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Higgs mass and quartic coupling

V = −µ2|H|2 + λ|H|4

• Parameters: (µ, λ) ←→ (v ,mh)

λ = m2
h/(2v2) + loops

• Well-known: for low mh, λ runs to zero at some scale < MP

(vacuum stability bound) Lindner, Sher, Zaglauer ’89
Froggatt, Nielsen ‘96
Gogoladze, Okada, Shafi ’07
. . .
Shaposhnikov, Wetterich ’09
Holthausen, Lim, Lindner ’11
Redi, Strumia ’12

• It has been attempted to turn this into an mh prediction
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Jumping somewhat ahead:

Our proposal

• In spite of null-results from LHC, string-motivated
high-scale SUSY remains theoretically well-motivated.

• In certain models, λ = 0 is a natural outcome of SUSY
breaking.

• The ‘vacuum stability scale’ µλ is thus identified as the SUSY
breaking scale.



String theory: ‘to know is to love’

• Let’s imagine particles were tiny closed string loops...

• The most natural action, the surface area of the ‘world sheet’,
can be rewritten as

S =
1

4πα′

∫
d2σ (∂αX

µ) (∂αX ν) ηµν



String theory: ‘to know is to love’

• Actually, only the supersymmetrised version of this 2d action
leads to a stable target space vacuum.

• We now have a (perturbatively) finite theory of quantum
gravity (in 10d target space)

• The (low-energy) effective field theory in 10d turns out to be
supersymmetric.

• In fact, depending on fermionic boundary conditions we get
four different 10d theories.



String theory: ‘to know is to love’

• These turn out to be all possible 10d supergravity theories.

• They are related by dualities and are thus part of a single,
more general theory.

• We focus on one of the four options: Type IIB.



The 10d type IIB lagrangian

L ∼ 1

l8s
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1 + F 2
3 + F 2

5

)]
+ · · ·

where, for example:

F3 = dC2 , i.e. (F3)µνρ ∼ ∂[µCνρ]

and analogously for the other ‘form fields’.

• This theory has non-perturbative ‘solitons’ (D-branes), on
which (e.g. 8-dimensional) gauge theories are localized.



Towards the real world...

...our mistake is not that we take our theories too seriously, but
that we do not take them seriously enough.

S. Weinberg

• Thus, we have to compactify 6 of the 10 dimensions.

• To solve the Einstein equations, our compact space should
have Rµν = 0.

• Such 6d spaces are called Calabi-Yaus,
of which ∼ 104 are known.

• The resulting 4d theories are supersymmetric and have many
‘moduli’.

• These moduli are scalars with exactly vanishing potential
(they parametrise size and shape of the compact space).



Fluxes

• However, we are missing one important ingredient: Fluxes.

• Fluxes are background VEVs of the higher-form field-strenghts
e.g. F3,H3.

• To understand this better, take T 3 as our compact space.
Let’s also assume that our toy model has an F2-field:

• Here we sketched a T 2-submanifold (2-cycle) of our our T 3.

• We know (from Dirac) that
∫
T 2 F2 is quantized.



The ‘Landscape’

• Now, Calabi-Yaus have hundreds of 3-cycles, allowing us to
choose very many ‘flux-quanta’ for F3 and H3.
(This is a geometric choice, just like choosing one or the other
of the 104 Calabi-Yaus).

• We now have ∼ 10500 4d theories, with moduli stabilized and
(sometimes) with supersymmetry broken in a controlled way.

• These are all different solutions of the single 10d quantum
gravity theory we started from.

• They are best described in terms of
(spontaneously broken) 4d N = 1 supergravity.



4d Supergravity

• (The simplest) supergravity models are defined by a (real)
Kähler potential

K (ϕı̇, ϕı̄)

and a (holomorphic) superpotential

W (ϕı̇).

• The 4d lagrangian reads

L =
1

2
R+ Kı̇̄(∂ϕ

ı̇)(∂ϕ̄)− V (ϕı̇, ϕı̄) + · · ·

with

V = eK
[
K ı̇̄Dı̇WḊW − 3|W |2

]
and Dı̇ ≡ ∂ı̇ + Kı̇ .



• The crucial point is that K and W are calculable in terms of
Calabi-Yau geometry and flux choice.

• Simplest example:

K = −3 ln(T + T ) + · · · with T = R4 + i

∫
C4

where R is a typical radius of the Calabi-Yau.

• More generally:

K = −2 ln [κijk(t+t)i (t+t)j(t+t)k ]+· · · where t i = R2
i +· · ·

and Ri are radii of a certain 2-cycle-basis (while κijk are the
intersection numbers of the dual 4-cycle basis).



• Very symbolically:

W ∼ Niz
i + · · ·

where Ni are the ‘flux numbers’ and z i are further moduli,
this time parametrizing the sizes of 3-cycles of the Calabi-Yau.

• As a side remark:

After minimization, the vacuum value W0 ≡ 〈W 〉 can take
∼ 10500 values roughly within the unit circle.

This enters directly into the vacuum energy and is one of
best-studied instances of the possible fine-tuning in the
landscape.

Denef/Douglas ’04



High scale SUSY and the Higgs mass

• In this setting, the gravitino mass (≡ SUSY breaking scale) is

m3/2 = eK/2|W0|

which can be anywhere between string and TeV scale.

• Matter fields are usually localized on D-branes wrapping some
of the CY cycles.

• Their Kähler potential, while very important for applications
(e.g. SUSY breaking masses) is usually hard to get.

• Let’s start by recalling that (canonical Kähler potential):

K ⊃ QQ ⇒ L ⊃ (∂µQ)(∂µQ)



• String-derived Kähler potentials are usually more complex, e.g.

K = −3 ln(T + T + QQ + UU)− ln(S + S + HuHu) + · · ·

together with

W = W0 + y QHuU

• Part of our specific work was identifying cases where the
Higgs Kähler potential is

K ⊃ − ln[S + S + |Hu + Hd |2]

where S can be viewed as a constant.

• The crucial point here is the shift symmetry

Hu → Hu + c and Hd → Hd − c



Origin of shift symmetry

• Let’s start with a D6 brane stack with SU(6) gauge group.

• This corresponds to a 7d gauge theory,
living on a 3d submanifold of our Calabi-Yau.

• It can be broken to a GUT as SU(6)→SU(5)×U(1).

• The adjoint decomposes as 35→ 24 + 5 + 5 + 1.

• The 5 + 5 contain the 2 + 2 MSSM Higgs doublets.

• Secretly, these Higgses are Wilson lines on our 3d submanifold.

• Their shift symmetry is just the A5,6 → A5,6 + c gauge trf.

• This enforces the special form of above Kähler potential.



• By T-duality (≡ mirror symmetry) this structure is transported
to the type IIB setup.
(This is where moduli stabilization is better understood.)

• The Higgses now correspond to transverse brane motion, but
they still have the shift symmetry.



• Very schematically, we now have

K = −3 ln[T + T ]− ln[S0 + S0 + |Hu + Hd |2] + · · ·

W = W0 + y QHuU

• A straightforward supergravity analysis gives (at tree-level):

m2
1 = m2

2 = m3
3 = 2m2

3/2

where m2
i are the entries of the Higgs mass matrix.



Phenomenological details

• Of course, high-scale SUSY has been considered before

Giudice, Romanino ’04
Arkani-Hamed, Dimopoulos, Arvatinaki, Kaplan,.. ’04..’12
Hall, Nomura ’09

• Quartic coupling λ at SUSY-breaking scale ms :

λ(ms) =
g2(ms) + g ′2(ms)

8
cos2(2β)

• β is the rotation angle needed to diagonalize the mass matrix

M2
H =

(
|µ|2 + m2

Hd
Bµ

Bµ |µ|2 + m2
Hu

)
=

(
m2

1 m2
3

m2
3 m2

2

)



• We have thus provided a symmetry reason for

M2
H ∼

(
1 1
1 1

)
• In other words, we have a symmetry reason for

tan(β) = 1 and therefore λ(ms) = 0

• This can be interpreted in two ways:

1) We have a setting predicting the SUSY-breaking scale
based on the observables mh, mt and αs (cf. plot).

2) We have a setting realising the highest SUSY breaking
scale that’s allowed in a high-scale MSSM.
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Corrections? Precision?

• The structure

M2
H ∼

(
1 1
1 1

)
predicts λ(ms) = 0 and one exactly massless Higgs doublet

(since det(MH) = 0).

• However, loops correct both λ and the mass matrix:

M2
H ∼

(
1 + β 1 + δ
1 + δ 1 + γ

)
• The loop corrections have to be (and can be!) tuned to insure

det(MH) ∼ mh � ms .

• This affects λ only very mildly (see plot).



Corrections? Precision?

• The two main theoretical errors come from

(I) non-SUSY-loops at mS correcting λ (left)

(II) SUSY-loops above mS correcting MH (right).



Predictivity/Applications

• Clearly, we eventually need more phenomenological
implications of ‘stringy high-scale SUSY’

• Among others, axion(s), cosmological moduli, gauge
unification and proton decay can be potentially related to the
high SUSY-breaking scale

Chatzistavrakidis, Erfani, Nilles, Zavala ’12
Ibanez, Marchesano, Regalado, Valenzuela ’12

• Particularly interesting point: The term HuHd ⊂ K , which is
potentially controlled by the shift symmetry, is crucial for
reheating and and hence dark radiaton abundance

Higaki, Kamada, Takahashi ’12
Cicoli, Conlon, Quevedo,... Angus,... ’12...’13



An interesting footnote...

• Amusingly, SUSY can be broken even far above the scale
where λ = 0

• One first needs to enforce λ = 0 ‘from the Kähler potential’

• This leading-order result can then be corrected
‘via the superpotential’, using an NMSSM-like scalar:

W = κSHuHd +
M2

2
S2 + · · ·

• If S also has a SUSY-breaking mass-quared m2
s < 0,

after integrating out S one has:

VF =
κ2m2

s

M2 + m2
s

|H0|4 < 0

Giudice, Strumia ’11

• This gives λ < 0 below the SUSY-breaking scale.



Diagrammatic view of the generation of the quartic term

• In unbroken SUSY, the cancellation is perfect.

• In broken SUSY, M2 → (M2 + m2
s ) upsets the cancellation.



• Directly below the SUSY breaking scale,
the point H0 = 0 is (quartically) unstable.

• ‘Our’ minimum is generated only radiatively
(since λ runs to positive values)

• The SU(2)-breaking minimum is a tiny extra effect

• This can be viewed as a microscopic realization of the
metastability scenario



Conclusions / Summary

• In the absence of new electroweak physics at a TeV, the
‘vacuum stability scale’ µλ may be a hint at new physics

• Well-motivated guess: SUSY broken with tanβ = 1 at µλ

• Possible reason: Shift symmetry in Higgs sector

• Specific settings include the
bulk-type Higgs in type IIB/F-theory GUTs

Weigand, Palti, Mayrhofer,. . .

• But: SUSY breaking above µλ with λ < 0 is also possible;
cosmological challenges need further study

Abel/Chu/Jaeckel/Khoze ’06
Lebedev/Westphal ’12


