that conserve the Z3 subgroup gen-

erated by T . For � < 0 we find the minima {1, i,�1,�i}(ei⇡11/24, 0)T , which conserve

 ! {1,�1, 1,�1}CP [ ], and for � > 0 we find the minima {1, i,�1,�i}(ei⇡5/24, 0)T which

conserve  ! �i{1,�1, 1,�1}CP [ ]. The additional solutions are due to fact that the phase

dependent part of the potential has an accidental Z4 symmetry  ! i , which will most

likely be broken in a full theory such that one would expect only the CP conserving solutions

to survive. The required real VEVs cannot be obtained in this simple setup. Note that if the

VEV of  conserves CP, the phases of the VEVs and of the couplings conspire that there is

no CP violation, as shown in Section 3.

Let us briefly summarise our view on geometrical CP violation in T 0. To be able to

talk about CP violation one has to apply the consistent CP symmetry of Eq. (4.31) on the

Lagrangian level. This will then fix the phase (modulo ⇡) of most couplings . The phases

of invariants, which are CP self-conjugate are not fixed by CP. In supersymmetric theories,

the phases of all couplings in the superpotential are fixed (modulo ⇡), because CP relates

the superpotential with the anti-holomorphic superpotential. One could thus imagine a setup

along the lines of [6; 7] where this has been implemented and therefore the only source of CP

violation are the VEVs of the doublet scalar fields, which break CP spontaneously. However,

the phases of the VEVs are only determined up to a finite discrete choice.
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requires  to be real and arg(�) = ⇡/4. Assuming the VEV alignment (4.34), the F-term

equation

0
!
=

@Wf

@D 1
=

1p
3
(� 002

2 + �3⇣
0) (4.39)

leads to a complex VEV for  00 with arg( 00
0) = 7⇡/8 + Z⇡ for � < 0, which conserve CP,

and 3⇡/8 + Z⇡ for � > 0, which preserves  00
0 ! �CP [ 00

0 ], a di↵erent CP transformation,

which can also be extended to a symmetry of the full theory by changing the CP transfor-

mation of the doublets to CP 0 : 2i ! �CP [2i]. Hence, it is not possible to break both

CP transformations by the VEV of  00 alone. However, the VEV of a second doublet can

break the remaining CP transformation, but the phases of the VEVs depend on a discrete

choice. The other doublet VEVs are related to the VEV of  00 via arg( ̃00
0) = arg( 00

0)+Z⇡/2

and arg( 0
0), arg( ̃

0
0) = � arg( 00

0) + Z⇡/2, where the shift Z⇡/2 depends on the sign of the

respective couplings. Hence, there is a discrete set of phases of the VEVs. In analogy to

the VEV of  00, each VEV breaks one of the two CP transformations. Concluding, as soon

as there are two VEVs, which break di↵erent CP transformations, it is possible to have CP

violation.

It might be instructive to look at the potential for one doublet field  ⇠ 22 and study

the VEV configurations that can be obtained in order to see if it is possible to obtain a phase

prediction from a spontaneous breaking of the generalised CP. On renormalizable level there

is only one coupling that depends on phases

�
!̃2

p
3

�

 1( 
3
1 � (2� 2i) 3

2)
�

+ h.c., (4.40)

where the phases have been adjusted such, that CP forces � to be real. We will focus

on VEVs of the form h i = (V ei↵, 0)T with V > 0 that conserve the Z3 subgroup gen-

erated by T . For � < 0 we find the minima {1, i,�1,�i}(ei⇡11/24, 0)T , which conserve

 ! {1,�1, 1,�1}CP [ ], and for � > 0 we find the minima {1, i,�1,�i}(ei⇡5/24, 0)T which

conserve  ! �i{1,�1, 1,�1}CP [ ]. The additional solutions are due to fact that the phase

dependent part of the potential has an accidental Z4 symmetry  ! i , which will most

likely be broken in a full theory such that one would expect only the CP conserving solutions

to survive. The required real VEVs cannot be obtained in this simple setup. Note that if the

VEV of  conserves CP, the phases of the VEVs and of the couplings conspire that there is

no CP violation, as shown in Section 3.

Let us briefly summarise our view on geometrical CP violation in T 0. To be able to

talk about CP violation one has to apply the consistent CP symmetry of Eq. (4.31) on the

Lagrangian level. This will then fix the phase (modulo ⇡) of most couplings . The phases

of invariants, which are CP self-conjugate are not fixed by CP. In supersymmetric theories,

the phases of all couplings in the superpotential are fixed (modulo ⇡), because CP relates

the superpotential with the anti-holomorphic superpotential. One could thus imagine a setup

along the lines of [6; 7] where this has been implemented and therefore the only source of CP

violation are the VEVs of the doublet scalar fields, which break CP spontaneously. However,

the phases of the VEVs are only determined up to a finite discrete choice.
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! again the phases are a result of a generalized CP symmetry of the potential 

! similar discussion holds for potentials of the type 

 

where ϵ ≈ 2
3
mν

2

mν
3

≈ 8.4◦. When the phases α and β are fixed by the vacuum alignment, and

when also θe12 is predicted from the GUT structure, as both will be the case in our model,
all three mixing angles and also the CP phases δ and α2, are predicted. Thus, the resulting
models of this type can be highly predictive.

We would like to note here already that in the explicit GUT model in the next section,
we will construct a vacuum alignment such that α = π/3, leading to5

θ23 ≈ 45◦ −
ϵ

2
≈ 41◦ , (2.14)

close to the best fit value for the normal hierarchy case from global fits to the neutrino
data [30]. The alignment of β will satisfy β = α + π, such that the neutrino and charged
lepton contributions to θ13 simply add up, leading to (with θe12 = θC/3)

θ13 ≈
ϵ√
2
+

θC
3
√
2
≈ 8◦ − 9◦ , (2.15)

in agreement with the recent measurements. With these values of α and β, it also turns out
that θ12 is predicted somewhat smaller than 35◦, namely

θ12 ∼ 33◦ . (2.16)

This value of θ12 could be distinguished from the tribimaximal value by a future reactor
experiment with ∼ 60 km baseline [31].

Spontaneous CP violation with aligned phases

Finally, the third ingredient is spontaneous CP violation with aligned phases of the flavon
vevs, using the method proposed in [22]. To give a brief summary of this method, let us note
that phase alignment can very simply be achieved using discrete symmetries when the flavon
vevs effectively depend on one parameter, i.e. when the direction of the vevs is given by the
form of the potential. This remains true even in the presence of “generalised” CP transforma-
tions as long as these CP transformations fix the phases of the involved coupling constants.
Working example models with A4 and S4 family symmetry can be found in [22]. Note that
S4 is in agreement only with “simple” CP, while the “generalised” CP transformation for A4

interchanges the complex singlet representations [26]. In both cases all the coupling constants
are forced to be real in a suitable field basis.

To illustrate the phase alignment, let us consider a case with a flavon field ξ which is a
singlet under the family symmetry and singly charged under a Zn shaping symmetry (with
n ≥ 2). Then typical terms in the flavon superpotential, which “drive” the flavon vev non-
zero, have the form

P

(

ξn

Λn−2
∓M2

)

. (2.17)

The field P is the so-called “driving superfield”, meaning that the F -term |FP |2 generates the
potential for ξ which enforces a non-zero vev. Λ is the (real and positive) suppression scale

5We note that the choice α = π/3 is motivated by the current data which favours θ23 in the first octant.
On the other hand, one can in principle also construct other models with different values of α, and there are
also other options for β and θe12, which may lead to interesting alternative models. In this sense, the strategy
described here leads to a whole new class of possible models.
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�.17 6.13+.22
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�.28 0.8+1.2
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Table 1: Global fit of neutrino oscillation parameters (for normal ordering of neutrino masses) adapted

from [17]. The errors of the best fit values indicate the one sigma ranges. In the global fit there are two nearly

degenerate minima at sin2 ✓23 = 0.430+.031
�.030, see Figure 1.

only the structure of flavor symmetry group and its remnant symmetries are assumed and we

do not consider the breaking mechanism i.e. how the required vacuum alignment needed to

achieve the remnant symmetries is dynamically realized.

The PMNS matrix is defined as

UPMNS = V †
e V⌫ (1)

and can be determined from the unitary matrices Ve and V⌫ satisfying

V T
e MeM

†
eV

⇤
e = diag(m2

e,m
2
µ,m

2
⌧ ) and V T

⌫ M⌫V⌫ = diag(m1,m2,m3), (2)

where the mass matrices are defined by L = eTMeec +
1
2⌫

TM⌫⌫. We will now review how

certain mixing patterns can be understood as a consequence of mismatched horizontal sym-

metries acting on the charged lepton and neutrino sectors [11–13; 26–28]4. Let us assume

for this purpose that there is a (discrete) symmetry group Gf under which the left-handed

lepton doublets L = (⌫, e) transform under a faithful unitary 3-dimensional representation

⇢ : Gf ! GL(3, ):

L ! ⇢(g)L, g 2 Gf . (3)

The experimental data clearly shows (i) that all lepton masses are unequal and (ii) there is

mixing amongst all three mass eigenstates. Therefore this symmetry cannot be a symmetry

of the entire Lagrangian but it has to be broken to di↵erent subgroups Ge and G⌫ (with

trivial intersection) in the charged lepton and neutrino sectors, respectively. If the fermions

transform as

e ! ⇢(ge)e, ⌫ ! ⇢(g⌫)⌫, ge 2 Ge, g⌫ 2 G⌫ , (4)

for the symmetry to hold, the mass matrices have to fulfil

⇢(ge)
TMeM

†
e⇢(ge)

⇤ = MeM
†
e and ⇢(g⌫)

TM⌫⇢(g⌫) = M⌫ . (5)

Choosing Ge or G⌫ to be a non-abelian group would lead to a degenerate mass spectrum,

as their representations cannot be decomposed into three inequivalent one-dimensional rep-

resentations of Ge or G⌫ . This scenario is not compatible with the case of three distinguished

4We here follow the presentation and convention in [26; 27].
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lepton doublets L = (⌫, e) transform under a faithful unitary 3-dimensional representation
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The experimental data clearly shows (i) that all lepton masses are unequal and (ii) there is

mixing amongst all three mass eigenstates. Therefore this symmetry cannot be a symmetry
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transform as
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for the symmetry to hold, the mass matrices have to fulfil
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†
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⇤ = MeM
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e and ⇢(g⌫)

TM⌫⇢(g⌫) = M⌫ . (5)

Choosing Ge or G⌫ to be a non-abelian group would lead to a degenerate mass spectrum,

as their representations cannot be decomposed into three inequivalent one-dimensional rep-

resentations of Ge or G⌫ . This scenario is not compatible with the case of three distinguished
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⇢(S) =

0

@
1 0 0
0 �1 0
0 0 �1

1

A
⇢(T ) =

0

@
0 1 0
0 0 1
1 0 0

1

A

⇢(Un) =

0

@
1 0 0
0 0 zn
0 z⇤n 0

1

A

hzni ⇠= Zn

•  Scan over all discrete groups of size 
smaller than 1556 with Ge=Z3, 
Gν=Z2xZ2  

•  all solutions which are close to exp. 
values have the TM2 form 

U = UTBM

0

@
cos ✓ 0 sin ✓
0 1 0

� sin ✓ 0 cos ✓

1

A

with ✓ =
1

2
arg(zn)

•  vanishing CP phase 𝛿CP  
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Figure 2: The leptonic mixing angles (black circles) determined from our group scan up to order 1536 are

shown. The red dots represent the mixing angles that we have determined from the generator S3, T3 and

U3(n). The red labels represent the integer n that generates the U3(n) matrix. The interpolating line is

colored according to the value of ✓ as defined in Eqn. (13). See the main text for more detailed informations.

We have also omitted the labeling of larger n that generates the same repeating groups or mixing angles.
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Gf 
Ge=〈T〉=Z3 

Gν=〈S,Un〉=Z2xZ2  LH leptons 3-dim rep. 
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Table 1: Global fit of neutrino oscillation parameters (for normal ordering of neutrino masses) adapted

from [17]. The errors of the best fit values indicate the one sigma ranges. In the global fit there are two nearly

degenerate minima at sin2 ✓23 = 0.430+.031
�.030, see Figure 1.

only the structure of flavor symmetry group and its remnant symmetries are assumed and we

do not consider the breaking mechanism i.e. how the required vacuum alignment needed to

achieve the remnant symmetries is dynamically realized.

The PMNS matrix is defined as

UPMNS = V †
e V⌫ (1)

and can be determined from the unitary matrices Ve and V⌫ satisfying

V T
e MeM

†
eV

⇤
e = diag(m2

e,m
2
µ,m

2
⌧ ) and V T

⌫ M⌫V⌫ = diag(m1,m2,m3), (2)

where the mass matrices are defined by L = eTMeec +
1
2⌫

TM⌫⌫. We will now review how

certain mixing patterns can be understood as a consequence of mismatched horizontal sym-

metries acting on the charged lepton and neutrino sectors [11–13; 26–28]4. Let us assume

for this purpose that there is a (discrete) symmetry group Gf under which the left-handed

lepton doublets L = (⌫, e) transform under a faithful unitary 3-dimensional representation

⇢ : Gf ! GL(3, ):

L ! ⇢(g)L, g 2 Gf . (3)

The experimental data clearly shows (i) that all lepton masses are unequal and (ii) there is

mixing amongst all three mass eigenstates. Therefore this symmetry cannot be a symmetry

of the entire Lagrangian but it has to be broken to di↵erent subgroups Ge and G⌫ (with

trivial intersection) in the charged lepton and neutrino sectors, respectively. If the fermions

transform as

e ! ⇢(ge)e, ⌫ ! ⇢(g⌫)⌫, ge 2 Ge, g⌫ 2 G⌫ , (4)

for the symmetry to hold, the mass matrices have to fulfil

⇢(ge)
TMeM

†
e⇢(ge)

⇤ = MeM
†
e and ⇢(g⌫)

TM⌫⇢(g⌫) = M⌫ . (5)

Choosing Ge or G⌫ to be a non-abelian group would lead to a degenerate mass spectrum,

as their representations cannot be decomposed into three inequivalent one-dimensional rep-

resentations of Ge or G⌫ . This scenario is not compatible with the case of three distinguished

4We here follow the presentation and convention in [26; 27].
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⇢(S) =

0

@
1 0 0
0 �1 0
0 0 �1

1

A
⇢(T ) =

0

@
0 1 0
0 0 1
1 0 0

1

A

⇢(Un) =

0

@
1 0 0
0 0 zn
0 z⇤n 0

1

A

hzni ⇠= Zn

•  Scan over all discrete groups of size 
smaller than 1556 with Ge=Z3, 
Gν=Z2xZ2  

•  all solutions which are close to exp. 
values have the TM2 form 

U = UTBM

0

@
cos ✓ 0 sin ✓
0 1 0

� sin ✓ 0 cos ✓

1

A

with ✓ =
1

2
arg(zn)

•  vanishing CP phase 𝛿CP  
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Figure 2: The leptonic mixing angles (black circles) determined from our group scan up to order 1536 are

shown. The red dots represent the mixing angles that we have determined from the generator S3, T3 and

U3(n). The red labels represent the integer n that generates the U3(n) matrix. The interpolating line is

colored according to the value of ✓ as defined in Eqn. (13). See the main text for more detailed informations.

We have also omitted the labeling of larger n that generates the same repeating groups or mixing angles.
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Flavour Breaking at the Electroweak Scale 

!   VEV alignment mechanism based on group theory  
allows for low scale flavour breaking 

!   implement model at EW scale 

!   make 𝜒 an EW doublet 

!    add messenger fields to make it renormalizable 

!   do not add any new symmetry 

•  neutrino masses are generated at one-loop level, therefore small 

 

Input 

Output 

•  at LO, 4 real parameters & one phase 
 in neutrino mass matrix 

•  DM candidate from flavour symmetry, 
protection from flavour violation 

 

[MH, M. Lindner, M.A. Schmidt, 1211.5143 (PRD) ] 

m⌫ ⇠ 1

16⇡2
h2

 
�M2

⌘

M2
⌘

!2
M2

⌘

MS
for h ⇠

�M2
⌘

M2
⌘

⇠ 10

�2,M⌘ ⇠ 100GeVMS ⇠ 100GeV

fermion SU(2)L U(1)Y Q8 oA4 Z4

S 1 0 32 �1

scalars SU(2)L U(1)Y Q8 oA4 Z4

⌘1 2 1/2 35 i

⌘2 2 1/2 34 i

⌘3 2 1/2 35 �i

⌫↵ ⌫�
⌘i ⌘j

⌘3

S S

h�i h�i h�1i h�2i

Figure 1: Neutrino mass generation at one loop.

1 Introduction

We aim to implement the model in [1] at the electroweak scale. We first present an e↵ective

description and then construct a radiative neutrino mass model. To this end, we replace the

electroweak singlets introduced in [1] with electroweak doublets.

2 Model

We utilize the symmetryQ8oA4 proposed in [1], which allows for a natural vacuum alignment,

and implement a model describing the lepton sector at the electroweak scale. Hence, we

promote the flavon fields of [1] that couple to the charged lepton sector to EW Higgs doublets.

Hence, the charged lepton sector is described by

� Le = yeL�̃e
c + yµL�̃µ

c + y⌧L�̃⌧
c + h.c. , (1)

where the contractions are uniquely defined by the particle content. The mass matrix is thus

given by

ME =
v0p
2
⌦⇤
Tdiag(ye, yµ, y⌧ ) (2)

with ⌦T defined in 38. Neutrino masses are generated at one loop, as it is shown in Fig. 1.

The particle content of the lepton sector is given in Tab. 1. The vacuum configuration

h�ii =
 

0
vp
2

!
h�1i = 1p

2
(a, a, b,�b)T , h�2i = 1p

2
(c, c, d,�d)T (3)

can be naturally obtained from the most general scalar potential, as is reviewed in B.1.

3 Neutrino masses

Neutrino masses are generated at one-loop level. The couplings of S are given by

L⌫ = h1L⌘1S + h2L⌘2S +
p
3MSSS + h.c. . (4)

2

assume that the direct mass terms Mi dominate over all other contributions; this is in fact

a necessary condition to have a predictive theory of flavor. Hence, we can approximate the

propagator as

h
k2 � (M2

⌘0 + �M2

⌘0)
i�1

= (k2 � M2

⌘0)�1 + (k2 � M2

⌘0)�1�M2

⌘0(k2 � M2

⌘0)�1, (3.9)

where M2

⌘0 is diagonal, and treat the mixing between the di↵erent components of ⌘i by mass

insertions �M2

⌘0 . The evaluation of the one loop diagram leads to

(M⌫)↵� =
3X

i=1

18X

I,J,M=1

h↵iIh�iJMS

⇣
�M2

⌘0

⌘

IM

⇣
�M2

⌘0

⌘

MJ

I

✓⇣
M2

⌘0

⌘ 1
2

II
,
⇣
M2

⌘0

⌘ 1
2

JJ
,
⇣
M2

⌘0

⌘ 1
2

MM
, MS

◆
(3.10)

where the Yukawa couplings hikJ depend on the two couplings h
1,2 given in Eq. (3.4) via

h↵kJ =
@L⌫

@L↵@Sk@⌘̂J
(3.11)

and the loop integral is given by6

I(m
1

, m
2

, m
3

, m
4

) = � 1

16⇡2

X

i

mi
2 log

⇣
mi

2

µ2

⌘

⇧k 6=i (mi
2 � mk

2)
. (3.12)

Evaluation of the sums leads to the following flavor structure of the neutrino mass matrix:

M⌫ =

0

B@
â ê ei↵� ê ei↵�

. â + b̂ ei↵� d̂ + ê ei↵�

. . â

1

CA , (3.13)

where the four real coe�cients are given by

â =
1

36
p

3
h2

1

�
3

�
1

v2 (ac + bd) MS I (M
1

, M
1

, M
3

, MS) , (3.14a)

d̂ =
1

72
p

3
h

1

h
2

�
4

�
1

v2 (bc � ad) MS I(M
1

, M
2

, M
3

, MS), (3.14b)

b̂ =
1

108
h2

2

�
4

�
2

v2 (bc � ad) MS I(M
2

, M
2

, M
3

, MS), (3.14c)

ê =
1

216
h

1

h
2

�
3

�
2

v2 (ac + bd) MS I(M
1

, M
2

, M
3

, MS). (3.14d)

Hence, neutrino masses are suppressed by one insertion of the EW breaking VEV �
1

⌦
�2

↵
/M2

0

,

with M
0

being the largest mass of the particles in the loop M
0

⇠ maxi=1,2,3,S Mi, and one mass

insertion of the flavor breaking VEV �
2

h�
1

�
2

i /M2

0

. A phenomenologically viable neutrino

6Note that the renormalization scale µ drops out of the sum; it is displayed here to make the symmetric

structure of the expression explicit, while keeping the argument of the logarithm dimensionless.
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Flavour Breaking at the EW Scale-Mixing 

 

• sin2𝛳13≈.03 
needs   e/a≈.1 

•  TBM for b=e=0 

 

• sin2𝛳12 too 
small 

 

• sin2𝛳12 too 
large 

Fogli et al. see a hint 
for sin2𝛳23≈.4 & 
deltaCP≈pi 
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Figure 3: Dependence of the reactor angle ✓13 on the atmospheric mixing angle ✓23. The various color

codings are given next to each scatter plot. Top left: For sin2 ✓23 < 1/2( sin2 ✓23 > 1/2 ) the model predicts

�CP = 0, 2⇡(�CP = ⇡). Top right: The scatterplot shows a band structure in sin2 ✓12. Bottom left: For the

points in the experimentally allowed region, b̂ has to be of similar size as â, d̂. Bottom right: For the points in

the experimentally allowed region, ê has to be of approximately one order of magnitude smaller than â, d̂. The

one, two and three sigma regions of Ref. [7] are again indicated by dotted, dashed and continuous contours,

respectively.

m2

1

= â2 + b̂ (â + d̂) cos ↵� + 2âd̂ +
b̂2

4
+ d̂2 , m2

2

= â2 , (3.26)

m2

3

= â2 + b̂ (â � d̂) cos ↵� � 2âd̂ +
b̂2

4
+ d̂2,

to leading order in the small mixings r
13

, r
12

, and the leading order ratio of mass squared

di↵erences is given by

�m2

21

�m2

32

=
4â (2d̂ + b̂ cos ↵�) + 4d̂ (d̂ + b̂ cos ↵�) + b̂2

4â (2d̂ � b̂ cos ↵�) � 4d̂ (d̂ � b̂ cos ↵�) � b̂2

. (3.27)

At next-to leading order, m
1

and m
3

receive corrections

�m2

1

= b̂(2r
13

(â + d̂) sin ↵� + b̂ r
13

t
13

+ ê) + 2(â + d̂) cos ↵�(b̂ r
13

t
13

+ ê) , (3.28a)

�m2

3

= �b̂(�2r
13

(â � d̂) sin ↵� + b̂ r
13

t
13

+ ê) � 2(â � d̂) cos ↵�(b̂ r
13

t
13

+ ê) . (3.28b)

To illustrate our findings numerically, we have performed a numerical scan over the model’s

parameter space. We have randomly drawn values for the model parameters of order unity,
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Flavour Breaking at the EW Scale-LFV&Higgs 
!   in the charged lepton sector, the VEV (1,1,1) leaves the Z3 subgroup generated by T 

invariant 
!   go to charged lepton basis where T is diagonal 

•  only H gets a VEV and plays the role of the SM Higgs 

•  this generates LFV 4 fermion operators ( with the selection rule 
∆Le∆Lμ∆Lτ = ±2)  

•  the most constraining process is  
 

•  suppressed by small Yukawa couplings, for the process mediated 
by eta we get  

exp. bound 

[Ma,Rajasekaran 2001, Toorop, Bazzocchi, Merlo, Paris,2010]	



 

5.3. Lepton Flavour Violation

about the remnant Z
3

symmetry in the charged lepton sector

�
H, '0, '00� ⇠ (1, !2, !), (Le, Lµ, L⌧ ) ⇠ (1, !2, !), (ec, µc, ⌧ c) ⇠ (1, !, !2), (5.37)

which suppresses several LFV rare decays. If the remnant Z
3

would be a symmetry of the
whole Lagrangian, only the following LFV rare decays

⌧+ ! µ+µ+e� and ⌧+ ! e+e+µ�

and their charged conjugates would be allowed. All other decays can only proceed through
a coupling to the Z

3

breaking VEVs of the neutrino sector. Those decays are naturally
suppressed and the symmetry thus protects the model from large constraints. At first, we will
discuss the radiative LFV rare decays li ! lj� in Section 5.3.1, focusing on the experimentally
most well studied process, namely the process µ ! e�. In Section 5.3.2, we discuss the LFV
rare decays with purely leptonic final states, which are allowed at tree level, but suppressed by
a three-body final state. Finally, we calculate the anomalous magnetic moment of the muon
and compare it to experiment in Section 5.3.3.

5.3.1. Radiative LFV Decays li ! lj�

Let us first discuss the process of type li ! lj� using an e↵ective field theory approach. Such
processes are described by e↵ective operators of the form [167, 168]

L�µ⌫F
µ⌫`cH̃/M2 ⇠ (31, 1) , (5.38)

which transforms in the same way as the mass term under the flavour symmetry. It thus
has to be multiplied by flavons to form an invariant. As we already mentioned, the remnant
Z

3

symmetry in the charged lepton sector forbids all radiative LFV rare decays. Hence, the
e↵ective operator in Eq. (5.38) has to involve VEVs of the neutrino sector in order to lead to
non-vanishing decay rates. The lowest order operators that can multiply the mentioned LFV
operator in the flavour basis read

⌦†
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31

E
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(1, 1, 1)T , (5.39a)
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There can be more than one contraction, but in the vacuum they all result in these expressions.
The lowest order e↵ective operators thus all give contributions that can be written as

Leff = i
e

M2

`cT H†�µ⌫F
µ⌫ML + h.c. with M =

0

@
↵
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↵
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A
⌦
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M4

(5.40)

where ↵i are dimensionless couplings that should (naturally) be of order one and the mass
scale M is the suppression scale of the higher dimensional operators. Note that the structure
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where ↵i are dimensionless couplings that should (naturally) be of order one and the mass
scale M is the suppression scale of the higher dimensional operators. Note that the structure

75

Chapter 5. Flavour Symmetry Breaking at the Electroweak Scale

where �̃ = i�
2

� and here and in the following we do not specifically indicate the contractions
if there is only one invariant that can be formed out of the particle content of the operator. In
the physical basis of Eq. (5.2) this term reads

�Le =H̃ (yeLee
c + yµLµµc + y⌧L⌧⌧

c) + '̃0 (yeLµec + yµL⌧µ
c + y⌧Le⌧

c)

+ '̃00 (yeL⌧e
c + yµLeµ

c + y⌧Lµ⌧ c) + h.c. (5.9)

and we thus see that H couples diagonally to leptons while '0 and '00 do not. Note that here
the mass terms are of dimension four and there is therefore no need for a complicated UV
completion, in contrast to the mass terms in Eq. (4.3). The mass matrix is thus given by

ME =
vp
2
⌦⇤

T diag(ye, yµ, y⌧ ), (5.10)

with ⌦T given in Eq. (2.26). Neutrino masses are generated at one loop level, through the
interactions with the fermionic singlets S and the scalar doublets ⌘, as shown in Fig. 5.1. The
couplings of S are given by

L⌫ = h
1

L⌘
1

S + h
2

L⌘
2

S +
p

3 MSSS + h.c. . (5.11)

The factor of
p

3 cancels a factor coming from the normalization of Clebsch-Gordon coe�cients.
In order to calculate the neutrino mass matrix, we have to determine the mass matrix of the
neutral components of ⌘

1

, ⌘
2

and ⌘
3

. To shorten the notation we define the doublet ⌘̂J to be
the J-th component of the 9 component vector ⌘̂ = (⌘

1

, ⌘
2

, ⌘
3

) and real scalar field ⌘̂0

k to be
the k-th component of (

p
2Re⌘̂0,

p
2Im⌘̂0). Besides the direct mass terms

⇣
M2

⌘0

⌘

ij
=

@2V (2)

⌘i

@⌘̂0

i @⌘̂0

j

with V (2)

⌘i
=

X

i=1,2,3

p
3 M2

i ⌘†
i ⌘i , (5.12)

there are couplings which give o↵-diagonal contributions

⇣
�M2

⌘0

⌘

ij
=

*
@2�V (2)

⌘i

@⌘̂0

i @⌘̂0

j

+
(5.13)

to the mass matrix. Such interactions are needed to generate neutrino masses and the relevant
ones can determined from symmetry considerations1. Any contribution to neutrino mass has
to be proportional to

• MS , which breaks the generalized lepton number L ! ei↵L, S ! e�i↵S

• either of the couplings �
1

or �
2

, defined by2

V⌘,� =�
1

(�T �
2

~��)11
(⌘T

1

�
2

~�⌘
3

)⇤
11

+ �
2

ei↵�(�T �
2

~��)31
(⌘T

2

�
2

~�⌘
3

)⇤
31

+ h.c. , (5.14)

which break the generalized lepton number L ! ei↵L, ⌘i ! e�i↵⌘i,

1The complete expression for �V (2)

⌘i can be found in the appendix in Eq. (A.24). Only the parts presented
here are relevant for neutrino masses.

2We can set a number of complex parameters real by phase redefinitions. We set y`, h1

, h
2

, MS , �
1

, �
3

, �
4

real
by rotating `c, L, ⌘

2

, S, �, ⌘
1

, ⌘
3

, respectively, and display the phase of �
2

explicitly.
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•  other doublets have flavour off-diagonal couplings 

•  this is usually extremely dangerous, saved by flavour symmetry 
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Figure 5.8: Lepton Flavour Violating rare decays.

5.3.2. LFV Decays li ! lll

Another class of processes that are of interest for our model are rare flavour violating decays
of the type µ ! eee. As in the case of the processes fi ! fj� the allowed decay channels are
restricted by the flavour symmetry. If we do not consider the heavily suppressed diagrams
that couple to VEVs in the neutrino sector, it is clear that the process µ ! eee is not allowed
by the Z

3

symmetry of the charged lepton sector and the most constraining process is given
by ⌧� ! µ�µ�e+ .

This process can be mediated at tree-level by the neutral components of '00 as depicted in
the first diagram of Fig. 5.8 and its branching ratio is given by [162, 164]

Br(⌧� ! µ�µ�e+) =

 
36m2

⌧m
2

µ

M4

0

!
Br(⌧ ! µ⌫⌫) = 2.3 · 10�8
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55 GeV

M
0
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4

(5.48)

where we have used Br(⌧ ! µ⌫⌫) = .174. Compared to the experimental upper bound of
2.3 · 10�8 [172], the e↵ective mass5
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(5.49)

is thus only weakly constrained. All other processes mediated by '0(0) are further suppressed by
yey⌧ or yµye. Rare LFV processes mediated by these fields are therefore naturally suppressed
by smallish Yukawa couplings and do not put a serious constraint on the model.
Let us also estimate the magnitude of the second diagram in Fig. 5.8 mediating ⌧ ! µµe, as
this diagram may in principle be larger because it is not suppressed by Yukawa couplings that
are known to be small.

To get an estimate, we work in the limit of degenerate ⌘ masses M
1

= M
2

= M
3

= m
0

and
find
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5In [162] ��A = 0 was assumed, which implies ↵ = ⇡/4.
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Figure 5.8: Lepton Flavour Violating rare decays.
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of the type µ ! eee. As in the case of the processes fi ! fj� the allowed decay channels are
restricted by the flavour symmetry. If we do not consider the heavily suppressed diagrams
that couple to VEVs in the neutrino sector, it is clear that the process µ ! eee is not allowed
by the Z
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symmetry of the charged lepton sector and the most constraining process is given
by ⌧� ! µ�µ�e+ .
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is thus only weakly constrained. All other processes mediated by '0(0) are further suppressed by
yey⌧ or yµye. Rare LFV processes mediated by these fields are therefore naturally suppressed
by smallish Yukawa couplings and do not put a serious constraint on the model.
Let us also estimate the magnitude of the second diagram in Fig. 5.8 mediating ⌧ ! µµe, as
this diagram may in principle be larger because it is not suppressed by Yukawa couplings that
are known to be small.
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How to define CP consistently 

overlooked in the literature 3.

The outline of the paper is as follows. In sec. 2, we define a generalised CP transfor-

mation and discuss its connection with the outer automorphism group. The implications of

a generalised CP transformation for the physical phases are discussed in sec. 3. In sec. 4,

we apply our general considerations to specific examples. In order to uniquely specify each

group, we denote it by SG(O,N) with O being its order and N , the number in the GAP [16]

SmallGroups catalogue [17]. In particular, we will discuss all groups of order less than 31

with a three-dimensional representation. Finally, we conclude in sec. 5.

For the convenience of the reader, we will briefly define all relevant group theoretical

notions in the text or in a footnote. More detailed knowledge can be gained from standard

group theory text books. See [18] for an overview of discrete groups, which have been used

in the context of flavour symmetries.

2 Generalised CP and the Outer Automorphism Group

In order to simplify the discussion, we will focus on finite discrete groups only. We do not

consider the transformation under the Lorentz group or any continuous symmetry group and

therefore restrict ourselves to scalar multiplets unless stated otherwise. An extension to higher

spin representations of the Lorentz group and continuous groups is straightforward. Let us

consider a scalar multiplet

� =
⇣

'R, 'P , '⇤
P , 'C , '⇤

C

⌘T
(2.1)

that contains fields in real(R), pseudo-real(P) and complex(C) representations of the discrete

group G. Note that � always contains the field and its complex conjugate. The discrete group

G acts on � as

�
G�! ⇢(g)�, g 2 G. (2.2)

where ⇢ is a representation ⇢ : G ! GL(N,C), which is generally reducible. In fact ⇢(G) ⇢
U(N), since we are only considering unitary representations. The representation ⇢ decomposes

in a block diagonal form

⇢ =

0

B

B

B

B

B

@

⇢R
⇢P

⇢⇤P
⇢C

⇢⇤C

1

C

C

C

C

C

A

. (2.3)

A generalised CP transformation has to leave |@�|2 invariant and thus is of the form

�
CP�! U�⇤ (2.4)

3Accidental CP symmetries have also been observed in scalar potentials in models based on dihedral groups

Dn and its double cover Qn [14; 15].

3

•  Consider the vector made up out of all real(R), pseudo-real (P) and 
complex (C) representations of a given model 

•  under the group G it transforms as   
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SmallGroups catalogue [17]. In particular, we will discuss all groups of order less than 31

with a three-dimensional representation. Finally, we conclude in sec. 5.

For the convenience of the reader, we will briefly define all relevant group theoretical

notions in the text or in a footnote. More detailed knowledge can be gained from standard

group theory text books. See [18] for an overview of discrete groups, which have been used

in the context of flavour symmetries.

2 Generalised CP and the Outer Automorphism Group

In order to simplify the discussion, we will focus on finite discrete groups only. We do not

consider the transformation under the Lorentz group or any continuous symmetry group and

therefore restrict ourselves to scalar multiplets unless stated otherwise. An extension to higher

spin representations of the Lorentz group and continuous groups is straightforward. Let us

consider a scalar multiplet

� =
⇣
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P , 'C , '⇤
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(2.1)

that contains fields in real(R), pseudo-real(P) and complex(C) representations of the discrete

group G. Note that � always contains the field and its complex conjugate. The discrete group

G acts on � as

�
G�! ⇢(g)�, g 2 G. (2.2)

where ⇢ is a representation ⇢ : G ! GL(N,C), which is generally reducible. In fact ⇢(G) ⇢
U(N), since we are only considering unitary representations. The representation ⇢ decomposes

in a block diagonal form
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A generalised CP transformation has to leave |@�|2 invariant and thus is of the form

�
CP�! U�⇤ (2.4)

3Accidental CP symmetries have also been observed in scalar potentials in models based on dihedral groups

Dn and its double cover Qn [14; 15].
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•  definition implies the existence of matrix W                     or   
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Figure 1: CP definition.

with U being a unitary matrix, which is not necessarily block-diagonal as the representation

matrices, because it generically interchanges representations, not only complex and pseudo-

real representations, but also real representations, which we will discuss later. If the repre-

sentation is real, i.e. ⇢ = ⇢⇤, there is always the trivial CP transformation � ! �⇤, which

acts trivially on the group. In the following, we will take ⇢ to be complex and faithful, i.e. ⇢

is injective. If ⇢ were not faithful then the theory would only be invariant under the smaller

symmetry group isomorphic to G/ ker ⇢ and the restricted representation would be faithful.

Note that Eq. (2.4) in combination with Eq. (2.1) implies the existence of a matrix W

with W 2 = 1 as well as �⇤ = W� and consequently

⇢(g) = W⇢(g)⇤W�1, (2.5)

i.e. W exchanges the complex conjugate components of �. See sec. 4.1 and especially Eq. (4.3)

for a concrete example. Comparing first performing a group transformation and then per-

forming a CP transformation with the inverse order of operations and demanding that the

resulting transformation is contained in the symmetry group G of the theory, as shown in

Fig. 1, one finds the requirement that

U⇢(g)⇤U�1 2 Im⇢ ⌘ ⇢(G) , (2.6)

i.e. the CP transformation maps group elements ⇢(g) onto group elements ⇢(g0). We will

refer to this condition as consistency condition and denote models satisfying this condition

consistent. If the condition (2.6) is not fulfilled, the group G is not the full symmetry group

of the Lagrangian and one would have to consider the larger group, which closes under CP

transformations (2.6). We do not consider this case further and will assume that the groupG is

the full symmetry group of the Lagrangian. Hence, a generalised CP transformation preserves

the group multiplication, i.e. U⇢(g1g2)⇤U�1 = U⇢(g1)⇤U�1U⇢(g2)⇤U�1 and U ⇤U�1 = ,

and therefore is a homomorphism 4. Furthermore the CP transformation is bijective, since

U is unitary and therefore invertible. Hence, CP is an automorphism 5 of the group, as is

depicted in Fig. 2.

4A (group) homomorphism µ : G ! H is a mapping preserving the group structure, i.e. µ(g1g2) =

µ(g1)µ(g2) 8g1,2 2 G, µ(g�1) = µ(g)�1, and µ(EG) = EH , where EG,H denotes the identity elements of G and

H, respectively.
5An automorphism µ of a group G is a bijective homomorphism µ : G ! G.
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P : '(t, ~x) ! '(t,�~x)

C : '(t, ~x) ! '

⇤(t, ~x)
CP : '(t, ~x) ! '

⇤(t,�~x)

•  here only Lorentz-scalars, generalization 
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of the Lagrangian and one would have to consider the larger group, which closes under CP
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A bottom up approach 

! start with a smallish flavour group 

! no SUSY at LHC, try non-superymmetric  
! new solution to VEV alignment problem needed 

!   high scale models are hard to test  
! to make it testable, try to break symmetry at the 

electroweak scale or TeV scale 
2.3. Some Properties of Non-Abelian Discrete Symmetries

SU(3)
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Figure 2.2: Tree of (selected) discrete subgroups of SU(3) that contain three-dimensional representations.
The blue groups are used in so-called direct models, the red ones are used in indirect models (see text). The
location of the colored groups indicates the size of group with the smallest group A

4

, that contains 12 elements,
at the bottom.

If one accepts that there are the remnant symmetries Ge = hT i ⇠= Z
3

and G⌫ = hS, Ui ⇠=
Z

2

⇥ Z
2

we discussed in the last section, there are three logical ways to construct the flavour
group:

• all remnant symmetries are accidental, i.e. there is no flavour symmetry and the remnant
symmetries only emerge because of the chosen particle content etc. No model without
some flavour symmetry is known where this can be the case. However, so called indirect
models [64] are of this type as the symmetries of the mass matrices arise accidentally
and are di↵erent from the symmetries of the original models.

• some remnant symmetries are accidental, some are part of the flavour group. Some of
the most prominent models fall into this category, e.g. the flavour group A

4

is generated
by the generators S and T . In A

4

models [9, 10, 65–69] that predict TBM the symmetry
U is an accidental symmetry as we will discuss in detail in Section 2.4. This is why we
have also discussed the case G⌫ = hSi ⇠= Z

2

, which leads to trimaximal mixing, as this
is the most natural deformation of A

4

models.

• all remnant symmetries are part of Gf . The group generated by S, T and U is the
group S

4

[12, 70–86] , which has also been widely used for model building. It has been
claimed [12, 13] that this is the unique symmetry that leads to TBM but this claim is
obviously incorrect [84, 87] and results from the flawed notion that symmetries of the
mass matrices have to be symmetries of the Lagrangian. Models that realize the last
two cases are also known as direct models [64].

A tree of (selected) discrete subgroups of SU(3) that contain three-dimensional representations
is shown in Fig. 2.2. All of the groups represented in this graph will at some point be used in
this thesis and we therefore briefly describe them here.

All of these groups may be written as semidirect products of two smaller groups. As the
concept of a semidirect product plays a prominent part in the later parts of the thesis we
define it here: given two groups N and H and a group homomorphism 7 ' : H ! Aut(N), one

7A (group) homomorphism ⇢ : G ! H is a mapping preserving the group structure, i.e. ⇢(g
1

g
2

) =
⇢(g

1

)⇢(g
2

) 8g
1,2 2 G. A surjective homomorphism ⇢ : G ! H has the additional property im(⇢) = H.
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