Precision measurements with neutrinos from nuclear reactors: new results, anomalies and perspectives

Julia Haser, MPIK Heidelberg

Kaffeepalaver, 2015/05/21

Contents _____

- 1. Neutrinos from reactors and the oscillation phenomenon
- 2. Measuring the mixing angle θ_{13} with Double Chooz
- 3. Prediction of the reactor $\bar{\nu}_e$ flux
- 4. Reactor antineutrino anomalies
- 5. Future experiments: search for a 4th neutrino eigenstate

Neutrinos from reactors and the oscillation phenomenon

Neutrino sources

natural sources

solar v ν_e

MeV

 $\overline{\nu}_e \ \overline{\nu}_\mu \ \overline{\nu}_\tau$ MeV-PeV

atmospheric v $\overline{\nu}_e \, \overline{\nu}_\mu$ GeV

geo v $\overline{\nu}_e$ MeV

artifical sources

reactors

accelerators

radioactive sources

 $\overline{\nu}_e$ MeV

Reactors as source of $\bar{\nu}_e$

- nuclear reactors rely on fission chain
- = 1 fission: $\sim 200 \; MeV$ and 6 neutrinos
- light water reactor: few ${\rm GW_{th}}
 ightarrow 10^{20} \ \bar{\nu}_{\rm e}/s$

Reactors as source of $\bar{\nu}_e$

- fission products are neutron rich nuclei
- pure and intense source of $\bar{\nu}_{e}$ through β^{-} decays
- = 99.9 % of $\bar{\nu}_{\rm e}$ flux: ²³⁵U, ²³⁹Pu, ²⁴¹Pu and ²³⁸U

Detection of $\bar{\nu}_e$.

■ inverse beta decay (IBD) reaction on hydrogen nuclei (H₂O, -CH₂) $\bar{\nu}_e + p \rightarrow e^+ + n$

- ³He detectors: neutron counting
- Organic scintillator detectors: coincidence signal

Detection of $\bar{\nu}_e$

= inverse beta decay (IBD) reaction on hydrogen nuclei (H_2O, -CH_2)

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- ³He detectors: neutron counting
- Organic scintillator detectors: coincidence signal
 - ▶ prompt: *e*⁺ annihilation + kinetic energy

Detection of $\bar{\nu}_e$

= inverse beta decay (IBD) reaction on hydrogen nuclei (H_2O, -CH_2)

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- ³He detectors: neutron counting
- Organic scintillator detectors: coincidence signal
 - prompt: e⁺ annihilation + kinetic energy
 - delayed: neutron capture
 - \star H: $E_\gamma \approx 2.2$ MeV, $au \sim 200 \, \mu s$
 - * Gd: $E_{\gamma} \approx 8 \text{ MeV}$, $\tau \sim 30 \, \mu \text{s}$

$$e^+$$

Detection of $\bar{\nu}_e$

= inverse beta decay (IBD) reaction on hydrogen nuclei (H_2O, -CH_2)

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- ³He detectors: neutron counting
- Organic scintillator detectors: coincidence signal
 - prompt: e⁺ annihilation + kinetic energy
 - delayed: neutron capture
 - \star H: $E_\gamma \approx 2.2 \, {
 m MeV}$, $au \sim 200 \, \mu {
 m s}$
 - * Gd: $E_{\gamma} \approx 8 \text{ MeV}, \ \tau \sim 30 \, \mu \text{s}$

$$\begin{array}{c}
e^+ \\
\Delta t < 150 \, \mu s \\
\Delta R < 1 \, m
\end{array}$$

Detectable $\bar{\nu}_e$ spectrum

energy threshold = 1.8 MeVenergy of the e^+ event: $E_{\text{vis}} \approx E_{\nu} - 0.8 \text{ MeV}$

Neutrino mixing

ŧ

flavour eigenstates ν_e, ν_μ, ν_τ (creation/detection)

mass eigenstates ν_1, ν_2, ν_3 (propagation)

linked via mixing matrix U (3 angles, 1 phase):

 $s_{ij} = \sin \theta_{ij}$ and $c_{ij} = \cos \theta_{ij}$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\begin{array}{ccc} \text{atmospheric} & \text{small mixing angle} & \text{solar} \\ \theta_{23} \sim 45^\circ & \theta_{13} \sim 9^\circ & \theta_{12} \sim 33^\circ \end{array}$

• mass splittings: $\Delta m_{ij}^2 = m_i^2 - m_j^2$; i, j = 1, 2, 3

Reactor $\bar{\nu}_e$ & neutrino oscillation

- flavor content of the reactor neutrino flux changes during flight
- mixing parameters responsible for oscillation pattern

Reactor $\bar{\nu}_e$ & survival probability

Measuring the mixing angle θ_{13} with Double Chooz

Reactor neutrinos and θ_{13}

- θ_{13} measurement w/o parameter degeneracies
- short baseline, low energy → no matter effects

Reactor neutrinos and θ_{13}

- θ₁₃ measurement w/o parameter degeneracies
- short baseline, low energy → no matter effects
- multi detector principle (cancel systematics)

Recent reactor neutrino experiments

θ_{13} measurements

"Gd-III" publication: Double Chooz Collaboration, JHEP10(2014)086

2015/05/21 14 / 61

Chooz reactor site

Double Chooz Detector

μ vetoes

- Outer Veto: plastic scintillator strips
- Inner Veto: liquid scintillator (LAB) with 78 × 8" PMTs

INNER DETECTOR

- v-Target: liquid scintillator PXE + Gd (1g/l)
- γ-Catcher: liquid scintillator PXE (no Gd)
- Buffer: transparent mineral oil with 390 × 10" PMTs

Calibration

- source deployment in ν-Target & γ-Catcher
- light injection system
- background events

MPIK Double Chooz activity

Liquid Scintillators: developement large scale production filling

PMTs: testing installation

Analysis: MC optical model energy scale detection efficiency

Spill-out events repartition in the target

Double Chooz backgrounds

background expectation: $1.6^{+0.4}_{-0.2}$ events/day

Far Detector analysis: Neutrino candidates

April 2011 – Jan 2013

- live-time: 460.7 days
- IBD candidates: 17351 prediction: 18290 ± 350
- unique to DC: 7.24 days of all reactors off!! (7 candidates)

— Far Detector analysis: Normalization uncertainties —

source	uncertainty (%)	improvement wrt DC-II
reactor flux	1.7	-
signal detection	~ 0.6	-40 %
statistics	0.8	-30 %
backgrounds	0.8	-50 %
total	2.1	-20 %

uncertainty relative to signal prediction

- Far Detector (FD) only analysis: compare data to MC prediction
- Bugey-4 "anchor" point reduces reactor normalization uncertainty from 2.8 to 1.7 %

Reactor Rate Modulation results

- measure θ_{13} (slope) and BG rate (intercept) at the same time
 - background model independent θ_{13} analysis possible
 - unique to DC: additional reactor off data point
- result:
 - $\sin^2 2\theta_{13} = 0.090^{+0.034}_{-0.035}$ (stat+sys)
 - $B = 1.56^{+0.18}_{-0.16} \text{ day}^{-1}$

Rate + Shape results

$$\frac{\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029} \text{ (stat+sys)}}{\text{BG rate after fit: } 1.38 \pm 0.14 \text{ day}^{-1}}$$

Near+Far detector outlook

Prediction of the reactor $\bar{\nu}_e$ flux

Reactor flux prediction

ILL data: reference β -spectra

Phys. Let. B218,365 (1989)+ refs therein

- total β -spectrum of each fissile isotope
- largest uncertainty: 1.8% on normalization

Beta decay spectrum conversion

- neglect nucleus recoil
- endpoint energy: $E_0 = E_e + E_{\nu}$
- electron spectrum:

 $S(E) = N \cdot F(Z, A, E) \cdot \rho(E) \cdot C(E) \cdot (1 + \delta(Z, A, E))$

- corrections:
 - radiative
 - finite size of nucleus and neutron
 - ▶ screening of e⁻
 - weak magnetism

Contribution per isotope

fission fragments: Z, A

fission fragment live-times

decay branching ratios $(Q_{\beta} = E_0 + E_{ex})$

Realistic ²³⁵U spectrum

built using the "summation method" \sim 1000 fission fragments with 10⁴ β -branches

Prediciton of the $\bar{\nu}_e$ spectra

T. Mueller et al., Phys. Rev. C83, 054615 (2011)

P. Huber, Phys. Rev. C84, 024617 (2011)

A. A. Hahn, K. Schreckenbach et al., Phys. Let. B218,365 (1989) + refs. therein

1) Conversion method

- 1. fit ILL data with 30 "virtual" β -branches
- 2. convert each β -branch into the corresponding ν -branch
- 3. sum the ν -branches to obtain the total spectrum

+ contraint on nuclear charge Z of fission fragments as a function of E_0 (retrieved from nuclear databases)
2) Summation method

4

v Kinetic E (Mev)

-30

- use information from nuclear databases
- includes new data from branching ratio measurements
- missing information: use theoretical predictions

agreement at the 10 % level with ILL data
error of 10 to 20 %, dominated by missing info

3) Mixed method

maximize the use of measured data:
 90% of the spectrum from nuclear databases

- missing 10 % compared to ILL data from fit with 5 virtual β-branches
- corrections applied on the single branch level
- error reduced compared to the pure summation spectrum (ILL data = only reference)

New antineutrino spectra of 2011

- uncertainties similar as for the old spectra (~3%)
- mixed method results: +3.5% total flux
 - Iow energy: corr. at branch level
 - high energy: true information on Z of fission fragments

 mixed method and re-evaluation of conversion method in agreement (Mueller et al.)
 (Huber)

Reactor antineutrino anomalies

New reactor flux prediction

neutrino emission

- new reactor spectra: +3.5 %
 (2-8 MeV region)
- accounting for long-lived isotopes: +1%

neutrino detection

 re-evaluated σ_{IBD}: +1.5% (new neutron life time measurement)

Reactor antineutrino anomaly

- 19 Short Baseline Experiments (SBL)
 L < 100 m
- observables: ratios of observed event rate to predicted rate of events

• before 2011:

- average $\mu = 0.976 \pm 0.024$
- after 2011: (TAUP2013, T. Lasserre)
 - average $\mu = 0.936 \pm 0.024$
 - 2.7 σ deviation from μ = 1
 - includes km baseline experiments (Chooz, Double Chooz, PaloVerde, DayaBay)

Cause of the anomaly? _____

Experimental bias?

- IBD cross section well-known
- different experiments with different . . .
 - ... reactor fuel compositions
 - ... detector technologies
 - ... efficiencies
 - ... backgrounds

Limitations in the prediciton? (1)

- particle conservation: cancellation at low E adds up at high E
- corrections of the spectra of one beta branch depend on the forbiddenness of the decay
- Hayes et al.:
 - ~25 % of the β -branches are forbidden
 - type of nuclear operator changes the spectral shape
 - 0-4 % change in the *ν* spectra
 → uncertainty underestimated?

A. Hayes et al. Phys. Rev. Lett. 112, 202501 (2014)

Limitations in the prediciton? (2)

- Fang et al.:
 - deviation in shape confirmed, but different correction terms
 - linear shape factor introduces larger spectral distortions than a parabola shape
 - average over all types of forbidden transitions: 1-2% spectral change (smaller than Hayes)
- but: incomplete assumptions and extreme cases studied
- further realistic estimations are needed

Neutrino spectrum distortion "Anomaly 2"

- spectral distortion above 4 MeV observed by the DC experiment in 2014
- several crosschecks have shown
 - θ_{13} measurement is not affected
 - energy scale at E > 4 MeV tested (n-¹²C, ¹²B) and as cause disfavoured
 - unknown background disfavoured
 - $\,{}^{\scriptscriptstyle \bullet}$ correlation of excess with reactor power at 3 σ

Spectral distortion in other experiments

observation of DC of the distortion was confirmed by other . reactor- ν experiments

@ ICHEP 2014

Spectral distortion in predicted spectrum

- bump in the summation method spectra of Dwyer et al. at 5-7 MeV
- at higher energies few decay branches contribute 40% of the total spectrum

Note: Dwyer's spectrum is incomplete and dominant contributions to systematic errors are missing!

most prominent β -branches for E > 4 MeV

	4 - 5MeV	5-6MeV	6 - 7 MeV	7 - 8MeV
⁹² Rb	4.74%	11.49%	24.27%	37.98%
⁹⁶ Y	5.56%	10.75%	14.10%	-
¹⁴² Cs	3.35%	6.02%	7.93%	3.52%
¹⁰⁰ Nb	5.52%	6.03%	-	-
⁹³ Rb	2.34%	4.17%	6.78%	4.21%
^{98m} Y	2.43%	3.16%	4.57%	4.95%
¹³⁵ Te	4.01%	3.58%	-	-
^{104m} Nb	0.72%	1.82%	4.15%	7.76%
⁹⁰ Rb	1.90%	2.59%	1.40%	-
⁹⁵ Sr	2.65%	2.96%	-	-
⁹⁴ Rb	1.32%	2.06%	2.84%	3.96%

M. Fallot et al., PRL 109, 20254 (2012)

but: new data input on ⁹²Rb

- new data on ^{92}Rb leads to change in BR of GS \rightarrow GS transition

- bump in the Dwyer spectrum ratio will change with the new ⁹²Rb spectrum to a slope that rises wrt energy
- results very sensitive to database info \rightarrow further measurements needed

Cause of the anomaly: new physics?

Future reactor experiments: search for a 4th neutrino eigenstate

Light sterile neutrinos

- Z decay measurements: **3** active light ν flavors ($N_{\nu} = 2.984 \pm 0.008$)
- ⇒ new light neutrino eigenstate must be sterile (does not interact weakly)

Impact on $\bar{\nu}_e$ oscillation

G. Mention et al., Phys. Rev. D83, 073006 (2011)

Other oscillation anomalies

Experiment	Neutrino source	Channel	Significance
LSND	Decay at rest	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	3.8 <i>o</i>
MiniBooNE	Short-baseline accelerator	$\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}}$	3.0 σ
Reactor	eta decay	$\bar{\nu}_e \to \bar{\nu}_e$	2.7σ
Gallium	Electron capture	$\nu_e \to \nu_e$	2.7-3.0 σ

- LSND and MiniBooNE: observation of an excess in $\stackrel{(-)}{\nu_e}$
- Gallium anomaly: ν_e source measurements with ${}^{51}\mathrm{Cr}$ and ${}^{37}\mathrm{Ar}$ in the GALLEX and SAGE detectors

Sterile neutrino hypothesis

best fit (3 + 1 scenario) $|\Delta m_{\text{new}}^2| = 1.8 \text{ eV}^2$ $\sin^2 2\theta_{\text{new}} = 0.09$

- combination of reactor (SBL, km-baseline, KamLAND), solar, Gallium source and v_e scattering data
- data consistent with $\stackrel{(-)}{\nu_{e}}$ disappearance with $L/Epprox 1\,{
 m m}/{
 m MeV}$
- no-oscillation hypothesis excluded at 99.8 % CL

Sterile neutrino detector

• influence of the ν source and detector parameters:

• $\Delta m^2 = 0.1 - 10 \,\mathrm{eV}^2 \implies L_{\mathrm{osc}} = 0.1 - 10 \,\mathrm{m}$

experimental specifications:

- compact source
- good vertex and energy resolution
- high statistics
- Iow background

Sterile neutrino evidence

- ν survival probability changes with L/E
- "smoking gun evidence": change in measured rate wrt to the distance to the source and energy

The Nucifer Experiment

- 0.7 ton Gd-LS, 5 mwe overburden
- 7 m distance to Osiris research reactor at CEA/Saclay, France (70 MW, 20 % ²³⁵U, 60×60×60 cm³ core)
- designed for safeguard applications: $\boldsymbol{\nu}$ rate measurement
- challenging: muon-induced bkg, $\gamma\text{-bkg}$ from reactor

Nucifer data

- clear signal of reactor antineutrinos
- optimized Gd-LS: pulseshape discrimination for background reduction
- no significant contribution from reactor induced fast neutrons

The Stereo project

- 2 ton Gd-LS, 10 mwe overburden
- 8-11 m distance to ILL research reactor at Grenoble, France (57 MW, highly enriched in ²³⁵U, core height = 80 cm, Ø = 40 cm)
- 500 $\bar{\nu}_e$ per day
- = 70 tons γ and n shielding

Stereo detector

- size: 3x1.5x1 m³
- Target: Gd-loaded liquid scintillator (MPIK)
- Gamma Catcher: Gd-free scintillator (MPIK)
- 8 inch PMTs at top (MPIK)

Sterile ν signature in Stereo

- relative measurement in 6 separate cells
- baseline dependent spectral deformation
- reminder: oscillation changes wrt L and E
- movable detector: ±1-2 m
- measurements completed by absolute flux info

Stereo sensitivity

- finish detector construction this year
- assumptions:
 - σ_{e-scale} = 2 %
 - ► S/B = 1.5
 - 300 days reactor on
 - one position
 - 4 % normalization uncertainty
- two positions: improvement at low Δm^2

Conclusion

- the Double Chooz experiment measures the mixing angle θ₁₃ using reactor anti-neutrinos
- R+S: $\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029}$, BG rate: $1.38 \pm 0.14 \text{ day}^{-1}$
- targeted $1 \sigma \approx 0.01$ uncertainty on $\sin^2 2\theta_{13}$
- re-evaluation of the reactor $\bar{\nu}$ spectra led to a +3.5 % shift in flux
- reactor $\bar{\nu}$ anomaly: short baseline reactor experiments detect deficit in flux
- combination with other exp.: no-oscillation hypothesis excluded at 99.8 % CL
- spectral distortion observed by 1 km baseline experiments
- reactor flux prediction is an active topic
 - treatment of forbidden decays has an impact on the spectral shape
 - summation method is extremely sensitive to the choice of database
 - further studies as well as measurements needed
- = $\nu_e^{(-)}$ disappearance anomalies could be explained by a light sterile neutrino
- measurements with Nucifer and Stereo will test favoured parameter range

Thank you for your attention!

Appendix

Double Chooz backgrounds

Reactor Rate Modulation results

- measure θ_{13} (slope) and BG rate (intercept) at the same time
 - background model independent θ_{13} analysis possible
 - unique to DC: additional reactor off data point
- result:

 - $B = 1.56^{+0.18}_{-0.16} \text{ dav}^{-1}$

- w/o BG rate constraint result:
- $\sin^2 2\theta_{13} = 0.090^{+0.034}_{-0.035}$ (stat+sys) $\sin^2 2\theta_{13} = 0.060 \pm 0.039$ (stat+sys)

•
$$B = 0.93^{+0.43}_{-0.36} \text{ day}^{-1}$$

Rate + Shape results

innovations:

- improved energy scale
- all background assumptions from data
- reduced uncertainties (bkg, ε, E-scale)
- range from 0.5-20 MeV
- measured ²³⁸U spectrum in prediction
- Δm^2 from MINOS 2013
- includes 2 reactors off

$$\frac{\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029} \text{ (stat+sys)}}{\text{BG rate after fit: } 1.38 \pm 0.14 \text{ day}^{-1}}$$

Final Fit _____

• 40 energy bins with:

$$N_i^{\text{pred}} = \sum_{R=1,2}^{\text{Reactors}} P(\bar{\nu}_e \to \bar{\nu}_e) \cdot N_i^{\nu,R} + \sum_b^{\text{Bkgnds}} N_i^b$$

binned rate + spectral shape fit:

$$\chi^{2} = \sum_{i,j}^{\text{Bins}} (N_{i} - N_{i}^{\text{pred}}) \underbrace{(M_{ij})}_{\text{covariance matrix}}^{-1} (N_{j} - N_{j}^{\text{pred}})^{T} + \underbrace{\sum_{k=1}^{\text{Pulls}} \frac{(P_{k} - P_{k}^{\text{CV}})}{(\sigma_{k}^{P})^{2}}}_{\text{pulled terms}}$$

Bugey-4 "Anchor" Point ____

cross section per fission of each reactor R:

$$\langle \sigma_f \rangle = \langle \sigma_f \rangle^{\mathsf{Bugey}} + \sum_k (\alpha_k^{\mathsf{DC}} - \alpha_k^{\mathsf{Bugey}}) \langle \sigma_f \rangle_k$$

 α_k = fractional fission rate of the k^{th} isotope

while
$$\langle \sigma_f \rangle_k = \int_0^\infty dE S_k(E) \sigma_{\text{IBD}}(E)$$

 $S_k(E)$ = reference spectrum
Other Experiments (1)

Other Experiments (2) _

recent reactor experiments' results		
	$\sin^2(2 heta_{13})$	
Double Chooz	$0.090^{+0.032}_{-0.029}$ (stat. + syst.)	10.1007/JHEP10(2014)086
Daya Bay	$0.090^{+0.008}_{-0.009}$ (stat. + syst.)	10.1103/PRL.112.061801
RENO	0.101 ± 0.013 (stat. + syst.)	Neutrino2014

Carbon-12 n-captures

• n-C peak in Gamma-Catcher with Δ (data,MC) < 0.5%

Spectrum distortion (1)

- spectral distortion above 4 MeV observed
- several crosschecks have shown
 - θ_{13} measurement is not affected
 - energy scale at E > 4 MeV tested (e.g. n-¹²C) and as cause disfavoured
 - unknown background disfavoured

Spectrum distortion (2)

- RRM fit with free reactor normalization performed for different energy ranges
- excess at 4.25 6 MeV consistent with an unaccounted reactor flux
 - + the significance wrt flux prediction is 3σ with BG constraint from our estimation

- data-driven study of this energy region:
 - correlation of excess with reactor power
 - not only limited to n-Gd sample

Spectrum distortion (3)

- same pattern observed in DC-II results with different detection channels (Gd, H) and detector volumes (Target and Gamma-Catcher)
- better resolved with DC-III (more statistics, better energy scale and less background)