Phenomenology of Majorons

Julian Heeck

MPIK Heidelberg

3.7.2017

UNIVERSITÉ LIBRE DE BRUXELLES UIB

Neutrinos have masses and mix

- Mass splittings
- Angles
- Phase(s) ×
- Ordering ×
- Mass scale 🗙
- Dirac vs.
 Majorana X
- Mass origin 🗙

Neutrinos have masses and mix

- Mass splittings
- Angles
- Phase(s) ×
- Ordering ×
- Mass scale X
- Dirac vs.
 Majorana X
- Mass origin 🗙

Mass origin via seesaw mechanism

• Introduce 3 singlets N_R :

$$\label{eq:L} \begin{split} \mathrm{L} &= -\overline{L} y H N_R - \frac{1}{2} \overline{N}_R^c M_R N_R + \mathrm{h.c.} \\ & \overbrace{m_D}^{\prime} \end{split}$$

$$\label{eq:matrix} \begin{array}{l} \bullet \mbox{ For } M_R \gg m_D \colon M_\nu \simeq -m_D M_R^{-1} m_D^T \\ \\ \simeq 1 eV \left(\frac{m_D}{100 GeV} \right)^2 \left(\frac{10^{13} GeV}{M_R} \right). \end{array}$$

- Majorana neutrinos: hope for $0\nu\beta\beta$!
- Bonus: leptogenesis (even with majoron).

[Aristizabal Sierra, Tortola, Valle, Vicente, '14]

Parametrization of our ignorance "Known": $M_{\nu} = U \operatorname{diag}(m_1, m_2, m_3) U^{\mathsf{T}} \simeq -m_{\mathsf{D}} M_{\mathsf{R}}^{-1} m_{\mathsf{D}}^{\mathsf{T}}$ PMNS mixing matrix Parametrization of our ignorance "Known": $M_{\nu} = U \operatorname{diag}(m_1, m_2, m_3) U^{\mathsf{T}} \simeq -m_{\mathsf{D}} M_{\mathsf{R}}^{-1} m_{\mathsf{D}}^{\mathsf{T}}$ PMNS mixing matrix

9 parameters not known:

• M_R (3 parameters) and

$$m_D = i U \sqrt{diag(m_j)} R^T \sqrt{M_R}$$

with $R^T R = 1$.

[Casas, Ibarra, hep-ph/0103065]

•
$$\{\mathbf{m}_{\mathsf{D}}, \mathsf{M}_{\mathsf{R}}\} \leftrightarrow \{\mathsf{M}_{\nu}, \mathsf{M}_{\mathsf{R}}, \mathsf{R}\}.$$

Parametrization of our ignorance "Known": $M_{\nu} = U \operatorname{diag}(m_1, m_2, m_3) U^{\mathsf{T}} \simeq -m_{\mathsf{D}} M_{\mathsf{R}}^{-1} m_{\mathsf{D}}^{\mathsf{T}}$ PMNS mixing matrix 9 parameters not known: Or • M_{R} (3 parameters) and • Just $m_D m_D^{\dagger}$. $m_D = iU\sqrt{diag(m_i)}R^T\sqrt{M_R}$ [Davidson, Ibarra, hep-ph/0104076] Hermitian, contains 9 with $R^T R = 1$. real parameters. [Casas, Ibarra, hep-ph/0103065] • $\{\mathbf{m}_{\mathsf{D}}, \mathbf{M}_{\mathsf{R}}\} \leftrightarrow \{\mathbf{M}_{\nu}, \mathbf{m}_{\mathsf{D}}\mathbf{m}_{\mathsf{D}}^{\dagger}\}.$ • $\{\mathbf{m}_{\mathsf{D}}, \mathsf{M}_{\mathsf{R}}\} \leftrightarrow \{\mathsf{M}_{\nu}, \mathsf{M}_{\mathsf{R}}, \mathsf{R}\}.$

Spontaneous B – L breaking

• Instead of explicitly, break $U(1)_{B-L}$ spontaneously:

(inflaton?)

$$L = -\overline{L}yHN_{R} - \frac{1}{2}\overline{N}_{R}^{c}\lambda\sigma N_{R} + h.c.$$
• New scalar $\sigma = (f + \sigma^{0} + iJ)/\sqrt{2}.$
Breaking scale Heavy scalar Majoron

[Chikashige, Mohapatra, Peccei, '81; Schechter, Valle, '82]

• Scalar potential:

$$\mathsf{V} = \mathsf{V}_{\mathsf{H}} + \lambda_{\mathsf{H}\sigma} \left(\frac{\mathsf{v}^2}{2} - |\mathsf{H}|^2 \right) \left(\frac{\mathsf{f}^2}{2} - |\sigma|^2 \right) + \lambda_{\sigma} \left(\frac{\mathsf{f}^2}{2} - |\sigma|^2 \right)^2$$

Julian Heeck (ULB) - Majorons

Pseudo-Goldstone

- Spontaneous global U(1) breaking gives $m_J = 0$.
- Non-zero mass from:
 - Breaking by quantum gravity, e.g. $\Delta V = \lambda \frac{\sigma^5}{M_{\rm Pl}} + h.c.$ $\Rightarrow m_J \simeq \lambda \left(\frac{f}{10^8 \text{GeV}}\right)^{\frac{3}{2}} \text{TeV}.$

[Babu, Rothstein, Seckel, '93; Akhmedov, Berezhiani, Mohapatra, Senjanovic '93]

– Anomalies, e.g. if $U(1)_{B-L} = U(1)_{PQ.}$

[Mohapatra, Senjanovic '83; Langacker, Peccei, Yanagida '86; SMASH '16]

– Explicit breaking, e.g. $\Delta V = \frac{1}{2}m_J^2 J^2$.

Stay ignorant here, just put m_j.

Tree-level couplings
•
$$L = iJ \sum_{j} \left(\frac{m_{j}}{2f}\right) \overline{\nu}_{j} \gamma_{5} \nu_{j} + \dots$$

Tiny coupling: neutrino mass over B-L breaking scale!

• Long lifetime \rightarrow majoron dark matter!

[Berezinsky, Valle '93; Lattanzi, Valle '07; Queiroz, Sinha, '14]

$$\Gamma(\mathsf{J} \to \nu\nu) \simeq \frac{1}{3 \times 10^{19} \text{s}} \left(\frac{m_{\mathsf{J}}}{\text{MeV}}\right) \left(\frac{10^9 \text{GeV}}{\text{f}}\right)^2 \left(\frac{\sum_j m_j^2}{10^{-3} \text{eV}^2}\right)$$

• General limit from DM \rightarrow invisible: $\tau > 5 \times 10^{18}$ s.

[Audren, Lesgourgues, Mangano, Serpico, Tram, '14]

 $10 \times \tau_{\text{I Iniverse}}$

Julian Heeck (ULB) - Majorons

Dark matter abundance

- Freeze out via $\lambda JJHH$:
 - $m_{J} \sim m_{h}/2$,
 - m_J > 400 GeV.

Dark matter abundance

- Freeze out via $\lambda JJHH$:
 - $m_{J} \sim m_{h}/2,$
 - m_J > 400 GeV.
- Freeze in:

 $\Omega_J \propto m_J \Gamma(h \to JJ)$

$$\Rightarrow \quad \mathsf{m}_{\mathsf{J}} \simeq \left(\frac{10^{-10}}{\lambda}\right)^2 \mathsf{MeV}.$$

[McDonald, '02; Hall, Jedamzik, March-Russell, West '10; Frigerio, Hambye, Masso, '11]

Dark matter abundance

- Freeze out via $\lambda JJHH$:
 - $m_{J} \sim m_{h}/2$,
 - m_J > 400 GeV.
- Freeze in:

 $\Omega_J \propto m_J \Gamma(h \to JJ)$

$$\Rightarrow \quad \mathsf{m}_{\mathsf{J}} \simeq \left(\frac{10^{-10}}{\lambda}\right)^2 \mathsf{MeV}.$$

[McDonald, '02; Hall, Jedamzik, March-Russell, West '10; Frigerio, Hambye, Masso, '11]

Lyman-α constraints below 12 keV! Use different mechanism: JH, D. Teresi, 1706.09909.

Indirect detection

$$\Gamma(J \to \nu \nu) \simeq \frac{1}{3 \times 10^{19} \text{s}} \left(\frac{\text{m}_J}{\text{MeV}}\right) \left(\frac{10^9 \text{GeV}}{\text{f}}\right)^2 \left(\frac{\sum_j m_j^2}{10^{-3} \text{eV}^2}\right)$$

• General limit from DM \rightarrow invisible: $\tau > 5 \times 10^{18}$ s.

[Audren, Lesgourgues, Mangano, Serpico, Tram, '14]

- Can we observe the **neutrino lines**?
 - m_J > 10 TeV: No. Dominant decay is J → vvh(h).

[Dudas, Mambrini, Olive, '15]

- Also want to avoid electroweak Bremsstrahlung.

[Kachelriess, Serpico, '07; Bell, Dent, Jacques, Weiler, '08; Queiroz, Yaguna, Weniger, '16]

- For MeV < m_J < 100 GeV: Yes!

Flavor of J $\rightarrow \nu_j \nu_j$

No oscillations!

Flavor ratios: $\alpha_{e} : \alpha_{\mu} : \alpha_{\tau}$ NH : 0.03 : 0.43 : 0.54 , IH : 0.48 : 0.22 : 0.30 , QD : 0.33 : 0.33 : 0.33 .

[JH, Camilo Garcia-Cely, 1701.07209]

Julian Heeck (ULB) - Majorons

Look for neutrinos from light DM!

- ν lines detectable down to MeV.
- For free in searches for diffuse supernova neutrino background.
- Borexino = indirect DM detector.
- Future direct DM detectors (LZ, XENONnT) = indirect DM detectors.
- DM $\rightarrow \nu$ easily dominant channel, no SU(2) argument as for multi-TeV.

[El Aisati, Garcia-Cely, Hambye, Vanderheyden, 1706.06600]

One-loop couplings

- Diagonal:
- $$\begin{split} \mathsf{L} =& \mathsf{i} \mathsf{J} \overline{\mathsf{q}} \gamma_5 \mathsf{q} \, \frac{\mathsf{m}_{\mathsf{q}}}{8\pi^2 \mathsf{v}} \left(\mathsf{T}_3^{\mathsf{q}} \, \mathsf{tr} \, \mathsf{K} \right) + \\ & \mathsf{i} \mathsf{J} \overline{\ell} \gamma_5 \ell \, \frac{\mathsf{m}_{\ell}}{8\pi^2 \mathsf{v}} \left(\mathsf{T}_3^{\ell} \, \mathsf{tr} \, \mathsf{K} + \mathsf{K}_{\ell \ell} \right). \end{split}$$
 - Off-diagonal:
- $L = -i J \overline{\ell} \mathsf{P}_L \ell' \, \tfrac{m_\ell}{8\pi^2 v} \mathsf{K}_{\ell\ell'}.$
- New parameter:

$$K \equiv \frac{m_D m_D^{\dagger}}{v f}.$$

- K = rest of seesaw!
- $|\mathsf{K}_{\ell\ell'}| \leq \mathsf{tr}\,\mathsf{K}.$
- One generation:

 $K \sim \frac{m_\nu M_R}{v\,f} \sim 10^{-13} M_R/f.$

[Chikashige, Mohapatra, Peccei, '81; Pilaftsis '94]

Julian Heeck (ULB) - Majorons

Indirect detection II

 $\Gamma(J \rightarrow \overline{f}f) \propto m_f^2 \mathcal{O}(K^2)$

- DM \rightarrow $\tau\tau$, bb, tt, ... give
 - continuous y spectrum: Integral, Fermi-LAT.
 - anti-protons and positrons: PAMELA, AMS-02.
- DM decay around z \sim 1000:
 - modification of CMB. [Slatyer, Wu, 1610.06933]
 - independent of DM profile.

ē, p,γ

Indirect detection II

 $\Gamma(J\to \overline{f}f)\propto m_f^2{\cal O}(K^2)$

- DM $\rightarrow \tau\tau$, bb, tt, ... give
 - continuous y spectrum: Integral, Fermi-LAT.
 - anti-protons and positrons: PAMELA, AMS-02.
- DM decay around z \sim 1000:
 - modification of CMB.

[Slatyer, Wu, 1610.06933]

- independent of DM profile.

Two-loop couplings

• Full calculation highly non-trivial.

[JH, Hiren Patel, in progress]

• J-Z mixing formally similar to triplet majoron:

[Bazzocchi, Lattanzi, Riemer-Sørensen, Valle, 0805.2372]

(two loop)
$$\frac{\operatorname{tr} \mathsf{K}}{16\pi^2} \leftrightarrow \frac{2\mathsf{v}_{\mathsf{T}}^2}{\mathsf{v}\,\mathsf{f}}$$
. (one loop)

• Gives the only DM signature for $m_{J} < MeV$.

[Lattanzi, Riemer-Sørensen, Tórtola, Valle, '13; Queiroz, Sinha, '14]

$$\Gamma(\mathbf{J} \to \gamma \gamma) \simeq \frac{\alpha^2 (\operatorname{tr} \mathsf{K})^2}{4096\pi^7} \frac{\mathsf{m}_{\mathsf{J}}^3}{\mathsf{v}^2} \left| \sum_{f} \mathsf{N}_{\mathsf{c}}^{f} \mathsf{T}_{\mathsf{3}}^{\mathsf{f}} \mathsf{Q}_{\mathsf{f}}^{2} \operatorname{g}\left(\frac{\mathsf{m}_{\mathsf{J}}^2}{4\mathsf{m}_{\mathsf{f}}^2}\right) \right|^2$$

Majoron = DM

- Naturally light, long-lived DM candidate.
- Indirect detection possible:
 - MeV < m_J : J $\rightarrow \nu\nu$, $\gamma\gamma$, ff.
 - keV < m_J < MeV: J $\rightarrow \gamma\gamma$. Maybe warm DM. [JH, Daniele Teresi, 1706.09909]

Majoron = DM

- Naturally light, long-lived DM candidate.
- Indirect detection possible:
 - MeV < m_1 : J $\rightarrow \nu\nu$, yy, ff.
 - keV < m_1 < MeV: J \rightarrow yy. Maybe warm DM.

[JH, Daniele Teresi, 1706.09909]

Majoron \neq DM

- Increase couplings to produce J in lab.
- Measure seesaw parameters.

[JH, work in progress]

Reconstruct seesaw?

- $\{\mathbf{m}_{\mathsf{D}}, \mathsf{M}_{\mathsf{R}}\} \leftrightarrow \{\mathsf{M}_{\nu}, \mathsf{m}_{\mathsf{D}}\mathsf{m}_{\mathsf{D}}^{\dagger}\}.$
- Jvv coupling to measure $U(1)_{L}$ scale f.
- Use Jff couplings to reconstruct

$$(m_D m_D^{\dagger})_{\alpha\beta} = K_{\alpha\beta} v f = \begin{pmatrix} K_{ee} & |K_{e\mu}|e^{ia} & |K_{e\tau}|e^{ib} \\ |K_{e\mu}|e^{-ia} & K_{\mu\mu} & |K_{\mu\tau}|e^{ic} \\ |K_{e\tau}|e^{-ib} & |K_{\mu\tau}|e^{-ic} & K_{\tau\tau} \end{pmatrix} v f.$$

- Diagonal K entries from e.g. Jee, Jµµ, and Jγγ.
- Off-diagonal $|K_{\alpha\beta}|$ from LFV: $\alpha \rightarrow \beta J$.
- Phase of off-diagonal $K_{\alpha\beta}$?

Take from axion/ALP searches.

Lepton flavor violation

• Standard LFV in seesaw:

$$\frac{\Gamma(\ell \to \ell' \gamma)}{\Gamma(\ell \to \ell' \nu_{\ell} \overline{\nu}_{\ell'})} \simeq \frac{3\alpha}{8\pi} |(\mathbf{m}_{\mathsf{D}} \mathsf{M}_{\mathsf{R}}^{-2} \mathsf{m}_{\mathsf{D}}^{\dagger})_{\ell \ell'}|^{2}.$$

- Great signature, but requires light $N_{R.}$
- With majoron: look for mono-energetic lepton: [Pilaftsis, '94; Feng, Moroi, Murayama, Schnapka, '98; Hirsch, Vicente, Meyer, Porod, '09]

$$\frac{\Gamma(\ell \to \ell' \mathsf{J})}{\Gamma(\ell \to \ell' \nu_{\ell} \overline{\nu}_{\ell'})} \simeq \frac{3}{16\pi^2} \frac{\mathsf{v}^2}{\mathsf{m}_{\ell}^2} \frac{|(\mathsf{m}_{\mathsf{D}} \mathsf{m}_{\mathsf{D}}^\dagger)_{\ell \ell'}|^2}{\mathsf{v}^2 \mathsf{f}^2} \cdot \underbrace{\ell}_{\mathsf{V}} \mathcal{I}_{\mathsf{V}} \mathcal{I}_{\mathsf{$$

$\mu \rightarrow e \; J \; with \; J \rightarrow \; invisible$

- TWIST, '15: limits on different anisotropies.
- Chiral coupling µP_LeJ suppresses sensitivity!

[JH, Camilo Garcia-Cely, 1701.07209]

- Bremsstrahlung is competitive: $\mu \rightarrow e J \gamma$. [Goldman, Hallin, Hoffman, Piilonen, Preston, '87]
- Approximate limit

 $|{\sf K}_{\mu{\sf e}}| \lesssim 10^{-5}.$

(a)

(b)

Julian Heeck (ULB) - Majorons

$\tau \ \rightarrow \ \ell \ J \ with \ J \ \rightarrow \ invisible$

• ARGUS, '95; 5e5 taus.

• Belle, '16 prelim.; 1e9 taus.

• Also interesting for LFV Z'.

[JH, 1602.03810; Altmannshofer, Chen, Dev, Soni, 1607.06832]

- Improvement with Belle-II.
- No limits yet on J \rightarrow visible or $\tau \rightarrow \ell J \gamma$.

$$egin{aligned} |{\sf K}_{ au{\sf e}}| \lesssim 6 imes 10^{-3}, \ |{\sf K}_{ au\mu}| \lesssim 10^{-3}. \end{aligned}$$

Summary

- Majoron couplings suppressed by $U(1)_{L}$ scale.
- Automatically long-lived DM candidate.
- Seesaw and leptogenesis for free.
- For MeV < m_J : $J \rightarrow vv$ in Borexino, Super-K,...
- Look for $J \rightarrow \gamma \gamma$, $\bar{\ell}\ell$, natural for $m_J < 10$ GeV.
- If not DM: LFV via $\ell' \rightarrow \ell J, \ell J \gamma, ...$

