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Introduction

Motivation of Flavour Symmetries



Why Flavour Symmetry?

in SM (+Majorana neutrinos) there are a total of 28 parameters

Leptons Quarks
enT ULC, t quarks
neutrinos V., Y, V, d,s, b

17273

12 3 “”
de
oV,
Photon Gluons
1
ov, | /
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most of the parameters stem from interactions with the Higgs field, i.e.
flavour parameters

(W)
tn
s}

o

other interactions tightly constrained by symmetry principles

quarks small mixings; leptons large mixings

Gauge

this talk mostly leptons, for quarks many similar ideas are being pursued




Two Theoretical Approaches
to Flavour

String Theory, GUTs, etc. build models that reproduce the

observed structures

top-down bottom-up

SM look at apparent regularities
in masses and mixings etc.



Bottom Up Approach

* there are many ways to go
from low to high energies
(effective field theory
swampland)

e PLAN of Talk:

* use remnant symmetries
of mass matrices to guide
model building

 concrete model building
challenge: vacuum
alignment

* applications to strong CP
problem and CP phases

build models that reproduce the
observed structures

bottom-up

look at apparent regularities
in masses and mixings etc.



Leptonic Mixing ==
=5 “@
in SM there are three generations of leptons, two mass matrices

0y, 1
e S R ( A) 1 (L;H)(L;H) + h.c. L et Moeia inM,,y e

after diagonalization of two mass matrices

VIM MIVF = diag(m? mi,mQ) and VIM,V, = diag(mi, ma, m3).

flavour violation only in charged current interactions, analog of CKM

S e 3 _
Loe = =5 [fo"Upnnsv] Wi +he. | SEeSY NG VJVV

/ % 2012;
1 0 0 c3 0 53¢\ [ cpp s 0

Upmns =1{ 0 3 83 0 1 0 -s12 ¢ 0
0 -s93 ¢o3 \—,913(-,100 a3 J\ 0 01




Standard 3-Flavour Picture

* Recent Progess in Determination of Leptonic Mixing Angles

global fit Am%l ‘Am%l ‘ sin? 15 sin? Oog sin? 013 )
[Forero, Tortola, 5 oo 3 9 . . 5
best fit 7.6271 2.55T00 320178 6.13732 24672 0.8T7L2

30 range 7.12-8.20 231-274 27-37 36-68 17-33 0-2

Largish © |5 established
Hint for non-maximal 6 ,,
unknowns:
* Normal or Inverted Hierarchy?
* Majorana or Dirac (L-number
conservation) ?
* Is there CP violation in the
lepton sector!
* §-p & Majorana Phases
are there sterile neutrinos that sizably
mix with the active ones!?

Normal Inverted
(m)” I (mg)?
Am?g
T (mq)?
Am:zél M.
H vy,
W Am?
(my)? T —
Am%
(my)? ; * (m3)?




Lepton Mixing from Dlscrete

Flavour Symmetries

based on [MH, K.S. Lim, M. Lindner 1212.2411(PLB)] and [MH
K.S. Lim, 1306.4356(PRD)] e




Remnant Symmetries of Mass Matrices

the mass matrices are diagonalizable

VIM MV = diag(m? mi,mQ) and VEM,V, = diag(mi, ma, ms).

which implies the following symmetries of the mass matrices
Ug(a)MeM;rUe((X)* = ]\46]\46Jr with unitary U ( ) leag( io 10‘2’ eiQB)VJf

e
matrices given

UVT(G)M,/UV(E) = MV by U,/(G) = Vydiag(€1,€2,€3)VJ

where @ are real, implying G =U(1)’, and € =%1, implying G, =7, (if neutrinos are Dirac G, =U(1)?)

* these symmetries are just reformulation of the fact that mass matrices are diagonalizable
* for any mixing there are (different) symmetries

Given remnant symmetries, what can we learn about the mixing?
* symmetry generators commute with mass matrices, therefore can be diagonalized Y

simultaneously
* determine the mixing matrix up to permutations of rows and colums of the &
PMNS matrix
e remnant symmetries therefore encode information about the mixing angles, no Mass

information about mass ordering Matrices

1

e  remnant’ symmetries can either be accidental or left-overs from the breakdown of a
flavour symmetry G
* since left-handed leptons are unified in SM, L=( v , e)T, the flavour groups has
to be broken to different subgroups G, and Gy




Lepton mixing from discrete groups

complete flavour group

1% V.
e ( L ) residual symmetry of My
rep. p(gu)TM,,p(gy) =M,

Gy

residual symmetry of (Me Me*) A '0<ge)€ Qb p(g)L
p(ge)TMeMlp(ge)* — MeM;f LH leptons 3-dim

(

Ge

e abelian (3 different masses)

e 3 different elements (to
distinguish )

 smallest group Z,

NG

\

J

misaligned non-commuting

(

\_

QTP(ge)Q e p(ge)dzag\sw‘nmemes fig / QWO (9v)% = p(g’/)d’iag

~N
Gy
e abelian (3 different masses)
* 3 different elements (to distinguish )
* if Majorana eigenvalues +/- 1
* smallest group Z,xZ, that fixes
all angles is also maximal )
N b N

[He, Keum, Volkas “06;
Lam’ 07, ‘08;

Altarelli,Feruglio’ 05, U R Q-‘- Q
Feruglio, P M N S TR é 14

Hagedorn, Toroop’ 11]

\ _Mmatrix

IF mixing matrix determined from
symmetry up to interchanging of
rows/columns and diagonal phase

* if G, or Gy do not have
3 different eigenvalues,
the mixing matrix is not
fully determined (free
continuous parameter)

J




What are discrete groups!?

consider the symmetry group of the
regular tetrahedron A,

there are 12 symmetry transformationsJ‘;:
they might be written as products of twg
generators S and T

relations between generators
(presentation) defines group
o S2=T3=(ST)’=1

representations are maps from abstract

group to matrices
* A, has one three-dim. rep. 3 and
three one-dim rep. 1, 1, , 1,
groups with 3-dim. representations
needed to account for 3 fermion

 origin of discrete flavour group
® StI'il’lgy [Nilles et al. 1204.2206]
e breakdown of continuous

SUQ3) or SO(Q3) [Ovrut 1978, ...]

generations



Lepton mixing from discrete groups

famous example: S, gives TBM

residual symmetry of (Me Me")

p(ge)" MM p(ge)*

complete flavour group

G= 54 bl
L — p(g
LH leptons 3- d1m rep. \
-

= M, M]

(gv)v.

residual symmetry of My

P(QV)TMVP(QV) = M,

\.

Ge=<T> =73

Rl )
0051
00

p(T) =

(Z3 smallest choice, but can also be

continuous)

QTp(ge>Qe Yo P ge diag

[He, Keum, Volkas “06;
Lam’ 07, ‘08;
Altarelli,Feruglio’ 05,
Feruglio,

Hagedorn, Toroop” 11]

tri-bimaximal

mixing (TBM)

| 2o 0 iS5
p(S)= [ ‘0 I o = e
0O 0 -1 O 1580

\_ J

GV=<S,U>

=/2x72

misaligned non-commuting

symmetries lead to

Upnns = Q1Q,

(Z2xZ> most general choice if mixing angles do not
depend on masses & Majorana V¥ s)

p(9.)% = p(9s)diag

mixing matrix determined from symmetry
up to interchanging of rows/columns and

~
Gu (S,U) =ZixZ» diagonal phase matrix
il 0 p %
3 3
= 1 \{ 1 Gv=(S) =2
Ugps = | — .
V63 V2 cos 0 0 e9sind
Lo oail : D il Gl e
et it e lVrmnm = UrBm
CERE V2 —e®sing 0  cosé
1 1
in2@0= =. 8in20y = =. sinZ6ys = tri-maximal mixing (TM2)
\ i 012 3’ e 023 OF i 013 OJ [Lin” 10, Shimizu et al. ‘11, L%hn JKing’ 11,...] e




[ enton mixine from discrete orouns

0.70¢ : : :
0.65F .
0.602— 6 of 13 rotation
residual symmetry of = 055 i i
2 050
p(ge)T M M p(g 2 oust 02 -01 00 01 02
- 0.40F
2 0.35F TBM
Ge= < 0.30t L L L
0.05¢ : : : _ _
p(T) = 0.045- - - '
\. > 0.035- fmmmmmmmmmmmmmmmm———- F-- 4 F -
(Z3 smallest choice, | 2 : S / . ]
continuous) ook nooooloorooioric oo 410 F -
a 0.01F . - .
Qip(ge)Sde : I ]
000 " 1 " 1 " 1 " " TN B ST ST A BT R Er N A il RN TR SRR
0.28 0.30 0.32 034 036 030 035 040 045 050 055 060 065 0.70
[He, Keum, Volkas ‘0 sin®(612) sin’(623)
Lam’ 07, ‘08;
Altarelli,Feruglio’ 05, 5 1 0
Feruglio, 3 V51 N\
Hagedorn, Toroop” 11] U = 1 \{g 1 (GV=(S) =7,
Hias T (e V2 cos 6 0 esind
L L 1 U =U 0 45,0
—_—— = —— WUrvyv = Urum
tri-bimaximal V6 V3 V2 —e¥sinf 0 cosf
S 1 1 : . o
mixing (TBM) A AR SR DS MR L S tri-maximal mixing (TM2)
RVt I o = oy S0 05 =0 | [Lin’ 10, Shimizu et al. Lo King 11, $

\.

J




[ enton mixine from discrete orouns

0.70—————TF——————T————— ]
065  » 3
0 605- ! 3 6 of 13 rotation
residual symmetry of = 05 ' ; 7r'
£ 0S0E B
p(ge)T M M p(g 2 o4t b : \ E 02 -01 00 01 02
040F 1 : : E
e ] bemmmmmmmmmmme—————— U
: 0.35F —— TBM
Ge=( :
e 03— 1 L
0.05———— — — : : _
p(T) = 0.045- -
\ = 003f ;
(Z3 smallest choice, | o . ]
continuous) 2 002k : 1 F ] ]
After TBM was ruled out: ; ]

* s there a group G that gives good leading order ey e e T

mixing’ sin’(623)
* no predudices: take all groups up to certain

C 2

order, all subgroups Gy=(S) =7,

implement on computer cosf 0 e¥sing

e GAP WUrnvnv = Urem '50' 1 0
: . —e%sinf 0  cosf

scan for interesting groups tri-maximal mixing (TM2)

k[Lin’ 10, Shimizu et al. “11,Luhn,King’ 11,...] )




No prejudice scan

sin?(63)

sin’(6;3)

sin2(912)
0.1 02 03 04 05 0.6
G,
. Z7 A ZzX ZZ . Z4
A
| VA3 Zs @
1 O Abelian groups with order>7
06t i 'ri
....... 1
£l
L
= L e
""" L
3!
o4t | e i
""" ¥
A
PN -06 -04 -02 00 02 04 06
02t 0
0.20 l 0.20
|
0.15F | 10.15
0.10 0.10
A A
005 ° 9 10.05
0.00 = ‘ ~d ‘ = ‘ ~ Sas ~m 0.00
0.1 02 03 0.4 05 0.6 02 04 0.6 038
sin?(6;2) sin%(63)

for general G, the
scan is performed

up to order 511, for
G,=Z; up to 1536

Majorana neutrinos

also for G_=Z; not

all groups lie on
TM2 ,parabola®

known LO mixing
pattern such as
golden ratio etc.
reproduced

no exciting group

for G >3



No prejudice scan

sin’(0;3)

sin’(6y,)
02 03 04 05 0.6
/ )
: \ : 0.20
[ ) =
10.15
[ ]
~
on
p—
N
i 10.10 N

(o)
o p—(
N

10.05

o @ [
] =
72\ e\ . I “ 2\ " I . ™ A\ L ‘7000
0.2 04 0.6 0.8
S1n (923) L

D T

0.20

10.15

40.05

FaN L Sema® ~ ™ e

0.00

02 03 04 0.5 0.6 02 3 04 0.6 0.8
sin?(6;,) sin(6,3)

sin2(913)

for general G, the
scan is performed

up to order 511, for
G,=Z; up to 1536

Majorana neutrinos

also for G_=Z; not

all groups lie on
TM2 ,parabola®

known LO mixing
pattern such as
golden ratio etc.
reproduced

no exciting group

for G >3



residual symmetry of (Me Me*)

TM?2 “parabola”

complete flavour group

Gy

(s )
Ge=<T> =Z3 /—> p(g)L
@221 550 LH leptons 3-dim rep.
o= N0 = 01
8 1 0 O )

w‘7005
0.04
0.03
0.02

10.01

30

residual symmetry of My

Tl p(g) Myp(gy) = M,
r ™
Gv=(S,U_) =77,

RO 120540
DS )i | ) p(Un)< 0 zn)
0% ()ASeH 0

sin?(6;3)

Scan over all discrete groups of size

smaller than 1556 with G_=Z,,

G,=2,xZ,
all solutions which are close to exp.

values have the TM2 form

cos# 0 sinb
U=Urpm 0 1 0
—sinf 0 cos6
with Q== % arg(zn,)

 vanishing CP phase §p
[MH, K.S. Lim, M. Lindner 1212.2411(PLB)]



Lepton mixing from discrete groups

G GAP-Id Sin2(912) Sin2(913) Sin2(023)

sin(012) 5 A(6 - 10%) (600,179] | 0.3432  0.0288  0.3791

070 o.gs o.gs o.go 0.;2 0.‘34 ;6 o.gx 0.40 03432 00288 06209
V4 9 | (Z1g x Zg) »x Sz | [648,259] | 0.3402  0.0201  0.3992

] 0.3402 0.0201 0.6008

16 A(6 - 162) n.a. 0.3420 0.0254 0.3867

0.3420 0.0254 0.6134

-0.4 -02 00 02 04

0
up to order 1536, there [ A(6-4)=(T5.Uy)
are three interesting | 9, Yy
A= groups (out of ca. 1.3m) |, . [Torop, Hagedorn,
o Feruglio 11, King, Luhn,

Steward 12, Ding 12]

3
001F 8o
1 0 O P> :
p(Un) = 0 0 2, [ 16‘.7 716‘ - '
0 z;‘; 0 sin%(6,) sin’(653)
.
Kzn) = Z,) [MH, K.S. Lim, M. Lindner 1212.2411(PLB)]



Lepton mixing from discrete groups

G GAP-Id Sin2(912) Sin2(913) Sin2(923)

sin(012) 5 A(6-10?) (600,179] | 0.3432  0.0288  0.3791

070 o.gs o.gx 0.;0 0.;2 0.‘34 76 o.gs 0.40 03432 00288 06209
V4 9 | (Z1s x Zg) x S3 | [648,259] | 0.3402  0.0201  0.3992

] 0.3402 0.0201 0.6008

16 A(6 - 162) n.a. 0.3420 0.0254 0.3867

0.3420 0.0254 0.6134

-0.4 -02 00 02 04

0

up to order 1536, there i o
are three interesting / A(6-4%)=(T,S,U,

groups (out of ca. 1.3m) |

o—

[Lam 13]
A(6-102)=

[Torop, Hagedorn,
Feruglio 11, King, Luhn,
Steward 12, Ding 12]

________________

sin?(6;3)

testable framework: maximal theta23
inconsistent with large thetal3

1
0 Model building implementation via
0 - double seesaw mechanism see Grimus&

Lavoura 1309.3186




Quark Mixing from the same groups

G. G,

G GAP-Id | sin?(f12) sin?(f13) sin?(6a3)

5 A(6-10%) [600,179] | 0.3432  0.0288  0.3791
0.3432  0.0288  0.6209

9 | (Z1g x Zg) x S3 | [648,259] | 0.3402  0.0201  0.3992
0.3402  0.0201  0.6008

16 A(6-162) n.a. 0.3420  0.0254  0.3867
0.3420  0.0254  0.6134

Gu Gd
cos sinf 0
Uckm = | —sinf cosf 0
0 0 1
n Gy GAP-Id  sinf type
5 A(6-107%) [600,179] 0.156 A
0.309 B
9 (Z18 X ZG) X 83 [648,259] 0.259 A
16 A(6-16°) n.a. 0.195 A

* breaking to different subgroups
yields LO mixing pattern where only
Cabibbo angle is produced

o type A:

Gq = {5, U0, phi=Zo 87
Gy = ((ST)*TU(n,m)) = Z4

e type B:

Ga= (S, U(n,p)) = ZoX Zn;

Gy = (S, (U(n,m)T*)*(U(n,m)T)?U(n, m))
= o X Lo

[MH, K.S. Lim, 1305.4356(PRD)]




Quark Mixing from the same groups

G : & s n G GAPId | sin®(f12) sin(613) sin®(fas)

5 A(6-102) | [600,179] | 0.3432  0.0288  0.3791
0.3432 0.0288 0.6209
9 | (Z1s x Zg) % S5 | [648,250] | 0.3402  0.0201  0.3992
03402 0.0201  0.6008
16| A(6-162) n.a. 0.3420  0.0254  0.3867
Gf 0.3420 0.0254 0.6134

* breaking to different subgroups
yields LO mixing pattern where only
G o Cabibbo angle is produced

o type A:

cosf sinf 0

all ofher quark angles

Uckn s(;n ¢ COS g (1) are NLO effects
. smaller NLO corrections
n Gy GAP-Id  sinf type bl
5 A(6-10%) [600,179] 0.156 A  Gd POSSIDIC
0.309 W — (8, (U (n, m)T2)2(U (m, m)T) U, m)
9 (Zlg X Z6) X S3 [648, 259] 0.259 €A > 7o X Zoy

2
16 A(6-167) na. 0195 A | MH KS. Lim, 1305.4356(PRD)]




3 sigma values of

3. exp. measured
‘ )4 ? lepton/ quark angles
u O a 1 S * possible values from

Gy

cos*(613)
0.5

1.0 1.0

. 0.5
sin’(03) sin2(923)0'5

0.5
sin’(612)
0.0 0.0
(a) 84 (b) (Zlg X Zﬁ) X 83
small groups, large NLO corrections large groups, small NLO corrections

for a possible measure comparing the ,relative instrinsic precitvitiy' of flavour groups, see

[MH, K.S. Lim, 1305.4356(PRD)]



A Model Building C.hallenge; L8

Vacuum Alignment Problem

based on

[IMH, M.A. Schmidt JHEP 1201 (2012) 126, 1111.1730 [hep-phé]

and

[MH, M. Lindner, M.A. Schmidt 1211.5143 (PRD) : °o _




A4 Model Building Boot Camp

predictions for mixing angles are a (A4Z4) charge assignments: L~ (3,i), e*~
result of remnant symmetries (L14), e~ (1), 7~ (1344) . ~3,1),

D ~(3,-1), E~(1,-1)

in a concrete model one therefore
needs a peculiar breaking pattern

auxiliary Z4 separates neutral and
charged lepton sectors at LO

TBM

(symmetry U accidental)

Vacuum ahgnment crucial! [e.g. Ma,Rajasekaran’ 01, Babu, Ma, Valle
" 03, Altarelli,Feruglio, " 05,” 06]




Can Vacuum Alignment be realized?

frequency

200 random scan with order one parameter values

two solutions:

200

GvDGf

both flavons preserved
same subgroup, angle

(i) 0 | Gal(¢i)] = (¢4)

Z€1ro

Ga D {e} . . no conserved subgroup,
i TBM vaccum has to be

fine-tuned
[for a general discussion of
2 L e AT e WP angle[o] breakdown to discrete subgroups. see

20 40 60 80 Michel 1980]

N

’igl(ﬁbﬁb)gl (XX)31 + (H;l2(gbgb)l2 (XX)lg + h.c.

need a natural
explanation for

 usually quite complicated costructions based on extra
dimensions or continuous R symmetries in SUSY

* ALWAYS: engineered accidental AxA, symmetry ONLY of
potential @ ~(3,1) & y ~(1,3)

* What is the smallest solution within 4D non-SUSY QFT?

absence of
dangerous cross-

coupling terms




~ e
~ y -
~ / -
AN / e
N ,/
O\ /)
@

LU 0 A8 T @ S

0 _ @ R @
Answer: Qg XA, |~

SXs =X,

SYSEl = vt FXT Y IV W

* there is one representation which does not contain an A, representation in is symmetric

product

41 X471 =115+314 +325+335+345+354

* therefore the coupling between a scalar transforming as 3, and 4, is non-renormalizable,

which leads to an accidental symmetry V=Vo (P )+V,(x)+(P D )i(xx)1



Scalar Potential & Vacuum Alignment

random scan over OI’dﬁtI’ one parameter values

L e pu 71 x @1 ¢

frequency Qs> Ay 31 17 13 13 31 41 44
i Z, i -1 —-i =i 1 1 -1
800 + 1
L Vo (61, 62) =pi(d191)1 +al(¢1¢51 .t > ailéid)g . (01013,
i=2,3
B +113(da02)1 L Th (d202)1 .t > Bilgaga)g . (9202)3,
1=2,3
600 - +71(0101)1, (P202)1, + > ildrdn)s “(P202)3,
Ii 1=2,3,4
fi Vi(x) = 130001, +,1 0001, + /\l(XX)ll + 220001, (X015
| Vinix (X, @1, 02) = Cua(d1¢1)1, (001, + Caa(d202)1, (001, -
400
- 1.0
200 - ((¢162)3)
—I | | | | | s | | | | | L | | | i angle[o]
20 40 60 80

no fine tuning needed to obtain TBM vacuum

. check out Mathematica package Discrete
[http://discrete.hepforge.org/]



Accidental symmetries as the origin of

vacuum alienment mechanisms

O

usual flavour symmetry setup: a
flavour group G; is broken to different
subgroups by different VEVs; in total

the group is completely broken (61) = ( 0 ) A4 (63) = ( 0 )
0 1
in general, this VEV state is 0
(b2) = | 1
unprotected by any symmetry and one ( 0 )

therefore has to tune parameters to get

VEVs )
kills predictivity of models

(T?ST) (TST?)
group completely broken

theories that solve the vacuum (sym. of pot.) Gy D G f(flavour sym. gr.
alignment problem realize the VEV as
symmetric solution of an accidental (6 £0 | Gallé)] =0

symmetry of the potential

VEV config symm. solution under
unbroken accidental symmetry (ace. sym)Gg D {6}



-

CP and Discrete Flavour s
Symmetries |

based on :
[IMH, M. Lindner and M.A. Schmidt 1211.6953 (]HEP)] .

and

[S. Antusch, MH, M.A. Schmidt, M. Spinrath, 1307.0710] e




6 ,; and Leptonic CP Violation

| (10 0\[ c3 0s3e™\ [ cp s30)
Upns = 0 3 3 0 1 0 =512 ¢p 0.
\0 -3 e/ \-s3¢° 0 g3 J\ 0 0 1)

* *
Im [UPMNS,H UpninsisUpmins,si UPMNS,33]

1
= sin 2615 sin 26053 sin 26,3 cos #13 sin 0

&
i
||

e Largish © ;; means CP violation can be observed in oscillations in notso-distant
future



Predicting the CP phase

natural next step: try to predict the CP phase using CP and discrete flavour symmetries

(G. Ross: last chance)

however, there was some confusion about how to implement CP in theories with discrete

flavour symmetries

Example: consider the group A, with a triplet
T
SEalan (Xla X2 XS) ~ 3

and and a non-trivial singlet & transforming
as 15

Under the CP transformation xy — x™* f 1N 5 i

the A4 invariant

Ay = (5, T)5*=T°=(ST)* =E)

1
3:5=10
0

LE=aE (X1X1 ol w2X2X2 A WX3X3) g

is mapped to sth. not invariant:

CPI) =& (XixT +wxexs + wxixs) ~ 19

* CP extends the group A4 and forbids this invariant??
* Isis possible to impose CP without enlarging the group?

0 0 0O 1 0

-1 0 LI =10 0 1

0 -1 1 0 O
13.521,T:w2,

s

COS==NE

some
confusion in

literature



Predicting the CP phase

* natural next step: try to predict the CP phase using CP and discrete flavour symmetries
(G. Ross: last chance)

* however, there was some confusion about how to implement CP in theories with discrete
flavour symmetries

Ay = (5, T)5*=T°=(ST)* =E)

Example: consider the group A, with a triplet

e T 1 0 0 0 1 0
scalar ¥ = (1, X2.¥3)" ~ 3 [ -
Group Theoretical Origin of CP Violation I 0 I'=10 0 1
—1 1 0 0
Mu-Chun Chen!* and K.T. Mahanthappa? ' 9
!Department of Physics € Astronomy,
University of California, Irvine, CA 92697-4575, USA o 612%

2 Department of Physics, University of Colorado at Boulder, Boulder, CO 80309-0390, USA

Abstract
We propose the complex group theoretical Clebsch-Gordon coefficients as a novel origin of CP violation.
This is manifest in our model based on SU(5) combined with the T group as the family symmetry. The

complex CG coefficients in T” lead to explicit CP violation which is thus geometrical in origin. The predicted

CP violation measures in the quark sector are consistent with the current experimental data. The corrections

D some
confusion in

due to leptonic Dirac CP violating phase gives the experimental best fit value for the solar mixing angle,

and we also gets the right amount of the baryonic asymmetry.
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Predicting the CP phase

natural next step: try to predict the CP phase using CP and discrete flavour symmetries
(G. Ross: last chance)

however, there was some confusion about how to implement CP in theories with discrete
flavour symmetries

Ay = (5, T)5*=T°=(ST)* =E)

Example: consider the group A, with a triplet
T
scalar X = (x1,X2,X3)" ~ 3
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We present a SUSY SU(5) X T' unified flavor model with type I seesaw mechanism of neutrino mass
generation, which predicts the reactor neutrino angle to be 6,5 = 0.14 close to the recent results from the
Daya Bay and RENO experiments. The model predicts also values of the solar and atmospheric neutrino
mixing angles, which are compatible with the existing data. The 7’ breaking leads to tribimaximal mixing
This is manifest in our model based on SU(5) in the neutrino sector, which is perturbed by sizeable corrections from the charged lepton sector. The
model exhibits geometrical CP violation, where all complex phases have their origin from the complex
Clebsch-Gordan_coefficients of 7. The values of the Dirac and Majorana CP violating phases are
CP violation measures in the quark sector are co predicted. For the Dirac phase in the standard parametrization of the neutrino mixing matrix we get a
value close t0 90°: § = 7/2 — 0.456° = 84.3°, 0° being the Cabibbo angle. The neutrino mass spectrum
can be with normal ordering (2 cases) or inverted ordering. In each case the values of the three light
and we also gets the right amount of the baryoyl  neutrino masses are predicted with relatively small uncertainties, which allows one to get also unambig-
uous predictions for the neutrinoless double beta decay effective Majorana mass.

We propose the complex group theoretical Cl

complex CG coefficients in T” lead to explicit CH

due to leptonic Dirac CP violating phase gives
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Important Quest1on for Model Building:

How can CP be defined consistently in a theory with a discrete
flavour symmetry?
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* A generalized CP acts upon the vector of fields
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CP: ot &) — Ud*(t, —7)

where U is unitary, to leave the kinetic term invariant.
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How to define CP consistently

[Bernabeu, Branco,

* A generalized CP acts upon the vector of fields
Gronau 86]

CP: ot &) — Ud*(t, —7)

where U is unitary, to leave the kinetic term invariant.
for gauge groups this has
been investigated by

CONSISTENCY CONDITION: (Grimus, Rebelo 95|
e If G is the complete symmetry group, CP has to close in G:

CP :
K 5 Ud*

¢ G
o

Up(g)*U™! € Imp Up(g)*o*




CP and the automorphism group

« The consistency condition Up(g)*U ™" € Imp defines an

automorphism
Pﬁ—p(g)* *Up(g)* U™ = p(g’)N1
u:G—>G
g€G u(g) =g €G

Up(9)*U " = p(u(g))

 the matrcies {U} furnish a representation of the automorphism group

p((aob)(g)) = pla(b(g))) = U(a)p(b(g))*U(a) ™! ﬁ

= U(a)Wp(b(g))W U (a) ™"
= U@WUb)po) V)" WU (e} tr(gob) = Ula)WU D)
remember p(g)* == Wp(g)W_l ne(l}t(rieclll): =W ene Uu ") =WU H(wyW!




CP and the automorphism group

Inverse Direction: : Each automorphism u of G may Up (g)* ! — (u(g)\

be represented by such a matrix U.
Proof:

/

Construct group extended by automorphism u (u=id)

G/:GX]QZn

0:{0,....n—1} = Aut(G) (1) =u
(gla Zl) * (927 22) —

(9102, (92), 21 + 22)

u acts as conjugation within this group

(E,1)%(g,0) % (E£,1)

Consider representation p’ : G/ —

= (u(g)v O)

— U(M) inducedvia p’(g,0) = p(g)

p(u(g)) =

automorphism u is

represented by matrix

U(u) = ﬂ’((Eall))W

where p(g)* = Wp(g)W "

0
0
0

/

/

/

/

P
(
(
(

u(g),0)

(E,1) % (9,0)x (E,1)71)
(E,1))p'((9,0))p"((E, 1))~
(E,1)Wp(g)*W o' (E,1))""




An application: ,Calculable Phases

O in general one expects two different kinds of vacua of a CP
conserving potential

either VEV is real, conserves CP and phase does not depend
on potential parameters

or VEV is complex, breaks CP and phase depends on
potential parameters



An application: ,Calculable Phases

O in general one expects two different kinds of vacua of a CP
conserving potential
O either VEV is real, conserves CP and phase does not depend
on potential parameters
O or VEV is complex, breaks CP and phase depends on

potential parameters
all parameters real

Example:
V =mie* o +m3(e> + ™) + M (0"0)? + da (0" + ™)
= m3A? + m5A% cos 2a + M\ A* + Ny A% cos da

o — Lz

invariant under @ — QO* ‘




An application: ,Calculable Phases

1cua of a CP

O 1in genera wo different kind

ONEC CXPC O1

Highly desireable for model building: d

non-trivial phase that does not depend on

potential parameters

* same reason as VEV alignment, makes predictive model
» called ,calculable phases‘ or ,geometric CP violation® P

Exampl hrameters real

*4)

calculable phases are a result of an accidental

CP symmetry of potential
» explicit example A(27) [Branco, Gerard, Grimus

—

2)\2’ Al —

= -




Possible CP transformations in A (27)
A(27) = (A, B|A® = B® = (AB)® = E)

automorphism group generated by

us : (A, B) — (ABAB, B?) up b (A, BYFSs (A BB
red blue
‘ JERRSEIE ARSNAD A - A BAB .. ABy A% B2 BN DANEE eSS

14 ‘ 1 1 1 1 1 Rl S RPa By ! 1 1
15,1 1 w w? 1 w w? 1 S T 1} 1
1g ! 1 w? w 1 w2 w 1l oo i ) 1 1
1, N 1 w w e e w? w 1] 1 Jh 1
15 ‘ 1 e 1l o 1 w w I g 1 1
14/ 1 1 w? w? w 1 e Gl ey 1 1
1~ i 1 w? 282 w w w e 1 1 1 1
dga1 1 W W w2 il 0 P 0 1 1
19 ‘ 1 w 1 w 1 a2 e g A 1 1
B3 3w 3w?
3* | 3 3uw? 3w



Calculable Phases in A (27)

 consider again a triplet of Higgs doublets H = (Hy, Hy, H3) ~ 3

which transforms as

N d beasl§ =040
p(A) = Wil -1 oY= 0 w O
1 0 O 020508

* the potential only contains one phase dependent term

I = (H]H,)(HIHs) + (H}H3)(H3 Hy) + (HYHy ) (HI Ho)

* if coupling A , multiplying [ is positive, the global minimum is at |
(or a configuration that can be obtained by acting on this vacuum with a group element) = V3 (w2’ Lie
* if coupling A ,is the global minimum is at N Lo
(or a configuration that can be obtained by acting on this vacuum with a group element) V3
* These phases do not depend on potential parameters!
 can this be used to predict (leptonic) CP phases?
* can they be understood in terms of generalized CP?



Calculable Phases in A (27)

e The vacuum of the form (H) = —(1,w,w?) leaves invariant the CP

5 8

transformation
L0
15 S ais R B a2 R [
B e s

* which is a symmetry of [+I*
* no surprise there, CP symmetric potential has CP symmetric ground
state
* for the other solution (H) = —(w?,1,1) there is no group element that
leaves H invariant (H) = p(g)(H)*
* this was called geometrical CP violation

S

[Branco, Gerard and Grimus

GEOMETRICAL T-VIOLATION 1984; de Medeiros Varzielas,
G.C. BRANCO Emmanuel-Costa 2011;
Instituto Nacional de Investigacio Cientifica, Av. do Prof. Gama Pinto 2, Lisbon, Portugal B atta Charyya d e M e d eiro S
)
d .
an Varzielas, Leser 2012,

J.-M. GERARD ! and W. GRIMUS

CERN, Theory Division, Geneva, Switzerland Ivanov, LaVOU‘ra 2013]



Calculable Phases as a Result of an
accidental generalized CP transformation

O every automorphism corresponds to a generalized CP
transformation

automorphism group of A(27) is of order 432,
generated by wi : (4,B) - (ABA*, B’AB) wuy: (A, B) — (ABAB,B?)

O this allows one to search for CP transformation that
leaves (H) = — (w2 1,1) invariant and gives a real A s

V3

O indeed there is such a CP transformation:

corresponds to H — Ul CP,|(H)] = (H) CP character of

outer i 0 0 w? trialfo appaieml:(
automorphism U=|(01 0 CP, [ ]] — w en.you 00
w 0 0 at 1-dim reps.

u : (A,B) — (AB2AB, AB?A?) 1o <> 13, 15 < 19, 1g < 1g,



Calculable Phases as a Result of an
accidental generalized CP transformation

it seems that geometric CP violation can always be explained
as the result of an accidental generalized CP symmetry of

the potential

a symmetric potential can have a symmetric ground state

phases are dictated by accidental CP symmetry

explains the independence from potential parameters

this setup is interesting for phenomenlogy:

if accidental symmetry only of potential, not of Yukawas, it
can be used to predict phases etc.

need groups with large outer automorphism group

note that the automorphism group of shaping symmetries(to
be discussed shortly) is huge

|OutZ;| = 1321205760



The strong CP problem & the
richt unitarity triangle

O QCD could violate CPvia  ©  CP is violated by quark masses

) " =
pv -
L D 327-‘_2 GIL“/G 1_
i a=(88.7 +
O there are 2 contributions o5 3.1)° [UTFit
» F Winter 13]
6 = 0 + arg det(M, My) o
O  bound from experiment _0'55
7] kil 4
g < 10 -
O Why is there near-perfect O right unitarity triangle
cancellation? accident or sign of sponteneous

CP violation!

use discrete flavour symmetries

and spontaneous CP violation in (S, Antisch. MU MA Sihiiting
model to explain both Spinrath, 1307.0710(NPB)]




Strategy to Suppress the
Strong CP Phase

O Make CP fundamental: ©=0

O  Break CP spontaneously while maintaining arg det(M M )=0

*
Myg= 1% ix %] , M, real arg det(M,M,)=0
0 0

a=90°

to realize this in a model we need
* special VEV alignment

e high control over NLO corrections, have to avoid
* higher dim. operators, which would spoil structure of mass matrices

e SUSY breaking terms

60 ~ argdet(6M M)

[S. Antusch, MH, M.A. Schmidt, M. Spinrath 1307.0710]



Model Overview

O symmetry of the model

SU3)c x SU(2), x U(1)y x Ay X Ty X 73 x U(1)g
\ - J/ A\ -~ _/ \ /
gauge sym. discrete family /shaping sym. R sym.

O only consider the quark sector (dg is A, triplet)

O 5 singlet flavons with real vevs, 4 triplets:

1 0 0 ) 0
(p1)~ 0], ()~ 1], (P3)~[0], (p2)~i|l1
0 0 1 0

[S. Antusch, MH, M.A. Schmidt, M. Spinrath, 1307.0710(NPB)]



Coupling to Matter

0O the effective superpotential reads

Wy = Q1dHg gbféd + Q2dHy preat ¢K§S +out + Q3degi3
2
Wy = Qru1 Hy iQ + QruzHy, gjéc + QauzHy, (% ig)
+ (Q213 + Q3u2) H i + Qstuz Hy

O giving the desired mass matrix structure
0 bs O ay by, O

Md — bii iCd dd and Mu — 0 Cu du
0 0 €d 0 d; Cu

[S. Antusch, MH, M.A. Schmidt, M. Spinrath, 1307.0710(NPB)]



Flavon Alignment

O the flavon superpotential is given by

J i
W= Ai- (dix¢i) + O(di - 65) + 45 (¢7 = M)

O it has the accidental symmetries

o1 P2 ¢3 o A;  Ouz Og3 O1a Oa3
Z3 S o) ) —S S - + 2 =+
R S SRR T-ST . T28T 52 T2ST 5 - ‘
PR e e ST ST | T ST% TST? %l R0 Dt
which are conserved by the VEV configuration Gy > Gy

; 5 . 0 0| G =
(p1) ~ (0) AR O0 (1> RSl <0> AE R e (1) (@) #0 | Galg:)] = (90)
X y : 0 G4 D {6}

« the phases are are a result of the accidental

CP transformation ¢, — —¢3, Oy; —» -0, ¢ — "
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Higher Dimensional
Operators

O flavon sector corrections O  we give a "UV
at least dim. seven, completion" of the model
directions and phases giving full control over the
unchanged effective operators!

O  up sector corrections

suppressed (real)
corrections to 1-1, 1-2,
2-2 elements of M,

O down sector corrections ,

no corrections to structure of mass matrices, therefore

* arg detM M )=0

e a=90°

survives




Possible Corrections from

SUSY Breaking

as long as SUSY is unbroken, non-renormalization theorems
guarantee theta=0

SUSY breaking might give corrections

60 = 3arg(my)

also LR sfermion mixing gives corrections

2 2
- Mrr - Mrr
q --*%-<_(q° q -—*%-<_(°
/ mg \\ . B // mq \\ B
g g q q

if SUSY breaking conserves CP and is (nearly) minimal
flavour violating, corrections are potentially small enough

note that SUSY breaking has to be flavour (and CP) non-generic, if
SUSY@TeV



Summary

Discrete Flavour Groups may still be a viable approach to
the SM flavour puzzle

either NLO corrections or large symmetry groups needed to
account for large value of 6 13

3 candiate groups found in scan over 1.3m groups, testable
predictions

the vacuum alignment problem of such flavour models can
be solved by a non-trivial extension of the flavour group

Consistency Conditions should be kept in mind when
constructing models that contain CP and Flavour
Symmetries

generalized CP transformations may be viewed as furnishing a
representation of the automorphism group

geometrical CP violation may be interpreted as a consequence
of (accidental) generalized CP symmetries of the potential

possible solution of strong CP problem with discrete flavour
symmetries and CP
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Solutions in the Literature

ALWAYS:
engineered accidental symmetry of potential

AsxAge O-~(3,1), y ~(1,3)

What is the minimal amount of engineering possible?




Can Vacuum Alignment be realized?

Vie=mg (xx)1, + M1 (01, 0001, + A2 (001, (0x)1,4

)~ (1,1,1)

vacuum unstable

Effect of breaking to Z; in another sector can be included by adding: ; A2

Minimization conditions then give:

ov 2

2 2 / 13 . . ;
= | — = (m?2++v3m ) v+ 4\ . This thus requires ma= mp= mc=0, i.e.
aXl :| xXi=v’ ‘/g ( ° 4 ' 4

all non-trivial contractions between @
and y have to vanish in the potential.

potential should be of the form
V=Vo(P)+V, ()P P)i(xx).




Discrete groups with non-vanishing 6

new starting patterns

|

Deviations from 613 =0

Deviations from TBM

A(96) ‘l A(6-n2) corrections in neutrino sector

S broken

S, U broken

anarchy

charged lepton corrections

new starting patterns: large groups
* maybe ,indirect’ origin [e.g. King, Luhn 09]

if one starts from TBM, large NLO corrections are needed

* charged lepton corrections & GUT relations [e.g. Antusch,King 04, ...]
o TMI1, TM2,.... [for a review e.g. King, Luhn 13]
anarchy [Hall, Murayama, Weiner 1999]

* possible, works better for neutrinos than for quarks




-

CP and discrete flavour - "
symmetries ;

 consistency conditions for CP transformations

« CP transformations = representations of automorphisms

» application to A, model building : g ] ®




CPvs. Ay

the ,CP transformation® that is trivial with regard to A, runs into
trouble if one considers a non-trivial singlet ¢ ~ 14 in addition
to the triplet x ~ 3

if one would use x — x* and ¢ — ¢* one finds that the
invariant is mapped to sth. non-invariant

11“%%@ S%Wxx&hzé“wlz

with (¢¢)12 = D101 + W Pady + wsh3)

ﬁ (
this can be readily understood if one looks at how this ,CP
transformation‘ ® —=U @ * acts upon = (5 e & X)T

naive CP corresponds to U=1; p(T)
A, does not close under this CP: p( S)

Up(T)' U™ = p(I)" ¢ p(G)

; : ften overlooked in literature
the real flavour group is larger, this has to be . " i

, . : [Toorop et. al. 2011, Ferreira,
considered when constructing Lagrangian Lo oo



-

Alignments, calculable phase.s

and all that

highly symmetric VEV configurations are the result of accidental
symmetry transformations of scalar potential in flavour space

« calculable phases (a.k.a geometrical CP violation) are a resugt of
accidental CP symmetries of the potential




Accidental symmetries as the origin of
vacuum alienment mechanisms

O usual flavour symmetry setup: a
flavour group Gf is broken to

different subgroups by different o1y — ( : ) Ag oo - ( ; )
VEVs; in total the group is 0 1
completely broken (#2) = ( : )

(S) (T?ST) (TST?)

O in general, this VEV state is
unprotected by any symmetry
and one therefore has to tune
parameters to get VEVs

group completely broken

kills predictivity of models



Accidental symmetries of popular
VEV alignment models
Extra dimensions: Gy=A, but G,=A XA, Gy D Gy
(i) #0 | Gal{¢s)] =0

GaD {6}



Accidental symmetries of popular
VEV alignment models

Extra dimensions: Gg=A, but G,=AxA, G Vv D G f

AF-type driving fields: Gg=A, but Gy=AxA, () £ 0 | Galld)] =0

Gy D {6}
LN N . T T
L7 o o wa = Mg r) + g(poprer)

‘ ‘ 0/ ' + g1(p5psps) + 92£(05 ps) + gséo(pses)
Cf bulk l.
ul p ]u hu
T F, F

]Y hd
¢ (1) e



Accidental symmetries of popular
VEV alignment models

Extra dimensions: Gg=A, but G,=AxA,

GvDGf

(i) #0 | Gal(¢i)] = (¢3)

minimal realization discussed in [MH, M.A. Schmidt JHEP 1201 (2012)],

GF=Q8 >qALI_ but G\/:(Q8 >4A4 )XA4

LN <]
- 0, 0,

9, o

¢t bulk |

uL'

. ¢ - 1 hu

T F, F h
]Y d

Q -
¢’ &

0 y L

G4 D {6}

we = M(pder) + g(ps erer)
+ q1(p5esps) + g2£(05ps) + ga€o(psps)



Accidental symmetries of popular

0

VEV alignment models

Extra dimensions: Gg=A, but G,=AxA, G Vv 2 G f

AF-type driving fields: Gg=A, but Gy=AxA, () £0 | Ga[(es)] =0

minimal realization discussed in [MH, M.A. Schmidt JHEP 1201 (2012)],
Gp=Qg ¥A, but Gy =(Qg XA, XA, G4 D {e}

model of last talk: G,=7,xZ,xZ,

T T
. wa = Mg r) + g(poprer)
2 0, ~
N + g1(5psps) + g2£(05ps) + 938 (psps)
bulk l.
P
F, F, w By WZAz"(¢i*¢i)+0i;j(¢i-¢j)+p((bfiM?%)_
) ]Y hd
o' E ¢1 ®2 ®3 b2 A; O3 Oa3 O12 O
v L i Zs S -9 -9 -S S - + - +
‘ Zoy —T2ST T?ST —T2?ST T?ST T?ST + - -
Zoy —TST? —-TST? TST? —-TST? TST? - - +




0 TRl
CP vs. A,
outer automorphism group Z,, there is l]_ 1 1 12 1
one outer automorphism: T ( S, T) il ( S, TQ)‘ 1 9 1 W % 1
P
on 3-dim representation l3 ; W 1

W
IR0 Oyl 0 3 0 Gl
p3. (S)=83=| 0 -1 0 il RSN I Y
21 0 0 -1 0070 A4=<5,T|52=T3:(ST)3:E>

as long as the theory only contains 3-dimensional representations, :
there are 2 possibilities for [ ,0( g)* ol cm P

1 0 0 —
U=Us=| 0 0 1 U=13
0 1 0 "
Usp(T)*Us ™t = p(T?) p(T)* = p(T)
U : (S, T) — (S, TQ)‘ trivial map
3 — Uz3” 3 — 3F
outer automorphism inner automorphism




CP vs. A,

if one does not want to extend the group one therefore has
the options

U=

1 0
0 1
0 O
(5, T) —
X = Usx®

§— &

0
0 :
Us

(S,T2).

0 1 0
U=11 0 0] .
0 0 1j

trivial map
X — X

§—¢§

to fulfil the consistency condition

Note that complex VEVs of the
type (1,z,2*) conserve this CP



CP vs. A, - Application

 consider a triplet of Higgs doublets Y= (O St

* there is one phase-dependent term in the potential
f f P et S R Sl
As (x X)§1 (X X)3 + h.c. = X5 [(Xlxz) = (XQXS) B (X3X1) ] + h.c.
el

e the CPtrafoX — X  would restrict the phase to be zero

* even for non-vanishing phase, the VEV configuration ()i WALl A =T
can be obtained. [Toorop et. al. 2011]
* Spontaneous CP restoration!?
* This can be understood if one considers the CP transformation y — Usy*
* this is a symmetry of the potential for any phase of A < R
* also the VEVs preserve the CP transformation T ( e )
* therefore this CP is conserved in this case el
 accidental CP transformations seem to be origin of ,calculable phases’



Outer automorphism group

if U is solution of  Up(g)*U ™" = p(u(g)) thenso is p(g"\U
* corresponds to performing a CP transformation followed by a group
transformation described by 0 (g)
* The group transformation corresponds to an inner homomorphism, which
does not pose any new restrictions

therefore interesting generalized CP transformations
correspond to

Out(G) = Aut(G)/Inn(G)
st Inn(G) = {u € Aut(G)|u(g) = AgA~ *for some A € G}
aside: continuous groups
Out(G) = E,Z, exceptfor  Out(SO(8)) = S5

outer automorphism groups of small groups can be more

involved: Out(A(27)) = GL(2, 3)



ceometrical CP violation in T"?

O if we consider just one doublet ¢ ~ 249 there is only

one phase dependent term in the potential
2g)

Avgwaﬂ—@—2m£»+hn

O one gets solutions of the type () = (Vel®, 0)T
which conserve T

A <0 | A >0
(W) = {1,i, =1, =i} (e™/?4,007 () = {1,i, -1, =i} (€™, 0)"

¥ — {1,-1,1,-1}C P[] ¥ = =i{1,~1,1,~1}CP[y]

O again the phases are a result of a generalized CP symmetry of the potential

n

O similar discussion holds for potentials of the type P < Aig FM 2)




TM?2 “parabola”

complete flavour group

residual symmetry of (Me Me*)

residual symmetry of My

4 2 Gt =l p(gv) Myp(g,) = M,
Ge={T) =73 /—> p(9)L D
@221 550 LH leptons 3-dim rep. G Y= < S,U > =ZZXZZ
n
AR =0 -1 o pm(o o )
0.05—— ‘ ‘ ‘ [0 E Ty e Dt 0530
i 9 =/
| Scan over all discrete groups of size
l. smaller than 1556 with G_=Z,,
oot R o G, =LxZ,
o I $ all solutions which are close to exp.
> : i@ |
= Lo 1 ® values have the TM2 form
“ 002} i_ ____________________ @ 9! :
| cosf 0 sinb
| 8 : ’ U=Urpu 0 &0
001F .
i : —sinfd 0 cosé
16 . 7 with O = 5 arg(zn)
000026 028 030 032 034 036 038 0400 J Vanishing CP phase 6CP
-
$in“(012) [MH, K.S. Lim, M. Lindner 1212.2411(PLB)]



residual symmetry of (Me Me*)

TM?2 “parabola”

complete flavour group

Gy

residual symmetry of My

Tt p(gv)" Myp(gy) = M,
4 ™
Gv=(S,U_) =77,

I 5040 1= 205554
p(9) =" 05 = SR e EE ( O 0y )
05 (OASEN R e)
) = Zn

(& ~N
Ge=<T> =/3 /—> p(g)L
@221 550 LH leptons 3-dim rep.
o= N0 = 01
1 0 O
\_ J
sin’(6;,)
70 026028 030 032 034 036 038 040
| /
065 r
0.60]
055 i
S | |
S5 0.50] i
g i
” 045 E
0.40 E
035}
030"

Scan over all discrete groups of size

smaller than 1556 with G_=Z,,

G,=2,xZ,
all solutions which are close to exp.

values have the TM2 form

cos# 0 sinb
U=Urpm 0 1 0
—sinf 0 cos6
with Q== % arg(zn,)

 vanishing CP phase §p
[MH, K.S. Lim, M. Lindner 1212.2411(PLB)]



Flavour Breaking at the Electroweak Scale
fermion SU(Q)L U(l)y Qg X A4 Z4
Input 5 7 0 35 A
VEV alignment mechanism based on group theory | scalars | SU(2)r ULy || Qs x Ay | Zy |
allows for low scale flavour breaking m 2 1/2 35 i
2 2 1/2 34 i
implement model at EW scale 22 < 1 35 ¥
make y an EW doublet (x) (¢1)
add messenger fields to make it renormalizable %Y . /.:\ /.:\ . ($2)
Yo o N3 o7
S -~ -
do not add any new symmetry i ﬂ/\* \‘/\r\ Ty
Vo & » Vg
S S
Output
°

my,, ~

neutrino masses are generated at one-loop level, therefore small

1, (0M;\ M; oM; L
h for — h~ ~ 1077, M;, ~ 100 GeV Mg ~ 100 GeV

1672 MZ Mg M2

at LO, 4 real parameters & one phase a ee~ ee-A

in neutrino mass matrix M, = a4 be d4éeln
a

DM candidate from flavour symmetry,

protection from flavour ViOlatiOH [MH, M. Lindner, M.A. Schmidt, 1211.5143 (PRD) |



Flavour Breaking at the EW Scale-Mixing

Sil’12013

107!

1072

1073

5

—-—-————:—-/

S

3

SHS
A 2
W B

TBM for b=e=0

Fogli et al. see a hints

for sin‘0213=.4 &
deltacp=pi

®5in2013=.03
needs e/a=.1

®inZ012 too
small

®5inZ012 too
large

0.00 0.02




Flavour Breaking at the EW Scale-LFV&Higes

O in the charged lepton sector, the VEV (1,1,1) leaves the Z; subgroup generated by T
invariant

2
go to charged lepton basis where T is diagonal (Le, Ly, Lr) ~ (1, w", w)

®  only H gets a VEV and plays the role of the SM Higgs (H, @, 90”) ~ (1, R w)

—Le =H (yeLee” + yMLM:uC +yrLr7°) + 95/ (yeLuec S y,uLT,uC + vy L7°)
—|_ (15” (yeLTGC _'_ y,uLe,LLC —I_ yTL,u’TC) —’_ hC 7

®  other doublets have flavour off-diagonal couplings _<‘/\

|
99// A

®  this is usually extremely dangerous, saved by flavour symmetry .

®  this generates LFV 4 fermion operators ( with the selection rule /*\\

ALCALM ALZ’ T iZ) T B
exp. bound
®  the most constraining process is 1 4 //'<\
BI.( o £ — —€-|-) 2 3 10_8 21 GeV 7]4/ / ;
oo T 5 /

®  suppressed by small Yukawa couplings, for the process mediated m

by eta we get

14

Br(r” —»p pe)~23-107° (%) (h1 + hé"—h?h%)
n




How to define CP consistently

* Consider the vector made up out of all real(R), pseudo-real (P) and
complex (C) representations of a given model

g
¢ = ( PR, PPs PPy PO PO )
 under the group G it transforms as ¢ A p(g)o, g€ G@.

* the (reducible) representation p: G — U ( N ) is assumed to be
faithful and complex

* if not faithful then real symmetry group of theoryis G/ kerp
* 0 is homomorphism: 0 (a*b)=0 (a) 0 (b)

* definition implies the existence of matrix W

_ * here only Lorentzscalars, generalization

straightforward




O start with a smallish flavour group

A bottom up approach

O  no SUSY at LHC, try non-superymmetric

new solution to VEV alignment problem needed

O  high scale models are hard to test

to make it testable, try to break symmetry at the

electroweak scale or TeV scale

A(27)

e

SU(3)
PSLy(7) A(96)
/ - /

T7

SO(3)

tree of
interesting
subgroups of

SUQB)

Aﬁ[} ] m
Mgur -

-':\‘:[:il*l.‘ﬁ'd\\‘ -

2
S

I

1

1




