Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Thermal relics beyond minimal dark sectors

Johannes Herms

Max-Planck-Institut für Kernphysik, Heidelberg

Astroparticle Seminar 25.01.2021

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

The Dark Matter Production Mechanism Program

What is dark matter?

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

The Dark Matter Production Mechanism Program

What is dark matter?

Starting point:

 $\rho_{\rm DM,0} \simeq 1.26 \cdot 10^{-6} \, {\rm GeV} \, {\rm cm}^{-3}$

 \rightarrow Where did it come from?

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic 000000000 Self-interacting DA

Conclusion O

The Dark Matter Production Mechanism Program

What is dark matter?

Starting point:

 $\rho_{\rm DM,0} \simeq 1.26 \cdot 10^{-6} \, {\rm GeV} \, {\rm cm}^{-3}$

 \rightarrow Where did it come from?

Thermal relic particle dark matter

- stable neutral particles are automatically dark matter candidates
- thermal bath of the early Universe accounts for production

 \rightarrow relate production to signatures

Thermal relics

Multiflavor FIMP 000 Conclusion O

Thermal history of the visible sector

- All we know about early Universe is from relic particles
- Relic abundances calculable from GR + known particle and atomic physics
 - $T_{\gamma} \sim$ MeV: neutrinos decouple $\rightarrow \rho_{\nu}$
 - $T_{\gamma} \sim \text{MeV}$: neutrons decouple $\rightarrow {}^{4}\text{He}/\text{H}$
 - $T_{\gamma} \sim 0.1 \text{ MeV}$: nuclear reactions decouple $\rightarrow D/H$, ³He/H, ⁷Li/H
 - $T_{\gamma} \sim \text{eV}$: atoms form, photons decouple $\rightarrow \text{CMB}$
 - *however:* proton relic abundance instead determined by baryon asymmetry

Thermal relics

Multiflavor FIMP 000

Thermal history of the visible sector

- All we know about early Universe is from *relic particles*
- *Relic abundances* calculable from GR + known particle and atomic physics
 - $T_{\gamma} \sim$ MeV: neutrinos decouple $\rightarrow \rho_{\nu}$
 - $T_{\gamma} \sim \text{MeV}$: neutrons decouple $\rightarrow {}^{4}\text{He}/\text{H}$
 - $T_{\gamma} \sim 0.1 \text{ MeV}$: nuclear reactions decouple $\rightarrow D/H$, ³He/H, ⁷Li/H
 - $T_{\gamma} \sim \text{eV}$: atoms form, photons decouple $\rightarrow \text{CMB}$
 - *however:* proton relic abundance instead determined by baryon asymmetry
- $t \ge 1$ s, Universe is dominated by SM radiation bath of temperature T
- can extrapolate cosmology to earlier times
 - assuming SM particle physics

Thermal relics

Multiflavor FIMP 000

Thermal history of the visible sector

- All we know about early Universe is from *relic particles*
- *Relic abundances* calculable from GR + known particle and atomic physics
 - $T_{\gamma} \sim$ MeV: neutrinos decouple $\rightarrow \rho_{\nu}$
 - $T_{\gamma} \sim \text{MeV}$: neutrons decouple $\rightarrow {}^{4}\text{He}/\text{H}$
 - $T_{\gamma} \sim 0.1 \text{ MeV}$: nuclear reactions decouple $\rightarrow D/H$, ³He/H, ⁷Li/H
 - $T_{\gamma} \sim \text{eV:}$ atoms form, photons decouple $\rightarrow \text{CMB}$
 - *however:* proton relic abundance instead determined by baryon asymmetry
- $t \ge 1$ s, Universe is dominated by SM radiation bath of temperature T
- can extrapolate cosmology to earlier times
 - assuming SM particle physics
- introducing (meta-)stable particles that interact with the SM, we can relate their properties to their relic abundance

maybe dark matter is a thermal relic, too?

hermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

This talk

thermal relics

- textbook basics
- WIMP successes
- simple model failures
- ② details in the dark: multiple DM candidates
- 3 details in the dark: self-interactions

Introduction Thermal relics

Multiflavor FIMP

Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Early Universe thermodynamics

Boltzmann Equation

std. treatment [GondoloGelmini'91]

$$E\frac{\partial f_{\chi}}{\partial t} - H|\vec{p}|^{2}\frac{\partial f_{\chi}}{\partial E} = -\frac{1}{2g_{\chi}}\int d\Pi_{b} d\Pi_{i} d\Pi_{j} (2\pi)^{4} \delta^{4} \left(p_{\chi} + p_{b} - p_{i} - p_{j}\right) \\ \times |\mathcal{M}|^{2}_{\chi+b\leftrightarrow i+j} \left[f_{\chi}f_{b}(1\pm f_{i})(1\pm f_{j}) - f_{i}f_{j}(1\pm f_{\chi})(1\pm f_{b})\right] + \cdots$$

Introduction	Thermal relics	Multiflavor FIMP	Multiflavor leptophilic	Self-interacting DM	Conclusion
000	0000000	000	00000000	000000	0
Early Universe ther	modynamics				

Boltzmann Equation

std. treatment [GondoloGelmini'91]

$$E\frac{\partial f_{\chi}}{\partial t} - H|\vec{p}|^{2}\frac{\partial f_{\chi}}{\partial E} = -\frac{1}{2g_{\chi}}\int d\Pi_{b} d\Pi_{i} d\Pi_{j} (2\pi)^{4} \delta^{4} \left(p_{\chi} + p_{b} - p_{i} - p_{j}\right)$$
$$\times |\mathcal{M}|^{2}_{\chi+b\leftrightarrow i+j} \left[f_{\chi}f_{b}(1\pm f_{i})(1\pm f_{j}) - f_{i}f_{j}(1\pm f_{\chi})(1\pm f_{b})\right] + \cdots$$

• assume SM bath dominates Universe

$$H^{2} = \frac{8\pi G}{3}\rho_{R} \quad \text{with} \quad \rho_{R} = \frac{\pi^{2}}{30}g_{\text{eff}}(T)T^{4}, \qquad \qquad f_{\text{SM}}(\vec{p}) = \frac{1}{e^{(E-\mu)/T} \pm 1}$$

• assume kinetic equilibrium, MB, $f_{\chi}(E) \rightarrow e^{\mu/T} e^{-E/T}$

$$\begin{aligned} \frac{dn_{\chi}}{dt} + 3Hn_{\chi} &= -\langle \sigma \upsilon \rangle_{\chi+b \to i+j} \left(n_{\chi} n_b - n_{\chi}^{\rm eq} n_b^{\rm eq} \frac{n_i n_j}{n_i^{\rm eq} n_j^{\rm eq}} \right) + \cdots, \\ \langle \sigma \upsilon \rangle &= \frac{1}{n_{\chi}^{\rm eq} n_b^{\rm eq}} \int d^3 p_{\chi} \, d^3 p_b \, \sigma \upsilon_{\rm Mol} e^{-(E_{\chi} + E_b)/T} \end{aligned}$$

for absence of kin.eq., see eg. [1706.07433]

5 Thermal relics beyond minimal dark sectors

Johannes Herms

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusior O

Thermal dark matter production

WIMP freeze-out: the standard paradigm

- The WIMP paradigm:
 - DM stabilised by a dark parity
 - freeze-out of $2 \rightarrow 2$ interactions determines the relic density

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle_{\chi\chi \to \text{SM}} \left(n_{\chi}^2 - n_{\chi}^{\text{eq2}} \right)$$

Introduction	Thermal relics	Multiflavor FIMP	Multiflavor leptophilic	Self-interacting DM	Conclusion
000	0000000	000	00000000	000000	0

Thermal dark matter production

WIMP freeze-out: the standard paradigm

- The WIMP paradigm:
 - DM stabilised by a dark parity
 - $\circ~$ freeze-out of $2 \rightarrow 2$ interactions determines the relic density

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle_{\chi\chi \to \text{SM}} \left(n_{\chi}^2 - n_{\chi}^{\text{eq2}} \right)$$

 $\langle \sigma \upsilon \rangle_{\chi\chi \to SM} \simeq (2 \sim 3) \times 10^{-26} \, \mathrm{cm}^3 / \, \mathrm{s}$

Johannes Herr

Thermal dark matter production

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

WIMP freeze-out: the search

The WIMP paradigm is very predictive and has inspired a large experimental program.

 $\bigvee \langle \sigma v \rangle_{T \sim m/20}$ determines relic abundance

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusior O

Thermal dark matter production

WIMP freeze-out: the search

The WIMP paradigm is very predictive and has inspired a large experimental program.

Thermal dark matter production

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusior O

WIMP freeze-out: the search

The WIMP paradigm is very predictive and has inspired a large experimental program.

 $\begin{array}{c|c} & \langle \sigma v \rangle_{T \sim m/20} \text{ determines relic abundance} \\ & \swarrow & \langle \sigma v \rangle_{v \sim v_{\rm gal}} \text{ dark matter indirect detection} \\ & \swarrow & \sigma_{pp \rightarrow \chi \chi + X} \text{ collider signatures} \end{array}$

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusior O

Thermal dark matter production

WIMP freeze-out: the search

The WIMP paradigm is very predictive and has inspired a large experimental program.

 $\begin{array}{c|c} & \langle \sigma v \rangle_{T \sim m/20} \text{ determines relic abundance} \\ & \checkmark & \langle \sigma v \rangle_{v \sim v_{\rm gal}} \text{ dark matter indirect detection} \\ & \checkmark & \sigma_{pp \rightarrow \chi \chi + X} \text{ collider signatures} \\ & \checkmark & \sigma_{\chi n} \text{ dark matter direct detection} \end{array}$

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DA

Conclusior O

Thermal dark matter production

Freeze-out: variations on a theme

there may be multiple particles odd under the stabilising symmetry $\Rightarrow dark \ sector$

- *co-annihilation*: other particles in the dark sector may aid DM depletion [Griest,Seckel'91]
 - chemical equilibrium within the dark sector \rightarrow effective WIMP

$$n_{i} = n_{\rm dark} \left(\frac{n_{i}^{\rm eq}}{n_{\rm dark}^{\rm eq}} \right) \qquad \Rightarrow \qquad \frac{dn_{\rm dark}}{dt} + 3Hn_{\rm dark} = -\langle \sigma \upsilon \rangle_{\rm eff} \left(n_{\rm dark}^{2} - n_{\rm dark}^{\rm eq2} \right)$$

- different processes can deplete the dark sector, e.g.
 - 2 \rightarrow 2 may be "forbidden" [1505.07107,2012.11766] \Rightarrow 3 \rightarrow 2 [1702.07716]
 - "secluded" dark matter, annihilation into unstable dark sector particles [0711.4866]
 - dark matter number changing interactions $\phi\phi\phi \rightarrow \phi\phi, \chi\chi\chi\chi \rightarrow \chi\chi$ • ...
- same motivation, different signatures possible

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusior O

Thermal dark matter production

Freeze-in: FIMPs

example: from heavy particle decay

• for FIMP from heavy partilee Σ decay

$$c\tau_{\Sigma} \simeq 1.6 \,\mathrm{m} \times g_{\Sigma} \left(\frac{m_{\Sigma}}{100 \,\mathrm{GeV}}\right)^{-2} \left(\frac{m_{\chi}}{10 \,\mathrm{keV}}\right) \left(\frac{\Omega_{\chi}}{\Omega_{\mathrm{DM}}}\right)^{-1}$$

Iack of thermalisation → cosmological history relevant!

Let's look at an example!

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusior O

A simple example...

Singlet scalar dark matter

The simplest model, arguably

• add one dof. to the SM, real scalar singlet $\phi,$ stabilised by a \mathbb{Z}_2

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \frac{1}{4!} \lambda_{\phi} \phi^4 - \frac{1}{2} \lambda_{\phi h} \left(H^{\dagger} H \right) \phi \phi$$

• production in SM thermal bath

$$\begin{aligned} \frac{dn_{\phi}}{dt} + 3Hn_{\phi} &= -\langle \sigma \upsilon \rangle_{\phi\phi \to \text{SM}} \left(n_{\phi}^{2} - n_{\phi}^{\text{eq}2} \right) & \leftarrow \text{WIMP} \\ & - \langle \sigma \upsilon \rangle_{\phi\phi\phi\phi \to \phi\phi} \left(n_{\phi}^{4} - n_{\phi}^{2} n_{\phi}^{\text{eq}2} \right) & \leftarrow \text{SIMP} \\ & + \langle \Gamma_{h \to \phi\phi} \rangle \left(n_{h} - n_{h}^{\text{eq}} n_{\phi}^{2} / n_{\phi}^{\text{eq}2} \right) & \leftarrow \text{FIMP} \end{aligned}$$

- different mechanisms can determine the relic abundance
 - standard WIMP
 - self-interactions \rightarrow SIMP [eg. 1906.07659]
 - freeze-in [eg. 1908.05491]

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

A simple example ...

Singlet scalar dark matter

The simplest model, arguably

 $\bullet\,$ add one dof. to the SM, real scalar singlet $\phi,$ stabilised by a \mathbb{Z}_2

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \frac{1}{4!} \lambda_{\phi} \phi^4 - \frac{1}{2} \lambda_{\phi h} \left(H^{\dagger} H \right) \phi \phi$$

• production in SM thermal bath

$$\begin{aligned} \frac{dn_{\phi}}{dt} + 3Hn_{\phi} &= -\langle \sigma \upsilon \rangle_{\phi\phi \to \text{SM}} \left(n_{\phi}^2 - n_{\phi}^{\text{eq}2} \right) & \leftarrow \text{WIMP} \\ & - \langle \sigma \upsilon \rangle_{\phi\phi\phi\phi \to \phi\phi} \left(n_{\phi}^4 - n_{\phi}^2 n_{\phi}^{\text{eq}2} \right) & \leftarrow \text{SIMP} \\ & + \langle \Gamma_{h \to \phi\phi} \rangle \left(n_h - n_h^{\text{eq}} n_{\phi}^2 / n_{\phi}^{\text{eq}2} \right) & \leftarrow \text{FIMP} \end{aligned}$$

- different mechanisms can determine the relic abundance
 - standard WIMP ✓
 - self-interactions \rightarrow SIMP [eg. 1906.07659] ?
 - freeze-in [eg. 1908.05491] $\times \lambda_{\phi h} \leq 10^{-10}$; no signatures!

• signatures?

I like minimal models – why?

- Iaziness.
- Occam's razor?

I like minimal models – why?

- laziness.
- Occam's razor?
 - dark matter identification is not a beauty pageant \rightarrow not really...
- simple = generic?
 - simple model \rightarrow expect to find common signatures
 - what do we do if we find no signatures?

 \rightarrow take more detail into account!

Thermal relics

Multiflavor FIMP •00 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Multi-flavour singlet scalars

Add *two* real scalars $\phi_{1,2}$ to the SM, stabilised by a \mathbb{Z}_2

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \partial_{\mu} \phi_i \partial^{\mu} \phi_i - \frac{1}{2} m_{ij} \phi_i \phi_j - \frac{1}{4!} \lambda'_{ijkl} \phi_i \phi_j \phi_k \phi_l - \frac{1}{2} \frac{\lambda'_{ij}}{\ell_{ij}} \left(H^{\dagger} H \right) \phi_i \phi_j,$$

FIMP production is governed by the decay

Thermal relics

Multiflavor FIMP •00 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Multi-flavour singlet scalars

Add *two* real scalars $\phi_{1,2}$ to the SM, stabilised by a \mathbb{Z}_2

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \partial_{\mu} \phi_i \partial^{\mu} \phi_i - \frac{1}{2} m_{ij} \phi_i \phi_j - \frac{1}{4!} \lambda'_{ijkl} \phi_i \phi_j \phi_k \phi_l - \frac{1}{2} \frac{\lambda'_{ij}}{\mu'_{ij}} \left(H^{\dagger} H \right) \phi_i \phi_j,$$

FIMP production is governed by the decay

 λ_{12} induces dark matter decay into γ -rays [Ghosh et.al. 1909.13292]

Thermal relics

Multiflavor FIMP

Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Gamma ray spectral features

Thermal relics

Multiflavor FIMP

Multiflavor leptophilic

Self-interacting DM 000000 Conclusior O

Probing multiflavour FIMP dark matter

1912.09458 w. Alejandro Ibarra

 \Rightarrow can relate production mechanism to signature!

- Lines show expected signal strength for $\Omega_{\lambda_{12}} = \Omega_{DM}$
- small mass splitting $\Delta \equiv 1 m_1^2/m_2^2$ suppresses signal

•
$$\delta m_{ij}^2 \sim \lambda_{ij}' v^2/2 \sim \text{MeV}$$

Thermal relics

Multiflavor FIMP

Multiflavor leptophilic

Self-interacting DM 000000 Conclusior O

Probing multiflavour FIMP dark matter

1912.09458 w. Alejandro Ibarra

 \Rightarrow can relate production mechanism to signature!

- Lines show expected signal strength for $\Omega_{\lambda_{12}} = \Omega_{DM}$
- small mass splitting $\Delta \equiv 1 m_1^2/m_2^2$ suppresses signal

•
$$\delta m_{ij}^2 \sim \lambda_{ij}' v^2/2 \sim \text{MeV}$$

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DN 000000 Conclusior O

Generally: What about DM-"flavour"?

- SM fermions come in 3 generations, 1st generation dominates cosmology and astrophysics
- DM fermions?

however ...

- "Flavour physics" relies on complex, chiral nature of SM
- Flavour violation limits put strong constraints on non-trivial flavoured interactions of DM [eg. Kopp+'1401.6457]
- \Rightarrow as fist step: look at 2 DM candidates w. same gauge QNs

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Fermionic multi-flavour Dark Matter

DM fermion $\psi_{1,2}$, odd under $\mathbb{Z}_2 \rightarrow$ need mediator Σ to couple to SM

$$\begin{split} \mathcal{L} &\supset \left(\mathcal{D}_{\mu}\Sigma\right)^{\dagger} \left(\mathcal{D}^{\mu}\Sigma\right) - m_{\Sigma}\Sigma^{\dagger}\Sigma - \lambda_{H\Sigma}|H|^{2}|\Sigma|^{2} \\ &+ \left(\frac{1}{2}\overline{\psi_{i}}i\partial\!\!\!/\psi_{i} - \frac{1}{2}m_{i}\overline{\psi_{i}^{c}}\psi_{i} - g_{i}\overline{f_{R,L}}\psi_{i}\Sigma + \mathrm{h.c.}\right) \end{split}$$

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Conclusior O

Fermionic multi-flavour Dark Matter

DM fermion $\psi_{1,2}$, odd under $\mathbb{Z}_2 \rightarrow$ need mediator Σ to couple to SM

$$\begin{split} \mathcal{L} &\supset \left(\mathcal{D}_{\mu}\Sigma\right)^{\dagger} \left(\mathcal{D}^{\mu}\Sigma\right) - m_{\Sigma}\Sigma^{\dagger}\Sigma - \lambda_{H\Sigma}|H|^{2}|\Sigma|^{2} \\ &+ \left(\frac{1}{2}\overline{\psi_{i}}i\partial\!\!\!/\psi_{i} - \frac{1}{2}m_{i}\overline{\psi_{i}^{c}}\psi_{i} - g_{i}\overline{f}_{R,L}\psi_{i}\Sigma + \mathrm{h.c.}\right) \end{split}$$

• choose leptophilic scenario

$$\mathcal{L} \supset -g_i \bar{l}_R \psi_i \Sigma$$

- single component scenario popular model: m_{Σ} , m_1 , g_1
- multi-flavour scenario:

$$m_{\Sigma}, m_2, m_1, g_2, g_1$$

 \rightarrow qualitatively different signatures?

Thermal relics

Multiflavor FIMP

Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Decaying fermion FIMP DM

- Decay signal suppressed by two small couplings
- γ-ray line limits from [FermiLAT'1506.00013] and [Essig+'1309.4091], CMB limits from [Slatyer+'1610.06933]

hermal relics

Multiflavor FIMP

Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Decaying fermion FIMP DM

- Decay signal suppressed by two small couplings
- γ-ray line limits from [FermiLAT'1506.00013] and [Essig+'1309.4091], CMB limits from [Slatyer+'1610.06933]
- large coupling possible for small $m_1 \Rightarrow how small$?

hermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Lower limits to the DM mass

• general: DM free-streaming erases primordial inhomogeneities

$$\lambda_{\rm FS} = \int_{t_i}^{t_{\rm EQ}} \frac{\langle v \rangle(t')}{R(t')} dt'$$

limits on DM mass [Irsic+,1702.01764]

• subdominant non-cold component [eg. Diamanti+'1701.03128]

hermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Mixed FIMP - HDM

- for very light $m_1: g_1$ allowed to thermalise ψ_1
- abundance set by Tfo, 1
- coupling g_1 constrained by f_{ncdm}

 signals possible in proposed MeV-range γ-ray instruments [eg. eASTROGAM, 1711.01265]

Thermal relics

Full range of couplings

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusior O

General 2-flavour leptophilic DM thermal relics

solve Boltzmann eqn. to obtain relic abundance ($i = \psi_1, \psi_2, \Sigma$)

$$\begin{split} \frac{dn_i}{dt} + 3Hn_i &= -\sum_j \langle \sigma v \rangle_{ij \to AB}^{\text{ann}} \left(n_i n_j - n_i^{\text{eq}} n_j^{\text{eq}} \right) \\ &- \sum_j \langle \sigma v \rangle_{iA \to jB}^{\text{sca}} \left(n_i n_A^{\text{eq}} - n_j n_B^{\text{eq}} \frac{n_i^{\text{eq}}}{n_j^{\text{eq}}} \right) \\ &- \sum_j \tilde{\Gamma}_{i \to j} \left(n_i - n_j \frac{n_i^{\text{eq}}}{n_j^{\text{eq}}} \right), \end{split}$$

fast conversions can ensure chemical equilibrium $n_i = n_{\text{dark}} \frac{n_i^{\text{eq}}(T)}{n_{\text{dark}}^{\text{eq}}(T)}$,

$$\frac{dn_{\text{dark}}}{dt} + 3Hn_i = -\langle \sigma v \rangle_{\text{eff}}^{\text{ann}} \left(n_{\text{dark}}^2 - n_{\text{dark}}^{\text{eq 2}} \right)$$

[Griest,Seckel'91], ...

Introduction	Thermal relics	Multiflavor FIMP	Multiflavor leptophilic	Self-interactin
000	00000000	000	000000000	000000
Full range of couplings				

Conclusion O

Numerical solution to the Boltzmann Eqn

- no chemical equilibrium \rightarrow no MICROMEGAs etc.
- cast BE into numerics-friendly form

$$\frac{d\ln Y_i}{dx} = -\sum_j \left[\frac{\langle \sigma \upsilon \rangle_{ij \to AB}^{\operatorname{ann}} sY_i \frac{Y_j^{\operatorname{eq}}}{Y_i^{\operatorname{eq}}}}{x\tilde{H}} \right] \left(\frac{Y_j}{Y_i} \frac{Y_i^{\operatorname{eq}}}{Y_j^{\operatorname{eq}}} - \frac{Y_i^{\operatorname{eq}2}}{Y_i^2} \right) -\sum_j \left[\frac{\langle \sigma \upsilon \rangle_{iA \to jB}^{\operatorname{sca}} sY_A^{\operatorname{eq}}}{x\tilde{H}} + \frac{\tilde{\Gamma}_{i \to j}}{x\tilde{H}} \right] \left(1 - \frac{Y_j}{Y_i} \frac{Y_i^{\operatorname{eq}}}{Y_j^{\operatorname{eq}}} \right)$$

- if $\Gamma_{aa\leftrightarrow bb} \gg H$: stiff equation!
- physics to the resuce: consider summed equation, imposing equilibrium relations

٠

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

The full range of couplings

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

The full range of couplings

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

The full range of couplings

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

The full range of couplings

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

The full range of couplings

• Numerically solve Boltzmann system for particles $i = \Sigma, \psi_2, \psi_1$ in complete coupling parameter space

most of parameter space ruled out by overabundancecomplex interplay of reactions in WIMP-WIMP region

Thermal relics

Introduction

Full range of couplings

Multiflavor FIMI 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusior O

2nd component effects on WIMP signatures

 $\bullet~{\rm even}$ if ψ_2 not around today, can modify expectations for WIMP signals

- commonplace: reduction of signals due to coannihilation
- here: can have *enhancement of* $\langle \sigma v \rangle$ over canonical WIMP value
 - surprises possible also for instruments that don't reach canonical benchmark

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilie

Conclusior O

Falsifying WIMP Dark Matter?

- direct/indirect/collider WIMP identification inconclusive so far
- WIMP CDM scenario has other predictions
 - cuspy halos following Navarro-Frenk-White profile [NFW'97]
 - subhalos form down to $M_{
 m halo} \ll M_{\odot}$ [eg. Bringmann'09]
- small scale issues of ΛCDM
 - cored halos, diverse halos [eg. 1504.01437]
 - missing satellites, missing small-but-"too-big-to-fail" galaxies [eg. 1111.2048]
- dark matter *self-interactions*? [review eg. 1705.02358] [1904.10539]
 - thermalised cores
 - host halo effects amplified
 - gravothermal collapse possible

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Self interacting dark matter

Singlet fermions for concreteness, "sterile neutrino"

$$\mathcal{L}_{\rm DM} = \frac{1}{2} \overline{\chi^c} i \partial \!\!\!/ \chi - \frac{1}{2} m_\chi \overline{\chi^c} \chi - y_\chi \overline{L} \widetilde{H} \chi + \frac{1}{4! \Lambda^2} (\overline{\chi^c} \chi) (\overline{\chi^c} \chi) + {\rm h.c.}$$

self-scattering

$$\sigma_{2\to 2} = \frac{1}{72\pi} \frac{m_{\chi}^2}{\Lambda^4}$$

constraints

$$\sigma_{2\to 2}/m_{\rm DM} \lesssim 1 \, {\rm cm}^2/{\rm g}$$

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Self interacting dark matter

Singlet fermions for concreteness, "sterile neutrino"

$$\mathcal{L}_{\rm DM} = \frac{1}{2} \overline{\chi^c} i \partial \!\!\!/ \chi - \frac{1}{2} m_\chi \overline{\chi^c} \chi - y_\chi \overline{L} \widetilde{H} \chi + \frac{1}{4! \Lambda^2} (\overline{\chi^c} \chi) (\overline{\chi^c} \chi) + {\rm h.c.}$$

self-scattering

$$\sigma_{2\to 2} = \frac{1}{72\pi} \frac{m_{\chi}^2}{\Lambda^4}$$

• constraints and possible evidence?

$$0.1 \,\mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{2 \to 2}/m_{\mathrm{DM}} \lesssim$$

 10^{9} 10^{10}

 $1 \,\mathrm{cm}^2/\mathrm{g}$

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Majorana SIMPs

connecting self-interactions to DM production

• number-changing interactions can deplete n_{χ}

→ Strongly Interacting Massive Particle (SIMP) DM

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Majorana SIMPs

connecting self-interactions to DM production

• number-changing interactions can deplete n_{χ}

$$\frac{dn_{\chi}}{dt} + 3H(T)n_{\chi} = -\langle \sigma v^3 \rangle_{4 \to 2} \left(n_{\chi}^4 - n_{\chi}^2 n_{\chi}^{eq^2}(T') \right) \xrightarrow{\chi}_{\chi} \xrightarrow{\chi}_{\chi} \xrightarrow{\chi}_{\chi} \xrightarrow{\chi}_{\chi} \xrightarrow{\chi}_{\chi}$$

→ Strongly Interacting Massive Particle (SIMP) DM

[•] what about T' ?

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Majorana SIMPs

connecting self-interactions to DM production

• number-changing interactions can deplete n_{χ}

- → Strongly Interacting Massive Particle (SIMP) DM
 - what about T' ?

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Solutions to the SIMP heat problem

couple DM to SM kinetically, T' ≡ T [Hochberg+'14]
 dump entropy to SM → need sizable couplings!

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Solutions to the SIMP heat problem

couple DM to SM kinetically, T' ≡ T [Hochberg+'14]
 dump entropy to SM → need sizable couplings!

- start out colder, T'(0) < T(0) [e.g. Bernal, Chu'15]
 - both $3 \rightarrow 2, 4 \rightarrow 2$ possible
 - less predictive, depends on initial condition

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Self-interacting Majorana singlets

1802.02973 w. Takashi Toma, Alejandro Ibarra

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma \upsilon^3 \rangle_{4 \to 2} \left(n_{\chi}^4 - n_{\chi}^2 n_{\chi}^{\text{eq}2} \right)$$

instantaneous freeze-out approx

 $H(T_{\rm fo}) = \langle \sigma v^3 \rangle (T_{\rm fo}') n_{\chi}^3 (T_{\rm fo}')$

Thermal relics

Aultiflavor FIMP

Multiflavor leptophilic

Self-interacting DM 000000 Conclusion O

Iohannes Herms

Populating the dark sector in a UV-complete model add a real scalar!

$$\mathcal{L}_{\varphi,\text{int}} = -\frac{y_{\varphi}}{2}\varphi\overline{\chi^{c}}\chi \qquad -\mu_{\varphi H}\,\varphi|H|^{2} - \frac{1}{2}\lambda_{\varphi H}\,\varphi^{2}|H|^{2}$$

• Higgs portal as possible source of dark entropy

$$\frac{d\left(\rho'/\rho\right)}{dT} = -\frac{1}{HT\rho}\Gamma_{h\to \text{dark}}m_hn_h(T)$$

• relate ρ'/ρ to entropy ratio $S/S' = s/s' \equiv \zeta \in [10^5, 10^{10}]$

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophili

Self-interacting DA

Conclusion

Conclusions

- Thermal relic scenario attractive and plausible
 - implications for particle physics
 - implications for astrophysical DM properties
- production modelling to find range of expectable signatures
- multi-flavour dark matter
 - predicts signals in otherwise untestable FIMP regime
 - can amplify/reduce WIMP signals
- self-interacting dark matter
 - interesting astrophysical hints
 - straightforward production mechanism for MeV-GeV DM

Thermal relics

Multiflavor FIMP 000 Multiflavor leptophilio

Self-interacting DA 000000 Conclusion

Conclusions

- Thermal relic scenario attractive and plausible
 - implications for particle physics
 - implications for astrophysical DM properties
- production modelling to find range of expectable signatures
- multi-flavour dark matter
 - predicts signals in otherwise untestable FIMP regime
 - can amplify/reduce WIMP signals
- self-interacting dark matter
 - interesting astrophysical hints
 - straightforward production mechanism for MeV-GeV DM

Future directions

- self-thermalisation of decoupled dark sectors?
- tests of decoupled dark sectors?
- can we get any mileage out of dark sector entropy?
- where else do we need to model harder to arrive at signatures?

Backup

Gamma ray signals from dark matter

• Gamma ray flux measured by telescopes

$$\frac{d\Phi}{dE_{\gamma}}(E_{\gamma},\psi)=\frac{1}{4\pi}\int_{\rm l.o.s.}ds\,Q\left(E_{\gamma},\vec{r}(s,\psi)\right)$$

source terms

$$Q_{\rm dec}(E, \vec{r}) = \Gamma_{\rm dec} \left(\frac{\rho_{\rm DM}(\vec{r})}{m_{\rm DM}}\right) \frac{dN_Y}{dE}$$
$$Q_{\rm ann}(E, \vec{r}) = \langle \sigma v \rangle_{\rm ann} \left(\frac{\rho_{\rm DM}(\vec{r})}{m_{\rm DM}}\right)^2 \frac{dN_Y}{dE}$$

$$\frac{d\Phi_{\text{extragalactic}}^{\text{dec}}}{dE_{\gamma}}(E_{\gamma}) = \frac{1}{4\pi} \frac{\Omega_{\text{DM}}\rho_c}{m_{\text{DM}}} \int_0^\infty dz \, \frac{1}{H(z)} \frac{d\Gamma}{dE_{\gamma}} \left(E_{\gamma}(1+z)\right) e^{-\tau(E_{\gamma},z)}$$

Numerical solution of the Boltzmann equation

• Boltzmann system for particles $i = \Sigma, \psi_2, \psi_1$

$$\begin{split} \frac{dn_i}{dt} + 3Hn_i &= -\sum_j \langle \sigma v \rangle_{ij \to AB}^{\text{ann}} \left(n_i n_j - n_i^{\text{eq}} n_j^{\text{eq}} \right) \\ &- \sum_j \langle \sigma v \rangle_{iA \to jB}^{\text{sca}} \left(n_i n_A^{\text{eq}} - n_j n_B^{\text{eq}} \frac{n_i^{\text{eq}}}{n_j^{\text{eq}}} \right) \\ &- \sum_j \tilde{\Gamma}_{i \to j} \left(n_i - n_j \frac{n_i^{\text{eq}}}{n_j^{\text{eq}}} \right) \\ \frac{d \ln Y_i}{dx} &= -\sum_j \left[\frac{\langle \sigma v \rangle_{ij \to AB}^{\text{ann}} sY_i \frac{Y_j^{\text{eq}}}{Y_i^{\text{eq}}}}{x\tilde{H}} \right] \left(\frac{Y_j}{Y_i} \frac{Y_i^{\text{eq}}}{Y_j^{\text{eq}}} - \frac{Y_i^{\text{eq}\,2}}{Y_i^2} \right) \\ &- \sum_j \left[\frac{\langle \sigma v \rangle_{iA \to jB}^{\text{sca}} sY_A^{\text{eq}}}{x\tilde{H}} + \frac{\tilde{\Gamma}_{i \to j}}{x\tilde{H}} \right] \left(1 - \frac{Y_j}{Y_i} \frac{Y_i^{\text{eq}}}{Y_j^{\text{eq}}} \right) \end{split}$$

• fast rates give stiff equation \rightarrow use summed equations if chemical equilibrium

34 Thermal relics beyond minimal dark sectors

Johannes Herms

Evolution of a decoupled dark sector

Populating the dark sector

energy transfer from SM through Higgs decay

$$\frac{d\rho'}{dt} + CH\rho' = \frac{g_i}{(2\pi)^3} \int f_h(p) E_h(p) \Gamma_h(E_h(p)) d^3p = \Gamma_{h \to \text{dark}} m_h n_h(T)$$
$$\frac{d(\rho'/\rho)}{dT} = -\frac{1}{HT\rho} \Gamma_{h \to \text{dark}} m_h n_h(T)$$

• relate ρ'/ρ to entropy ratio $S/S' = s/s' \equiv \zeta$

$$T'_{\rm fi} = T_{\rm fi} \left(\frac{g_{\rm SM}(T_{\rm fi})}{g_{\rm dark}(T'_{\rm fi})} \cdot \frac{\rho'}{\rho} \bigg|_{\rm fi} \right)^{1/4}$$
$$\zeta \equiv \frac{s}{s'} = \left(\frac{T}{T'} \right)^3 \frac{h_{\rm eff}(T)}{h'_{\rm eff}(T')} \bigg|_{T=10 \,\rm GeV}$$

SIMP Boltzmann equation

General Boltzmann eqn. can be recast as

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v^3 \rangle_{4 \to 2} \left(n_{\chi}^4 - n_{\chi}^2 n_{\chi}^{\text{eq}\,2} \right)$$

where in the non-rel.-limit

$$\langle \sigma v^3 \rangle_{4 \to 2} \simeq \frac{\int d^3 v_1 \, d^3 v_2 \, d^3 v_3 \, d^3 v_4 \left(\sigma v^3 \right) \delta^3 (\vec{v}_1 + \vec{v}_2 + \vec{v}_3 + \vec{v}_4) e^{-\frac{m_\chi}{2T'} \left(v_1^2 + v_2^2 + v_3^2 + v_4^2 \right)}}{\int d^3 v_1 \, d^3 v_2 \, d^3 v_3 \, d^3 v_4 \, \delta^3 (\vec{v}_1 + \vec{v}_2 + \vec{v}_3 + \vec{v}_4) e^{-\frac{m_\chi}{2T'} \left(v_1^2 + v_2^2 + v_3^2 + v_4^2 \right)}}$$

with all particle physics contained in

$$\left(\sigma v^3\right) = \frac{\sqrt{3}}{6144\pi m_{\chi}^4} \int \frac{d\Omega}{4\pi} \overline{|\mathcal{M}|^2}$$

result

$$\frac{1201}{245760\sqrt{3}\pi\Lambda^8}\frac{T'^2}{m_{\chi}^2}$$

• more versatile treatment, including relativistic effects [1906.07659]

$$\Gamma_{4\to 2} = \Gamma_{2\to 4} e^{2\mu/7}$$

