Outlook 000000 Conclusion O

A light second Higgs as portal to Dark Matter

Johannes Herms, Sudip Jana, Shaikh Saad, Vishnu P.K.

Seminar Max-Planck-Institut für Kernphysik

PRL.129.091803

24.10.2022

Sub-GeV thermal relics

Outlook 000000 Conclusion O

What is Dark Matter ?

[Springel+'06]

Outlook 000000 Conclusion O

What is Dark Matter made of?

Study the observed DM

- what are the smallest collapsed structures in the Universe?
- does DM interact with itself? with baryons?
- \rightarrow so far, mostly limits

Extrapolate to smaller scales

- make up dark matter candidates
- predict specific phenomena
- look for them in the lab (and astrophysics)
- \rightarrow theory needed, speculative

Sub-GeV thermal relics ○●○○○○ Light 2HDM portal 0000000000 Outlook 000000 Conclusion O

Thermal relic dark matter

suppose there exists a stable neutral particle beyond the Standard Model...

• thermal relic \leftrightarrow was in thermal equilibrium with SM bath

• relic abundance from cosmic expansion and particle properties

 \Rightarrow general framework, simplest cosmology, useful prediction

Sub-GeV	thermal	relics
00000	00	

Outlook 000000 Conclusion O

WIMPs - experimental status/perspective

• Direct detection $\sigma_{\chi n}$

Sub-GeV thermal relics

Light 2HDM portal

Outlook 000000 Conclusion O

WIMPs - experimental status/perspective

• Direct detection $\sigma_{\chi n}$

[Snwm-Essig+'22]

Sub-GeV	thermal	relics
00000	00	

Outlook 000000 Conclusion O

WIMPs – experimental status/perspective

- Direct detection $\sigma_{\chi n}$
- Indirect detection $\langle \sigma v
 angle_{v \sim v_{
 m gal}}$

Sub-GeV tl	hermal	relics
000000)	

Outlook 000000 Conclusion O

WIMPs – experimental status/perspective

- Direct detection $\sigma_{\chi n}$
- Indirect detection $\langle \sigma v
 angle_{v \sim v_{
 m gal}}$

Sub-GeV tl	hermal	relics
000000)	

Outlook 000000 Conclusion O

WIMPs – experimental status/perspective

- Direct detection $\sigma_{\chi n}$
- Indirect detection $\langle \sigma v
 angle_{v \sim v_{
 m gal}}$

Sub-GeV thermal relics	
00000	

Outlook 000000

WIMPs - experimental status/perspective

- Direct detection $\sigma_{\chi n}$
- Indirect detection $\langle \sigma v \rangle_{v \sim v_{\rm gal}}$

[Bartels+'17]

Sub-GeV	thermal	relics
00000	00	

Outlook 000000 Conclusion O

WIMPs - experimental status/perspective

- Direct detection $\sigma_{\chi n}$
- Indirect detection $\langle \sigma v
 angle_{v \sim v_{
 m gal}}$
- Collider $\sigma_{e^+e^- \to \chi \chi + X}$

 \Rightarrow good chances to find something soon! \Rightarrow plenty of motivation to consider sub-GeV DM!

Light 2HDM porta

Outlook 000000 Conclusion O

The lightest WIMP?

Lee-Weinberg and BBN

Lee Weinberg bound

$m_{\rm WIMP} > 2 \,{\rm GeV}$

Cosmological Lower Bound on Heavy-Neutrino Masses

Benjamin W. Lee^(a) Fermi National Accelerator Laboratory,^(b) Batavia, Illinois 60510

and

Steven Weinberg^(c) Stanford University, Physics Department, Stanford, California 94305 (Received 13 May 1977)

The present cosmic mass density of possible stable neutral heavy leptons is calculated in a standard cosmological model. In order for this density not to exceed the upper limit of 2×10^{-28} g/cm³, the lepton mass would have to be greater than a lower bound of the order of 2 GeV.

Light 2HDM portal

Outlook 000000 Conclusion O

Iohannes Herms

The lightest WIMP?

Lee-Weinberg and BBN

Lee Weinberg bound

 $m_{V-A G_F WIMP} > 2 \text{ GeV}$

- BBN + CMB constraints $m_{\text{WIMP}} \gtrsim 6 \text{ MeV}$
 - standard cosmology successfully reproduces light element abundances
 - DM annihilation products can spoil this
 - photodissociation

• modified expansion history from additional $ho_{
m products}~(
ightarrow N_{
m eff})$

Light 2HDM portal

Outlook 000000 Conclusion O

Sub-GeV thermal relics

Requirements

WIMP miracle

$$\frac{\Omega_{\rm DM} h^2}{0.12} \sim \frac{{\rm few} \times 10^{-9}\,{\rm GeV}^{-2}}{\langle \sigma v \rangle} \sim \frac{m_{\rm EW}^2 G_F^2}{\langle \sigma v \rangle}$$

sub-GeV DM

$$\langle \sigma v \rangle \sim \frac{m_{\chi}^2 g^4}{M^4}, \qquad m_{\chi} \sim 100 \,\mathrm{MeV} \Rightarrow \begin{cases} M = 100 \,\mathrm{GeV}, \ g = 1 \\ M = 100 \,\mathrm{MeV}, \ g = 10^{-3} \end{cases}$$

 \Rightarrow need new light mediator!

Light 2HDM portal

Outlook 000000 Conclusion O

Sub-GeV thermal relics

Requirements

WIMP miracle

 $\frac{\Omega_{\rm DM} h^2}{0.12} \sim \frac{{\rm few} \times 10^{-9}\,{\rm GeV}^{-2}}{\langle \sigma v \rangle} \sim \frac{m_{\rm EW}^2 G_F^2}{\langle \sigma v \rangle}$

sub-GeV DM

$$\langle \sigma v \rangle \sim \frac{m_{\chi}^2 g^4}{M^4}, \qquad m_{\chi} \sim 100 \,\mathrm{MeV} \Rightarrow \begin{cases} M = 100 \,\mathrm{GeV}, \ g = 1 \\ M = 100 \,\mathrm{MeV}, \ g = 10^{-3} \end{cases}$$

 \Rightarrow need new light mediator!

- conclusion in principle relaxed in SIMP scenarios [Hochberg+'1402.5143], [Kuflik+'1512.04545]
 - everyone still introduces light mediators (eg. [Hochberg+'1512.07917], [Choi+'1707.01434], [Hochberg+'1806.10139])

Light 2HDM portal

Outlook 000000 Conclusion O

Building blocks for light thermal DM

- DM candidate
 - neutral particle
 - stability assume \mathbb{Z}_2 dark parity
- mediator
 - coupling to DM
 - coupling to light SM particles

Sub-GeV thermal relics OOOOO Sub-GeV WIMPs Outlook 000000

Building blocks for light thermal DM

- DM candidate
 - neutral particle
 - stability assume \mathbb{Z}_2 dark parity
- mediator
 - coupling to DM
 - coupling to light SM particles
- options?
 - dark photon $U(1)_D$, kinetically mixed with $U(1)_Y$
 - $U(1)_{L_{\mu}-L_{\tau}} Z'$
 - scalar singlet, $\phi(H^{\dagger}H)$
 - purely phenomenological, eg. $\phi \bar{f} f \Rightarrow \frac{1}{M} \phi_{\text{med}} H \bar{f}_L f_R$

Sub-GeV thermal relics OOOOO Sub-GeV WIMPs Outlook 000000

Building blocks for light thermal DM

- DM candidate
 - neutral particle
 - stability assume \mathbb{Z}_2 dark parity
- mediator
 - coupling to DM
 - coupling to light SM particles

options?

- dark photon $U(1)_D$, kinetically mixed with $U(1)_Y$
- $U(1)_{L_{\mu}-L_{\tau}} Z'$
- scalar singlet, $\phi(H^{\dagger}H)$
- purely phenomenological, eg. $\phi \bar{f} f \Rightarrow \frac{1}{M} \phi_{\text{med}} H \bar{f}_L f_R$

this talk:

light mediator $\in H_2$, second Higgs doublet

Light 2HDM portal

Outlook 000000 Conclusion O

The two-Higgs-Doublet model

eg. [Branco+'1106.0034]

- add a second scalar doublet to the SM
 - "Higgs" basis, where only one gets a vev

$$H_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} (v + \phi_1^0 + iG^0) \end{pmatrix}, \qquad H_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} (\phi_2^0 + iA) \end{pmatrix}$$

Light 2HDM portal

Outlook 000000 Conclusion O

The two-Higgs-Doublet model

eg. [Branco+'1106.0034]

- add a second scalar doublet to the SM
 - "Higgs" basis, where only one gets a vev

$$H_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} (v + \phi_1^0 + iG^0) \end{pmatrix}, \qquad H_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} (\phi_2^0 + iA) \end{pmatrix}$$

scalar potential

$$V(H_1, H_2, S) = \mu_1^2 H_1^{\dagger} H_1 + \mu_2^2 H_2^{\dagger} H_2 - \{\mu_{12}^2 H_1^{\dagger} H_2 + \text{h.c.}\} + \frac{\lambda_1}{2} (H_1^{\dagger} H_1)^2 + \frac{\lambda_2}{2} (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \left\{ \frac{\lambda_5}{2} (H_1^{\dagger} H_2)^2 + \text{h.c.} \right\} + \left\{ \left[\lambda_6 (H_1^{\dagger} H_1) + \lambda_7 (H_2^{\dagger} H_2) \right] H_1^{\dagger} H_2 + \text{h.c.} \right\}$$

Light 2HDM portal

Outlook 000000 Conclusion O

The two-Higgs-Doublet model

eg. [Branco+'1106.0034]

- add a second scalar doublet to the SM
 - "Higgs" basis, where only one gets a vev

$$H_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} (v + \phi_1^0 + iG^0) \end{pmatrix}, \qquad H_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} (\phi_2^0 + iA) \end{pmatrix}$$

scalar potential

$$V(H_1, H_2, S) = \mu_1^2 H_1^{\dagger} H_1 + \mu_2^2 H_2^{\dagger} H_2 - \{\mu_{12}^2 H_1^{\dagger} H_2 + \text{h.c.}\} + \frac{\lambda_1}{2} (H_1^{\dagger} H_1)^2 + \frac{\lambda_2}{2} (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \left\{ \frac{\lambda_5}{2} (H_1^{\dagger} H_2)^2 + \text{h.c.} \right\} + \left\{ \left[\lambda_6 (H_1^{\dagger} H_1) + \lambda_7 (H_2^{\dagger} H_2) \right] H_1^{\dagger} H_2 + \text{h.c.} \right\}$$

alignment limit

$$h_{\rm SM} \simeq \phi_1^0, \ H_{\rm new} \simeq \phi_2^0, \ A, \ H^{\pm}$$

Outlook 000000 Conclusion O

Light scalars in the 2HDM

• scalar masses in alignment limit:

$$\begin{split} m_{h}^{2} &= \lambda_{1}v^{2}, \\ m_{H}^{2} &= \mu_{22}^{2} + \frac{v^{2}}{2}(\lambda_{3} + \lambda_{4} + \lambda_{5}), & \longrightarrow \text{may be small} \\ m_{A}^{2} &= m_{H}^{2} - v^{2}\lambda_{5}, & \longrightarrow \text{may be split} \\ m_{H^{\pm}}^{2} &= m_{H}^{2} - v^{2}\frac{(\lambda_{4} + \lambda_{5})}{2} & \longrightarrow \text{may be split} \end{split}$$

- choose $m_H \ll m_A^2, m_{H^\pm}^2$, and for simplicity $m_A^2 \sim m_{H^\pm}^2$
- perturbativity: $|\lambda| < \sqrt{4\pi} \Rightarrow m_A, m_{H^{\pm}} \lesssim 460 \text{ GeV}$

we can have a sub-GeV scalar $H \in 2HDM$

see [Jana, Vishnu, Saad'2003.03386]

Sub-GeV thermal relics

Light 2HDM portal

Outlook 000000 Conclusion O

Light 2HDM scalar

Electroweak precision observables

... is there a hint already?

• mass splittings between members of an electroweak multiplet contribute to EW oblique parameters

$$T = \frac{1}{16\pi s_W^2 M_W^2} \left(\mathcal{F}(m_{H^{\pm}}^2, m_H^2) + \mathcal{F}(m_{H^{\pm}}^2, m_A^2) - \mathcal{F}(m_H^2, m_A^2) \right)$$

with
$$\mathcal{F}(m_1^2, m_2^2) \equiv \frac{1}{2} \left(m_1^2 + m_2^2\right) - \frac{m_1^2 m_2^2}{m_1^2 - m_2^2} \ln\left(\frac{m_1^2}{m_2^2}\right)$$

• $m_{A,H^{\pm}} \lesssim 250 \, {
m GeV}$ easy; if larger need $m_A^2 \sim m_{H^{\pm}}^2$

Sub-GeV thermal relics

Light 2HDM portal

Outlook 000000 Conclusion O

Light 2HDM scalar

Electroweak precision observables

... is there a hint already?

• mass splittings between members of an electroweak multiplet contribute to EW oblique parameters

$$T = \frac{1}{16\pi s_W^2 M_W^2} \left(\mathcal{F}(m_{H^{\pm}}^2, m_H^2) + \mathcal{F}(m_{H^{\pm}}^2, m_A^2) - \mathcal{F}(m_H^2, m_A^2) \right)$$

with
$$\mathcal{F}(m_1^2, m_2^2) \equiv \frac{1}{2} \left(m_1^2 + m_2^2 \right) - \frac{m_1^2 m_2^2}{m_1^2 - m_2^2} \ln \left(\frac{m_1^2}{m_2^2} \right)$$

• $m_{A,H^{\pm}} \lesssim 250 \text{ GeV}$ easy; if larger need $m_A^2 \sim m_{H^{\pm}}^2$

 \rightarrow CDF II M_W indications for T > 0?!

Johannes Herms

Sub-GeV thermal relics	Light 2HDM portal	Outlook 000000	Conclusion O
Light 2HDM scalar			

Muon g-2 ... talking about anomalies.

• muon anomalous magnetic moment: $\Delta a_{\mu} = 251 \pm 59 \times 10^{-11} \rightarrow \text{``}4.2\sigma\text{''}$

but: lattice results agree more with a_{μ}^{\exp} than a_{μ}^{the}

• light scalar induced loop contributes positively \rightarrow indicates mass splitting $m_H \ll m_A$?!

see [2003.03386]

Outlook 000000 Conclusion O

New Scalars at Colliders

direct constraints on the mass spectrum

- existing constraints
 - $m_A > m_Z m_H \sim 90 \text{ GeV to forbid } Z \rightarrow HA$
 - charged scalar production: $m_{H^{\pm}} \gtrsim 110 \text{ GeV}$ from LEP $W \rightarrow vl$ universality
 - LHC constraints evaded for substantial $Br_{\nu\tau}$
- signature processes

•
$$pp \rightarrow H^{\pm}H^{\pm}jj \rightarrow l^{\pm}_{\alpha}l^{\pm}_{\beta}jj + E_T$$

Sub-GeV thermal relics	Light 2HDM portal	Outlook
000000	0000000000	000000
Light 2HDM scalar		

Conclusion O

SM Higgs properties

- alignment limit: *h* mostly SM-like
- $h \rightarrow HH \rightarrow l^+l^-l^+l^-$ / invisible

$$V \supset vhH^2 \frac{1}{2} (\lambda_3 + \lambda_4 + \lambda_5) \longrightarrow \lambda_3 \simeq -(\lambda_4 + \lambda_5) \propto m_{H^+}^2 / v^2$$

• $h \rightarrow \gamma \gamma$
 $V \supset \lambda_3 vhH^+H^-$

negatively interferes with W-loop, predicts $R_{\gamma\gamma} < 1$; LHC data prefer $R_{\gamma\gamma} \gtrsim 1$ [Okawa,Omura'2011.04788]

Outlook 000000 Conclusion O

H enables light thermal DM

• coupling to light SM fermions \rightarrow leptons for convenience

$$-\mathcal{L}_Y \supset \widetilde{Y}_l \bar{\psi}_L H_1 \psi_R + Y_l \bar{\psi}_L H_2 \psi_R + \text{h.c.}$$

• in alignment limit: $\widetilde{Y}_l = \text{diag}(m_e, m_\mu, m_\tau)/v$

• $Y_l \rightarrow$ mediator coupling, DM phenomenology, flavour violation

• simplest DM candidate: real scalar S

$$-\mathcal{L}_{S} \supset \frac{\mu_{S}^{2}}{2}S^{2} + \frac{\lambda_{S}}{4!}S^{4} + \frac{\kappa_{1}}{2}S^{2}(H_{1}^{\dagger}H_{1}) + \frac{\kappa_{2}}{2}S^{2}(H_{2}^{\dagger}H_{2}) + \left\{\frac{\kappa_{12}}{2}S^{2}(H_{1}^{\dagger}H_{2}) + h.c.\right\}$$

Sub-GeV thermal relics

Light 2HDM portal

Outlook 000000 Conclusion O

Minimal forbidden DM

Sub-GeV thermal relics

• energy injection $\propto Q_{\rm ann} m_{\rm DM} \propto n_{\rm DM}^2 m_{\rm DM} \propto m_{\rm DM}^{-1}$

• WIMPs with $m_{\rm WIMP} \lesssim 10 \, {\rm GeV}$ require

 $\langle \sigma v \rangle_{\rm today} \ll \langle \sigma v \rangle_{\rm freeze-out}$

 \rightarrow DMID very semsitive!

Sub-GeV thermal relics

Outlook 000000 Conclusion O

Minimal forbidden DM

Forbidden Dark Matter

[Griest,Seckel'91][DAgnolo,Ruderman'1505.07107]

• kinematically forbidden annihilation, $2m_{\chi} < m_{l_1} + m_{l_2}$

$$\langle \sigma v \rangle_{\chi\chi \rightarrow ll} = \langle \sigma v \rangle_{ll \rightarrow \chi\chi} e^{-2\Delta(m_\chi/T)}$$

suppressed by mass splitting

$$\Delta = (m_{l_1} + m_{l_2} - 2m_{\chi})/2m_{\chi}$$

• $\langle \sigma v \rangle_{\chi\chi \to ll}$ zero at late times $T \to 0$

 \rightarrow spoiler: $\langle \sigma v \rangle_{\chi\chi \rightarrow \gamma\gamma}$ allowed!

Outlook 000000 Conclusion O

Forbidden DM results

Forbidden DM results

Forbidden DM results

Outlook 000000

Forbidden DM results

- 2 oom sensitivity boost from proposed telescopes [Bartels+'1703.02546]
- γ -ray line signal close to m_{μ}, m_{τ} as smoking-gun signal

Sub-GeV thermal relics

Light 2HDM portal

Outlook ••••••

2HDM portal to general dark sectors

Light 2HDM portal - Fermion DM

need scalar singlet S to couple to DM

• annihilation *p*-wave \rightarrow DMID suppressed

 $Y_{\gamma} = 0.1$

Sub-GeV thermal relics 000000 Purely scalar model for everything? Light 2HDM porta

Outlook

Conclusion O

Neutrino masses?

purely scalar model for DM and M_{ν} : Zee model

- introduce a charged scalar singlet $\eta^+ \sim (1, 1, 1)$
 - $-\mathcal{L}_Y \supset f_{ij}L_i \epsilon L_j \eta^+ + \text{h.c.}$ $-V \supset \mu H_1 \epsilon H_2 \eta^- + \text{h.c.}$

leads to neutrino masses

$$M_{\nu} \propto \left(f m_E Y_l - Y_l^T m_E f \right)$$

• DM constraints

 non-forbidden channels must have negligible coupling
 $\rightarrow Y_l$ texture
 $\bullet~{\sf LFV}$

• $\mu \rightarrow e\gamma, \tau \rightarrow e\gamma$, and $\tau \rightarrow \mu\gamma$ at one-loop

 $\Rightarrow \mu \tau$ coupled scenario works out! predicts $\mu \rightarrow e \gamma$ at reach of MEG-II

Sub-GeV thermal relics 000000 Maybe HL-LHC is exciting after all? Light 2HDM portal

Outlook ○○●○○○ Conclusion O

HL-LHC and the heavy scalars

2011.04788, 2208.05487 Iguro, Okawa, Omura: light scalar in IDM, pheno similar to aligned 2HDM

• $pp \rightarrow \gamma/Z \rightarrow H^+H^-$, AH depend on EW couplings only

• mono-Z search \rightarrow Br(A \rightarrow ZH)

Sub-GeV thermal relics 000000 Maybe HL-LHC is exciting after all? Light 2HDM portal

Outlook ○○●○○○ Conclusior O

HL-LHC and the heavy scalars

2011.04788, 2208.05487 Iguro, Okawa, Omura: light scalar in IDM, pheno similar to aligned 2HDM

• $pp \rightarrow \gamma/Z \rightarrow H^+H^-$, AH depend on EW couplings only

- mono-Z search \rightarrow Br(A \rightarrow ZH)
- [OkawaOmura'20] consider t-channel model

Sub-GeV thermal relics 000000 Maybe HL-LHC is exciting after all? Light 2HDM portal

Outlook ○○●○○○ Conclusion O

HL-LHC and the heavy scalars

2011.04788, 2208.05487 Iguro, Okawa, Omura: light scalar in IDM, pheno similar to aligned 2HDM

• $pp \rightarrow \gamma/Z \rightarrow H^+H^-$, *AH* depend on EW couplings only

- mono-Z search \rightarrow Br(A \rightarrow ZH)
- [OkawaOmura'20] consider t-channel model

$$\begin{split} & \operatorname{Br}(H^{\pm} \to HW^{\pm}) + \operatorname{Br}(H^{\pm} \to l\psi) = 1 \\ & \operatorname{Br}(H^{\pm} \to HW^{\pm}) \simeq \operatorname{Br}(A \to HZ) \end{split}$$

• mono-Z + slepton searches cover parameter space (\sqrt{L} -scaling at HL-LHC)

Sub-GeV thermal relics	Light 2HDM portal	Outlook	Conclusion
000000	000000000	000000	0
How dare you light scalar?			

Coincidence?!

• Br(
$$h \rightarrow \text{inv.}$$
) $\ll 1$
 $|\lambda_3 + \lambda_4 + \lambda_5| \leq 10^{-2}$
• $m_H^2 = \mu_2^2 + v^2(\lambda_3 + \lambda_4 + \lambda_5)$
 $\Delta \lambda_{345} \leq 10^{-6}$

 \Rightarrow pretty special point in parameter space!

tuned? radiatively stable? motivated? is this telling us something?

Sub-GeV thermal relics 000000 How dare you light scalar? Light 2HDM portal

Outlook ○○○○●○ Conclusion O

Coincidence or Symmetry?

• Symmetries of the 2HDM

[Ferreira+'21]

● constraints on neutral scalar masses → some indicate a massless scalar!

Sub-GeV thermal relics Light 2HDM portal Outlook
000000
How dare you light scalar?
Symmetry?

Conclusion O

preliminary

• Spontaneously broken U(1) symmetry results in massless scalar $\Phi_1 \rightarrow \Phi_1 e^{i\theta}, \Phi_2 \rightarrow \Phi_2 e^{-i\theta}$

⇔ there exists a basis where $\mu_{12} = 0$, $\lambda_{5,6,7} = 0$ basis independent conditions:

[Ferreira+'21]

Case C₀**D:**
$$e_k = q_k = 0$$
, $2(e_j^2 M_i^2 + e_i^2 M_j^2) M_{H^{\pm}}^2 = v^2 (e_j q_j M_i^2 + e_i q_i M_j^2 - M_i^2 M_j^2)$
 $2(e_j^2 M_i^2 + e_i^2 M_j^2) q = (e_j q_i - e_i q_j)^2 + M_i^2 M_j^2$, $M_k = 0$.

Sub-GeV thermal relics Outlook 00000 How dare you light scalar? Symmetry?

> • Spontaneously broken U(1) symmetry results in massless scalar $\Phi_1 \rightarrow \Phi_1 e^{i\theta}, \Phi_2 \rightarrow \Phi_2 e^{-i\theta}$

 \Leftrightarrow there exists a basis where $\mu_{12} = 0, \lambda_{5.6.7} = 0$ basis independent conditions:

[Ferreira+'21]

Case C₀**D:** $e_k = q_k = 0$, $2(e_j^2 M_i^2 + e_i^2 M_j^2) M_{H^{\pm}}^2 = v^2 (e_j q_j M_i^2 + e_i q_i M_j^2 - M_i^2 M_j^2)$ $2(e_i^2 M_i^2 + e_i^2 M_i^2)q = (e_i q_i - e_i q_i)^2 + M_i^2 M_i^2, \quad M_k = 0.$

• are these compatible with phenomenology? $\begin{cases} m_h \sim 125 \text{ GeV} \\ m_H \sim 0 \\ m_{A,H^{\pm}} \gg m_H \\ \text{Br}_{h \rightarrow \text{HH}} \ll 1 \end{cases}$

preliminary

• Spontaneously broken U(1) symmetry results in massless scalar $\Phi_1 \rightarrow \Phi_1 e^{i\theta}, \Phi_2 \rightarrow \Phi_2 e^{-i\theta}$

⇔ there exists a basis where $\mu_{12} = 0$, $\lambda_{5,6,7} = 0$ basis independent conditions:

[Ferreira+'21]

• are these compatible with phenomenology?

$$m_h \sim 125 \, {
m GeV}$$

 $m_H \sim 0$
 $m_{A,H^{\pm}} \gg m_H$
 ${
m Br}_{h \to {
m HH}} \ll 1$

but massless pseudoscalar looking good!

Sub-GeV thermal relics

Outlook 000000

Light 2HDM Portal to Dark Matter

- Sub-GeV thermal relics
 - lots of potential in near future
 - require light mediator, limited options
- Iight 2HDM portal
 - 2HDM may supply light scalar mediator
 - scalar forbidden $DM \rightarrow \gamma$ ray signature
 - heavy scalars discoverable at LHC?
- innocent model building fun or any truth to this?
 - purely scalar model for DM and m_{ν} ?
 - theory justification for light scalar?

looking forward to your comments!

Johannes Herms

herms@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik

Sudip Jana

sudip.jana@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik Vishnu P.K.

vipadma@okstate.edu Oklahoma State University

Shaikh Saad

shaikh.saad@unibas.ch University of Basel

Relic abundance results - $\mu\mu$ $\kappa_{ij} = 10^{-3}$ fixed

• $(g-2)_{\mu}$ [FNAL'2104.03281][Jana+'2003.03386]

- E137 beam dump [Bjorken+'88][Batell+'1712.10022]
- SN energy loss [Croon+'2006.13942]

Relic abundance results - $\mu \tau$ $\kappa_{ij} = 10^{-3}$ fixed

Johannes Herms 🧏

Relic abundance results - $\tau \tau$ $\kappa_{ij} = 10^{-3}$ fixed

•
$$e^+e^- \rightarrow \gamma H$$
, with $H \rightarrow$ dark
[BaBaR'1702.03327][Dolan+'1709.00009][DAgnolo+'2012.11766]
• $Z \rightarrow \bar{\tau}\tau H$ adds to expt. Br $(Z \rightarrow \bar{\tau}\tau)$ [Chen+'1807.03790

•0

Neutrino masses - details

we provide a benchmark

$$M_{\nu} = a_0 \left(f m_E Y_l - Y_l^T m_E f \right)$$

$$a_0 = \frac{\sin 2\omega}{16\pi^2} \ln \left(\frac{m_{h^+}^2}{m_{H^+}^2} \right); \quad \sin 2\omega = \frac{\sqrt{2}\nu\mu}{m_{h^+}^2 - m_{H^+}^2},$$

$$Y_l = 10^{-4} \begin{pmatrix} 0 & 0 & 3.494 \times 10^{-4} \\ 0 & 0 & 5 \\ -10^{-3} & -0.382 & 0.542 \end{pmatrix},$$

$$a_0 \cdot f = 10^{-7} \begin{pmatrix} 0 & 2.135 & 0 \\ -2.135 & 0 & 2.266 \\ 0 & -2.266 & 0 \end{pmatrix}.$$

Neutrino observables associated with this fit yield,

$$\begin{split} \Delta m^2_{21} &= 7.486 \times 10^{-5} eV^2, \ \Delta m^2_{31} = 2.511 \times 10^{-3} eV^2, \\ \theta_{12} &= 34.551^\circ, \ \theta_{23} = 47.830^\circ, \ \theta_{13} = 8.545^\circ. \end{split}$$

